2009中考数学二轮复习题精选(第二辑参考答案)

合集下载

2009北京中考数学试卷及答案

2009北京中考数学试卷及答案

2009 北京中考数学试卷及答案注意事项: 1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷 4 页,为选择题,36 分;第Ⅱ 卷 8 页,为非选择题,84 分;共 120 分.考试时间为 120 分钟. 2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.考试 结束,试题和答题卡一并收回. 3.第Ⅰ卷每题选出答案后,都必须用 2B 铅笔把答题卡上对应题目的答案 标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题共 36 分)一、选择题 (本题共 12 小题,共 36 分,在每小题给出的四个选项中,只 有一个是正确的,请把正确的选项选出来.每小题选对得 3 分,选错、不选或选 出的答案超过一个均记零分.) 1.今年在北京举行的“财富世界论坛”的有关资料显示,近几年中国和印 度经济的年平均增长率分别为 7.3%和 6.5%,则近几年中国比印度经济的年平 均增长率高( ) . A.0.8 C.0.8 % B.0.08 D.0.08%2.已知实数 a、 b 在数轴上对应的点如图所示,则下列式子正确 的是 ( ) . A. ab  0 B. a  ba 1 x C. a  b  0 x D. a  b  0 3.国家统计局统计资料显示,2005 年第一季度我国国内生产总值为 31355.55 亿元,用科学记数法表示为( )元. (用四舍五入法保留 3 个有 效数字)0b 1² ²²²²A. 3.13 1012 C. 3.14 1013B. 3.14 1012 D. 31355.55 108E 4.如图,在 ABC 中, D、 、F 分别在 AB、BC、AC 上,且 EF ∥ AB ,A要使 DF ∥ BC ,只需再有下列条件中的( )即可. D F A. 1   2 B. 1  DFE 1 2 C. 1  AFD D. 2  AFD B E 5.如图,等腰梯形 ABCD 中, AB ∥ CD , AB=2CD , AC 交 BD 于点 O ,点 E 、 F 分别为 AO 、 BO 的中点,则下列关于点 O 成中心 对称的一组三角形是( ) . A. ABO与CDO B. AOD与BOC C. CDO与EFO D. ACD与BCDA E D O F B CC6.已知圆 A 和圆 B 相切,两圆的圆心距为 8cm,圆 A 的半径为 3cm,则圆 B 的半径是( ) . A.5cm B.11cm C.3cm D.5cm 或 11cm 7.某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相 同.为了促销,甲站的液化气每罐降价 25%销售;每个用户购买乙站的液化气, 第 1 罐按照原价销售,若用户继续购买,则从第 2 罐开始以 7 折优惠,促销活动 都是一年.若小明家每年购买 8 罐液化气,则购买液化气最省钱的方法是 ( ) . A.买甲站的 B.买乙站的 C.买两站的都可以 D.先买甲站的 1 罐,以后再买乙站的 8.若 x  A.1 x2 3 求 4 的值是( x x  x2 1) .1 1 1 1 B. C. D. 8 10 2 4 9.为了改善住房条件,小亮的父母考察了某小区的 A、B 两套楼房, A 套 楼房在第 3 层楼, B 套楼房在第 5 层楼, B 套楼房的面积比 A 套楼房的面积大 24 平方米,两套楼房的房价相同,第 3 层楼和第 5 层楼的房价分别是平均价的 1.1 倍和 0.9 倍.为了计算两套楼房的面积,小亮设 A 套楼房的面积为 x 平方米, B 套楼房的面积为 y 平方米,根据以上信息列出了下列方程组.其中正确 的是( ) .0.9 x  1.1y A.   y  x  24 0.9 x  1.1y C.   x  y  241.1x  0.9 y B.   x  y  24 1.1x  0.9 y D.   y  x  2410.如图,在直角坐标系中,将矩形 OABC 沿 OB 对折,使点 A 落在点 A1 处,已知 OA  3 , AB  1 ,则点 A1 的坐标是( A. (3 3 , ) 2 2 3 3 , ) 2 2)y .B. (3 ,3) 2CA1BC. (D. (1 3 , ) 2 2OAxE 11. 正方形 ABCD 中, 、F 分别为 AB、BC 的中点,AF 与 DE 相交于点 O , AO ( 则 ) . DOD CA.1 3B.2 5 5F O A E B2 C. 31 D. 212. 某种品牌的同一种洗衣粉有 A、B、C 三种袋装包装, 每袋分别装有 400 克、300 克、200 克洗衣粉,售价分别为 3.5 元、2.8 元、1.9 元. A、B、C 三种 包装的洗衣粉每袋包装费用(含包装袋成本)分别为 0. 元、 6 元、 5 元. 8 0. 0. 厂 家销售 A、B、C 三种包装的洗衣粉各 1200 千克,获得利润最大的是( ) . A. A 种包装的洗衣粉 B. B 种包装的洗衣粉 C. C 种包装的洗衣粉 D.三种包装的都相同绝密☆启用前试卷类型:A2005 年潍坊市中等学校招生考试数第Ⅱ卷注意事项:学试题共 84 分)(非选择题1. 第Ⅱ卷共 8 页,用蓝黑钢笔或圆珠笔直接答在试卷上. 2. 答卷前将密封线内的项目填写清楚. 二、填空题(本大题共 5 小题,共 15 分.只要求填写最后结 果,每小题填对得 3 分.其中,第 14、15 两小题为选做题,(B 只须做 ( A)、 ) 题中的一个即可,若两题都做,只以 ( A) 题计得 分评卷人分.)y13.如图, ABC 是格点(横、纵坐标都为整数的点) 三角形, 请在图中画出与 ABC 全 等的一个格点三角形.OxA B C14.(A 题) 已知一次函数 y  2 x  5 的 图象与反比例函数 y k  k  0  的图象交 x于第四象限的一点 P  a, 3a  , 则这个反比例函数的解析式为_______________. (B 题) 盒子里装有大小形状相同的 3 个白球和 2 个红球,搅匀后从中摸出一 个球, 放回搅匀后,再摸出第二个球, 则取出的恰是两个红球的的概率是______. 15.(A 题) 某电视台在每天晚上的黄金时段的 3 分钟内插播长度为 20 秒 和 40 秒的两种广告,20 秒广告每次收费 6000 元,40 秒广告每次收费 10000 元.若要求每种广告播放不少于 2 次,且电视台选择收益最大的播放方式,则 在这一天黄金时段 3 分钟内插播广告的最大收益是__________元.12%(70 分以下)(B 题) 一次数学测验以后,张老师根据某 班成绩绘制了如图所示的扇形统计图 20% (80~89 分的百分比因故模糊不清),若 (70~79 分) 80 分以上(含 80 分)为优秀等级,则本次 测验这个班的优秀率为___________.36%(90~100 分)(80~89 分)16.如图,正方形 ABCD 的边长为 1 ,点 E 为 AB 的中点,以 E 为圆心,1 为半径作圆, 分别交 AD、BC 于 M 、N 两点,与 DC 切于 P 点.则图中阴影部分的面积是________.AEBM D PNC17 在潍坊市“朝阳读书”系列活动中,某学校为活动优秀班级发放购书券 到书店购买工具书.已知购买 1 本甲种书恰好用 1 张购书券,购买 1 本乙种或 丙种书恰好都用 2 张购书券.某班用 4 张购书券购书,如果用完这 4 张购书券 共有________________种不同购法(不考虑购书顺序) .三、解答题(本题共 7 小题,共 69 分.解答应写出文字说明、证明过程或推演步骤.)得 分 评卷人 月 份 1 2 北 京 0.5% 0.9% 巴 黎6.7% 5.8%18.(本题满分 8 分)3 4 5 6 7 8 9 10 11 121.2% 3.0% 5.4% 12.3% 33.5% 30.3% 7.8% 3.0% 1.5% 0.6%6.7% 7.8% 8.8% 9.4% 9.4% 9.0% 9.0% 9.9% 9.0% 8.5%某年北京与巴黎的年降水量都是 630 毫米, 它们的月降水量占全年降水量百分比如下表: ... (1)计算两个城市的月平均降水量; (2)写出两个城市的年降水量的众数和中位 数; (3)通过观察北京与巴黎两个城市的降水情 况, 用你所学的统计知识解释北京地区干旱与缺 水的原因.得 分评卷人19.(本题满分 8 分)如图, 菱形 ABCD 中,AB  4 ,E 为 BC 中点,AE  BC ,AF  CD F , CG ∥ AE , CG 交 AF 于点 H ,交 AD 于点 G . A 于点 (1)求菱形 ABCD 的面积; G (2)求 CHA 的度数. G D B H HE FEC得 分评卷人20.(本题满分 9 分) 为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日 小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通 秩序.若每一个路口安排 4 人,那么还剩下 78 人;若每个路口安排 8 人,那么 最后一个路口不足 8 人,但不少于 4 人.求这个中学共选派值勤学生多少人? 共有多少个交通路口安排值勤?得 分评卷人 21.(本题满分 10 分.从 ( A) 题、 ( B ) 题中任选一题解答,若两题都答,只以 ( A) 题计分)D (A 题)某市经济开发区建有 B、C、 三个 食品加工厂,这三个工厂和开发区 A 处的 自来水厂正好在一个矩形的四个顶点上,它 们之间有公路相通,且 AB  CD  900 米, AD  BC  1700 米.自来水公司已经修好一条自来水主管道 AN , BC 两厂之间的公路ADBEC C与自来水管道交于 E 处, EC  500 米.若 N 自来水主管道到各工厂的自来水管道由各厂负担,每米造价 800 元. (1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计? 并在图形中画出; (2)求出各厂所修建的自来水管道的最低的造价各是多少元?( B 题) 如图,已知平行四边形 ABCD 及四边形外一直线 l ,四个顶点D A、 、C、 到直线 l 的距离分别为 a、b、c、d . B (1)观察图形,猜想得出 a、b、c、d 满足怎样的关系式?证明你的结论. (2)现将 l 向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.CD B AA1D1B1C1l得 分评卷人22.(本题满分 10 分)某工厂生产的某种产品按质量分为 10 个档次,生产第一档次(即 最低档次)的产品一天生产 76 件,每件利润 10 元,每提高一个档次,利润每件 增加 2 元. (1)每件利润为 16 元时,此产品质量在第几档次? (2)由于生产工序不同,此产品每提高一个档次,一天产量减少 4 件.若 生产第 x 档的产品一天的总利润为 y 元(其中 x 为正整数,且 1 ≤ x ≤ 10 ),求 出 y 关于 x 的函数关系式;若生产某档次产品一天的总利润为 1080 元,该工厂 生产的是第几档次的产品?得 分评卷人23 . (本题满分 12 分)如图, AD 是 ABC 的角平分线, 延长 AD 交 ABC 的外接圆 O 于点 E ,过C、D、E 三点的圆 O1 交 AC 的延长线于点 F ,连结 EF、DF .AO DC(1)求证:AEF∆∽FED∆;(2) 若6,3AD DE==, 求E F的长;(3) 若D F∥B E, 试判断ABE∆的形状,并说明理由.24.(本题满分12分)抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为1x=,(3,0)B,(0,3)C-,(1)求二次函数2y ax bx c=++的解析式;(2)在抛物线对称轴上是否存在一点P,使点P到B 两点距离之差最大?若存在,求出P明理由;(3)平行于x轴的一条直线交抛物线于M N、两点,若以M N为直径的圆恰好与x轴相切,求此圆的半径.参考答案及评分标准一.选择题:(本题共12小题,共36分,在每小题给出的四个选题中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分.)二.填空题:(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.其中14、15小题为选做题,做对(A)题或(B)题中的一个即可,如果两题都做,按(A)题得分.)13.只画出一个符合题意的三角形即可.14.(A)3yx=-(B)25415.(A) 50000(B) 68%16.164π--(如果得0.04也可得满分)17.6三.解答题:(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分6分)解:(1)两个城市的月平均降水量63052.512==毫米;……………………………1分(2)北京降水量的众数是3%³630=18.9毫米;……………………………….…………2分巴黎的降水量众数是9%³630=56.7毫米;..................................... (3)分北京的降水量的中位数是3%³630=18.9毫米;…………………………………..…..4分巴黎的降水量的中位数是8.9%³630=56.07毫米;………………………. ….…….. 5分(3) 根据众数、中位数的比较,以及表中看出北京在7、8两个月份的降水量最高,其它月份的降水量相对很低,特别是春冬季的降水量更少, 这样导致 7、8两个月份的降水量过于集中,流失过大,而其它月份降水量很少,这就是造成北京每年干旱和缺水的主要原因. …………………………………………………………………8分(只要求说明意思,就可得满分) 19. (本题满分6分)解:(1)连结A C B D 、并且A C 和B D 相交于点O , ∵AE BC ⊥,且A E 平分B C , ∴A B C ∆和A D C ∆都是正三角形,∴4AB AC == , ……………………………………………..2分 因为A B O ∆是直角三角形,∴BD =∴菱形A B C D 的面积是……………………………………………..4分 (2) ∵ A D C ∆是正三角形, A F C D ⊥, ∴30D A F ∠=°, 又∵C G ∥A E , AE BC ⊥, ∴ 四边形A E C G 是矩形, ∴90A G H ∠=°,∴120A H C D A F A G H ∠=∠+∠=°…………………………………………8分20. (本题满分9)解:设这个学校选派值勤学生x 人,共到y 个交通路口值勤. ..................... 根据题意得:478. (1)48(1)8...............(2)..5x y x y -=⎧⎨≤--<⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⎩分将方程(1)代入不等式(2), 8)1(84784<--+≤y y , 整理得:19.5<5.20≤y , 根据题意y 取20,这时x 为158.答:学校派出的是158名学生,分到了20个交通路口安排值勤. . (9)分21. (本题满分10分)解:(A 题)解:(1)过B C 、、D 分别作A N 的垂线段B HC FD G 、、,交A N 于H F G 、、,B HC FD G 、、即为所求的造价最低的管道路线.图形如图所示. ………3分 (2)(法一)17005001200B E B C C E =-=-=(米),A E =(米),∵ABE ∆∽C F E ∆, 得到:AECE ABCF =.∴C E ABC F A E∙==5009003001500⨯=(米).…………………5分∵BH E ∆∽C F E ∆,得到BECE BHCF =,∴B E C FB HC E∙==7205003001200=⨯(米).………………6分∵ABE ∆∽D G A ∆,∴ADAE DGAB =,∴A B A D D G A E∙==102015001700900=⨯(米).…………………..9分所以,B C 、、D 三厂所建自来水管道的最低造价分别是720³800=576000(元),300³800=240000(元),1020³800=816000(元)………………….. ………………….. ………………….. …………………..…….10分 法二(设A E B ∠=∂,利用三角函数可求得B H、(B 题)(1)d b c a +=+. ……………………..2分证明:连结A C B D 、,且A C B D 、相交于点O EAG HFNCBDO1OO 为点O 到l 的距离,∴OO 1为直角梯形11BB D D 的中位线 , ∴1112OO DD BB b d =+=+; 同理:1112OO AA C C a c =+=+. ∴d b c a +=+.……………………..4分(2)不一定成立.……………………. ……………………. …………………….……5分分别有以下情况:直线l 过A 点时,d b c +=;直线l 过A 点与B 点之间时,d b a c +=-; 直线l 过B 点时,d a c =-;直线l 过B 点与D 点之间时,d b c a -=-;… 直线l 过D 点时,b c a =-;直线l 过C 点与D 点之间时,d b c a +=-;直线l 过C 点时,d b a +=;直线l 过C 点上方时,d b c a +=+.…………………………………..10分 (答对其中一个即为1分,满5分为止)22. (本题满分10分)解:(1)每件利润是16元时,此产品的质量档次是在第四档次.…………………3分(2)设生产产品的质量档次是在第x 档次时,一天的利润是y (元), 根据题意得:[][])1(476)1(210---+=x x y整理得:64012882++-=x x y …………… ……………………….7分当利润是1080时,即108064012882=++-x x 解得:11,521==x x (不符合题意,舍去)答:当生产产品的质量档次是在第5档次时,一天的利润为1080元.……….10分23.(本题满分10分)(1)证明:连结两圆的相交弦C E在圆1O 中,E F D D C E ∠=∠, 在圆O 中,B A E D C E ∠=∠, ∴EFD BAE ∠=∠,又因为A E 是B A C ∠角平分线,得∠BAE=∠CAE , ………….2分 ∴C AE EFD ∠=∠, ∵AEF FED ∠=∠,∴AEF ∆∽FED ∆. ………………………………………3分 (2)∵AEF ∆∽FED ∆,∴AEEF EFDE =,∴27)(2=∙+=∙=DE DE AD DE AE EF ,∴33=EF . ……………………………………….6分(3)证明:根据同弧上的圆周角相等, 得到:A B C A E C ∠=∠,C BE C AE ∠=∠, ∴ABE AEC C AE ∠=∠+∠, ∵A E C C A E A C E ∠+∠+∠=180°, ∴ABE AC E ∠+∠=180°, 又FC E AC E ∠+∠=180,∴F C E A B E ∠=∠ . (10)分∵D F ∥B E ,FD E AEB ∠=∠, 又∵F C E E D F ∠=∠, ∴∠AEB =∠ABE ,∴ABE ∆为等腰三角形. (12)分24.解:(1)将(0,3)C -代入c bx ax y ++=2,得 3-=c .将3-=c ,(3,0)B 代入c bx ax y ++=2,得 039=++c b a . (1)∵1x =是对称轴, ∴12=-ab . (2) …2分将(2)代入(1)得1=a , 2-=b .所以,二次函数得解析式是322--=x x y .…………………………………………………………………………4分(2)A C 与对称轴的交点P 即为到B C 、的距离之差最大的点. ∵C 点的坐标为(0,3)-,A 点的坐标为(1,0)-, ∴ 直线A C 的解析式是33--=x y ,又对称轴为1x =,∴ 点P 的坐标(1,6)-. ………………………………………………………7分 (3)设1(,)M x y 、2(,)N x y ,所求圆的半径为r , 则 r x x 212=-,…………….(1) ∵ 对称轴为1x =,∴ 212=+x x . …………….(2) 由(1)、(2)得:12+=r x .……….(3) 将(1,)N r y +代入解析式322--=x x y , 得 3)1(2)1(2-+-+=r r y , (4)整理得: 42-=r y .………………………………………………………………10分 由于 r=±y ,当0>y 时,042=--r r ,解得,21711+=r , 21712-=r (舍去),当0<y 时,042=-+r r ,解得,21711+-=r , 21712--=r (舍去).所以圆的半径是2171+或2171+-.……………………………………………12分说明:解答题各小题只给出了一种解法,其他解法只要步骤合理、解答正确均应得到相应分数.。

2009年深圳市数学中考试题含答案

2009年深圳市数学中考试题含答案

2009年深圳市初中毕业生学业考试数学试卷说明:1.全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

第一部分 选择题一、选择题(本题有10小题,每题3分,共30分) 1.如果a 的倒数是-1,那么a 2009等于( )A .1B .-1C .2009D .-20092.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( ) A .3 B .4 C .5 D .6主视图 左视图 俯视图 3.用配方法将代数式a 2+4a -5变形,结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-94.横跨深圳及香港之间的深圳湾大桥(Shenzhen Bay Bridge )是中国唯一倾斜的独塔单索面桥,大桥全长4770米,这个数字用科学计数法表示为(保留两个有效数字)( ) A .24710⨯ B .34.710⨯ C .34.810⨯ D .35.010⨯ 5.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是( )A .13B .12C .34D .237.如图,反比例函数4y x =-的图象与直线13y x =-的交点为A ,B ,过点A 作y 轴的平行线与过点B 作x 轴的平行线相交于点C ,则ABC △的面积为( ) A .8 B .6 C .4 D .28.如图,数轴上与1A ,B ,点B 关于点A 的对称点为C ,设点C 表示的数为x ,则2x x +=( )AB.C.D .29.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ) A .80元 B .100元 C .120元 D .160元 10.如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分BCD ∠,120ADC = ∠,四边形ABCD 的周长为10cm .图中阴影部分的面积为( ) A .B .C .D .第二部分(非选择题,共70分)二、填空题(本题有6小题,每题3分,共18分) 11.小明在7次百米跑练习中成绩如下:则这7次成绩的中位数是 秒12.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差21S 与小兵5次成绩的方差22S 之间的大小关系为21S 22S .(填“>”、“<”、“=”)13.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.14.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则99a = .15.如图a 是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE的度数是 .BAD A CB AE AF AAC ACB 图a图c1 2 3 4 5 小明 小兵16.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m = .三、解答题(本大题有7题,共52分)17.(6分)计算:202( 3.14)π---︒. 18.(6分)先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-,∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >,解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-,即一元二次不等式290x ->的解集为3x >或3x <-.问题:求分式不等式51023x x +<-的解集.19.(6分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米. 试求旗杆BC 的高度.ABCD20.(7分)深圳大学青年志愿者协会对报名参加2011年深圳大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)小亮班共有名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有人将参加下轮测试;(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试。

2009年中考数学二轮复习专题测试卷(参考答案)

2009年中考数学二轮复习专题测试卷(参考答案)

2009年中考数学总复习专题测试卷(一)参考答案一、1、C 2、A 3、C 4、A 5、B 6、B 7、B 8、B 9、C 10、D二、11、8或-4; 12、万,4101.2⨯; 13、3.6; 14、5或-11。

三、 15、1; 16、-36。

四、17. x <-|y|<y <-x 。

18.x= 2 ,y=-2。

五、19.4。

提示:3-=a ,这个数为64。

20.(1)4或0; (2)-6。

六、21. 24πcm 2.(提示:设这个等边圆柱的高为2rcm ,依题意得πr 2·2r=16π.解得x=2. 所以这个等边圆柱的表面积为2πr 2+2πr·2r=24π(cm 2).) 七、22.八、23.(1)4,7;(2)1,2;c b a -+,c b -。

2009年中考数学总复习专题测试卷(二) 参考答案一、1、B 2、C 3、D 4、C 5、C 6、C 7、D 8、C 9、D 10、B二、11、6a ; 12、2)(b a a -; 13、3n+1;14、11)1(2+++=+n nn n n 。

三、15.原式265(2)22x x x x -⎡⎤=÷-+⎢⎥--⎣⎦ 2(3)5(2)(2)222x x x x x x -+-⎡⎤=÷-⎢⎥---⎣⎦22(3)5(4)22x x x x ---=÷--22(3)922x x x x --=÷--=)3)(3(22)3(2x x x x x -+-⨯--=32+-x16.原式()()2229455441x x x x x =-----+2229455441x x x x x =--+-+-95x =-.当13x =-时,原式195953x ⎛⎫=-=⨯-- ⎪⎝⎭35=--8=-.四、17、-10a 3+4a 2+7a -3 18、(1)90 (2)41。

五、19、(1)B -A =(a -1)2+2 >0 所以 B >A (2)C -A =(a +7)(a -3) 因为a >2,所以a +7>0从而当2<a <3时,A >C , 当a =2时, A =C ,当 a >3时,A <C 20、b2-a2+2ac-c2=b2-(a-c )2=(b+a-c )(b-a+c )>0 六、21、2πab 七、22、(1)它的每一项可用式子1(1)n n +-(n 是正整数)来表示.(2)它的第100个数是100-.)(3)2010不是这列数中的数,因为这列数中的偶数全是负数.(或正数全是奇数.) 注:它的每一项也可表示为(1)nn --(n 是正整数).表示如下照样给分: 当n 为奇数时,表示为n .当n 为偶数时,表示为n -. 八、23.两种摆放方式各有规律:第一种n 张餐桌可容纳()42n +人,第二种n 张餐桌可容纳:()24n +人, 通过计算,第二种摆放方式要容纳98人是不可能的,而第一种可以.2009年中考数学总复习专题测试卷(三)参考答案一、1、C 2、A 3、D 4、D 5、C 6、D 7、C 8、B9、B 10、A 二、11、m <2; 12、7,1; 13、m≥-3; 14、01422=+-y y 。

2009年中考数学综合训练试题(二)及答案

2009年中考数学综合训练试题(二)及答案

俯视图2009年中考复习数学综合训练试题(二)(考试时间120分钟,满分:150分)姓名:班级:学号.一、选择题:(本大题共10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内.1.有理数5−的相反数是()A.5B.5−C.15D.15−2.下列运算正确的是()A.336x x x +=B.32632x x x =⋅C.33(2)6x x =D.2(2)2x x x x+÷=3.不等式3x <的解集在数轴上表示为().4.数据2、4、4、5、3、8的众数是()A.2B.3C.4D.55.已知两圆的半径分别为3cm 和2cm,圆心距为5cm,则两圆的位置关系是()A.外离B.外切C.相交D.内切6.某几何体的三视图如图所示,那么该几何体是()A.球体B.圆柱C.棱锥D.圆锥7.下列计算正确的是()A.==3=D.3=−8.两地的距离是500米,而地图上的距离为10厘米,则这张地图的比例尺为()A.1∶50B.1∶500C.1∶5000D.1∶500009.“明天下雨的概率为80%”这句话指的是()A.明天一定下雨B.明天80%的地区下雨,20%的地区不下雨C.明天下雨的可能性是80%D.明天80%的时间下雨,20%的时间不下雨A CD10.小芸到学校参加模拟考试,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是()二、填空题:(本大题10个小题,每小题3分,共30分)请将答案直接填写在题后的横线上.11.方程2x-4=0的解是.12.分解因式:29mn m −=.13.唐家山堰塞湖是“5·12”汶川地震”形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为立方米.14.已知⊙1O 和⊙2O 的半径分别为3cm 和5cm,且它们内切,则圆心距12O O 等于cm.15.如图,AB∥CD,AC⊥BC,∠BAC=55°,则∠BCD=度.16.已知:在ABC ∆中,点E、F 分别是边AB、AC 两边的中点,如果EF=6,那么BC=.17.分式方程1231+=x x 的解为.18.某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的频数是12.那么本次活动共有件作品参赛.19.有一长条型链子,其外型由边长为1公分的正六边形排列而成。

2009年中考数学试卷及答案

2009年中考数学试卷及答案

2009年来宾市初中毕业升学统一考试试题数学(考试时间:120分钟;满分:120分)第Ⅰ卷说明:1.本试卷分第Ⅰ卷(填空题和选择题)和第Ⅱ卷(答卷,含解答题)两部分.第Ⅰ卷共2页,第Ⅱ卷共6页.考试结束后,将第Ⅰ卷和第Ⅱ卷一并收回,并将第Ⅱ卷按规定装订密封.2.请考生将填空题和选择题的正确答案填写在第Ⅱ卷中规定的位置,否则不得分.一、填空题:本大题共10小题,每小题3分,共30分.请将答案填写在第Ⅱ卷相应题号后的横线上.1.如果将收入500元记作500元,那么支出237元记作__________元.2.已知AB 、CD 分别是梯形ABCD 的上、下底,且AB =8,CD =12,EF 是梯形的中位线,则EF =__________.3.分解因式:x 2-4=____________________.4.化简:823+=__________.5.二元一次方程组⎩⎨⎧=-=+2332y x y x 的解是__________.6.如果反比例函数的图象过点(2,-1),那么这个函数的关系式是__________.7.用四舍五入法,并保留3个有效数字对129 551取近似数所得的结果是__________.8.如图,已知AB ∥CD ,CE 平分∠ACD ,∠A =50°,则∠ACE =__________°.9.已知关于x 的方程x 2+mx +n =0的两个根分别是1和-3,则m =__________. 10.请写出一个对任意实数都有意义.........的分式.你所写的分式是_____________.(第8题图)A C E DB二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案前的字母填写在第Ⅱ卷相应题号下的空格中.11.下列图形中,不是..正方体表面展开图的是(第11题图)D C BA12.如图,在⊙O 中,∠BOC =100°,则∠A 等于A .100°B .50°C .40°D .25°13.已知一个多边形的内角和是900°,则这个多边形是A .五边形B .六边形C .七边形D .八边形14.已知下列运算:①()4222y x xy =-;②224x x x =÷;③()c b a c b a --=--; ④43722=-x x .其中正确的有A .①②③④B .①②③C .①②④D .①② 15.不等式组⎩⎨⎧≤->+0603x x 的解集是A .-3<x ≤6B .3<x ≤6C .-3<x <6D .x >-3 16.若圆锥的底面周长是10π,侧面展开后所得的扇形的圆心角为90°,则该圆锥的侧面积是A .25πB .50πC .100πD .200π17.如图,正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB 、CD 过圆心O ,且AB ⊥CD ,则图中阴影部分的面积是A .4πB .2πC .πD .2π 18.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前4位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .121B .61C .41D . 31 B (第17题图)(第12题图)。

2009年中考数学及答案

2009年中考数学及答案

2009年上海市初中毕业统一学业考试数 学 卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.计算32()a 的结果是(B ) A .5aB .6aC .8aD .9a2.不等式组1021x x +>⎧⎨-<⎩,的解集是( C )A .1x >-B .3x <C .13x -<<D .31x -<<3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( A ) A .230y y +-= B .2310y y -+=C .2310y y -+=D .2310y y --=4.抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( B ) A .()m n ,B .()m n -,C .()m n -,D .()m n --,5.下列正多边形中,中心角等于内角的是( C )A .正六边形B .正五边形C .正四边形 C .正三边形 6.如图1,已知AB CD EF ∥∥,那么下列结论正确的是(A )A .AD BCDF CE = B .BC DFCE AD =C .CD BCEF BE= D .CD ADEF AF= 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直线填入答题纸的相应位置】A B D C E F图1781=的根是 x=2 .9.如果关于x 的方程20x x k -+=(k 为常数)有两个相等的实数根,那么k =.10.已知函数1()1f x x =-,那么(3)f = —1/2 .11.反比例函数2y x=图像的两支分别在第 I III 象限.12.将抛物线2y x =向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是 .13.如果从小明等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是 1/6 .14.某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是100*(1—m)^2 元(结果用含m 的代数式表示).15.如图2,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a ,b 表示向量AD ,那么AD =a +(b/2).16.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA = 5 .17.在四边形ABCD 中,对角线AC 与BD 互相平分,交点为O .在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是AC=BD 或者有个内角等于90度 .18.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM (如图3所示).如果将ABM △沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 2 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22221(1)121a a a a a a +-÷+---+. = —120.(本题满分10分)解方程组:21220y x x xy -=⎧⎨--=⎩,①.②(X=2 y=3 ) (x=-1 y=0)图2A 图3B M C=142y x =5AB a =21.(本题满分10分,每小题满分各5分)如图4,在梯形ABCD 中,86012AD BC AB DC B BC ==∠==∥,,°,,联结AC .(1)求tan ACB ∠的值;(2)若M N 、分别是AB DC 、的中点,联结MN ,求线段MN 的长. (1) 二分之根号3(2)822.(本题满分10分,第(1)小题满分2分,第(2)小题满分3分,第(3)小题满分2分,第(4)小题满分3分)为了了解某校初中男生的身体素质状况,在该校六年级至九年级共四个年级的男生中,分别抽取部分学生进行“引体向上”测试.所有被测试者的“引体向上”次数情况如表一所示;各年级的被测试人数占所有被测试人数的百分率如图5所示(其中六年级相关数据未标出).表一根据上述信息,回答下列问题(直接写出结果):(1)六年级的被测试人数占所有被测试人数的百分率是 20% ;(2)在所有被测试者中,九年级的人数是 6 ;(3)在所有被测试者中,“引体向上”次数不小于6的人数所占的百分率是 35% ; (4)在所有被测试者的“引体向上”次数中,众数是 5 .23.(本题满分12分,每小题满分各6分)已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB的中点,F 为OC 的中点,联结EF (如图6所示).(1)添加条件A D ∠=∠,OEF OFE ∠=∠,求证:AB DC =. 证明:由已知条件得:2OE=2OC OB=OC 又 A D ∠=∠角AOB=角DOC 所以三角形ABO 全等于三角形DOC 所以AB DC =(2)分别将“A D ∠=∠”记为①,“OEF OFE ∠=∠”记为②,“AB DC =”记为③,添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是 真 命题,命题2是 假 命题(选择“真”或“假”填入空格). 24.(本题满分12分,每小题满分各4分)A DC图4 B 九年级八年级 七年级六年级25%30% 25% 图5图6 O D CAB E F在直角坐标平面内,O 为原点,点A 的坐标为(10),,点C 的坐标为(04),,直线CM x ∥轴(如图7所示).点B 与点A 关于原点对称,直线y x b =+(b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD .(1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若POD △是等腰三角形,求点P 的坐标;(3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径.解:(1)点B (—1,0),代入得到 b=1 直线BD :y=x+1Y=4代入 x=3 点D (3,1)(2)1、PO=OD=5 则P (5,0)2、PD=OD=5 则PO=2*3=6 则点P (6,0)3、PD=PO 设P (x ,0) D (3,4)则由勾股定理 解得 x=25/6 则点P (25/6,0)(3)由P ,D 两点坐标可以算出:1、r=5—2、PD=5 r=13、PD=25/6 r=025.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ AD PC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.ADPCBQ 图8DAPCB(Q ) 图9图10CADPBQxb解:(1)AD=2,且Q 点与B 点重合,根据题意,∠PBC=∠PDA ,因为∠A=90。

2009年北京市东城区初三数学二模试题及答案范文

2009年北京市东城区初三数学二模试题及答案范文

2009年北京市东城区中考数学二模试卷一、选择题(8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的. 1.4的平方根是( ) A .2 B .-2 C .±2 D .162.下列图形中,是轴对称图形的是( ) A .直角三角形 B .平行四边形 C .梯形 D .等边三角形 3.在反比例函数xy 2=的图象上的一个点的坐标是( )A .⎪⎭⎫⎝⎛21,2 B .(-2,1) C .(2,1) D .(-2,2)4.如果把分式yx x +2中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .缩小3倍C .缩小6倍D .不变 5.学校篮球集训队9名队员进行定点投篮训练,将9名队员在1分钟投进篮筐的球数由小到大排序后为6、7、8、8、9、9、9、10、12,这组数据的众数和中位数分别是( ) A .9.9 B .9,8 C .9,8.5 D .8,9 6.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ) A .21 B .22 C .2 D .22第6题图 第7题图7.如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( ) A .56 B .59 C .512 D .5168.如图①是长方形纸带,∠DEF =20°,将纸带沿EF 折叠成图②,再沿BF 折叠成图③,则图③中的∠CFE 的度数是( ) A .110° B .120° C .140° D .150°第8题图二、填空题(4个小题,每小题4分,共16分) 9.若分式21+-x x 的值为零,则x 的值等于________.10.若0)3(22=-+-y x ,则yx 的值为________.11.如图,宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为________cm .第11题图 第12题图12.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 形模板如图放置,则矩形ABCD 的周长为________.三、解答题(5个小题,每小题5分,共25分) 13.计算:30sin )4π(9210--+--.14.已知x 2-9=0,求代数式x 2(x +1)-x (x 2-1)-x -7的值.15.解方程:x 2+2x -2=0.16.化简:a a a a a 2124222+⎪⎪⎭⎫ ⎝⎛---⋅.初三模考试题精心整理汇编京睿试题库 :..第 3 页 共 11 页..: 为了孩子的将来保驾护航17.已知关于x 的一元二次方程x 2-mx -3=0,(1)若x =-1是这个方程的一个根,求m 的值;(2)对于任意的实数m ,判断方程的根的情况,并说明理由.四、解答题(2个小题,每小题5分,共10分)18.如图,在梯形ABCD 中,AD ∥BC ,∠B =∠ACD .(1)请再写出图中另外一对相等的角;(2)若AC =6,BC =9,试求AD 的长. 第18题图19.在一个不透明的口袋里,装着只有颜色不同的白、红、黑三种颜色的小球各一个.甲先从袋中随机摸出一球,看清颜色后放回,乙再从袋中随机摸出一球. (1)画树状图(或列表),表示甲、乙摸球的所有可能结果. (2)求乙摸到与甲相同颜色球的概率.五、解答题(3个小题,每小题5分,共15分)20.某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB =90°,∠CAB =60°,AB =24m .为便于浇灌,学校在点C 处建了一个蓄水池,利用管道从河中取水.已知每铺设1m 管道费用为50元,求铺设管道的最低费用(精确到1元).)73.13(第20题图21.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=6,BD=3,求AE和BC的长.第21题图22.请设计一种方案:把正方形ABCD剪两刀,使剪得的三块图形能够拼成一个三角形,画出必要的示意图.(1)使拼成的三角形是等腰三角形.(图①)(2)使拼成的三角形既不是直角三角形也不是等腰三角形.(图②)①②第22题图初三模考试题精心整理汇编京睿试题库 :..第 5 页 共 11 页..: 为了孩子的将来保驾护航六、解答题(3个小题,共22分)23.(本题满分7分)点A 、B 、C 在同一直线上,在直线AC 的同侧作△ABE 和△BCF ,连结AF ,CE .取AF 、CE 的中点M 、N ,连结BM ,BN ,MN .(1)若△ABE 和△FBC 是等腰直角三角形,且∠ABE =∠FBC =90°(如图①),则△MBN 是________三角形.(2)在△ABE 和△BCF 中,若BA =BE ,BC =BF ,且∠ABE =∠FBC =α,(如图②),则△MBN 是________三角形,且∠MBN =________.(3)若将(2)中的△ABE 绕点B 旋转一定角度(如图③),其他条件不变,那么(2)中的结论是否成立?若成立,给出你的证明;若不成立,写出正确的结论并给出证明.第23题图24.(本题满分7分)定义{a ,b ,c }为函数y =ax 2+bx +c 的“特征数”.如:函数y =x 2-2x +3的“特征数”是{1,-2,3},函数y =2x +3的“特征数”是{0,2,3},函数y =-x 的“特征数”是{0,-1,0}.(1)将“特征数”是⎭⎬⎫⎩⎨⎧1,33,0的函数图象向下平移2个单位长度,得到一个新函数,这个新函数的解析式是________.(2)在(1)中,平移前后的两个函数分别与y 轴交于A 、B 两点,与直线x =3分别交于D 、C 两点,判断以A 、B 、C 、D 四点为顶点的四边形形状,请说明理由并计算其周长. (3)若(2)中的四边形与“特征数”是{1,}21,22+-b b 的函数图象的有交点,求满足条件的实数b 的取值范围.第24题图25.(本题满分8分)如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,AB=10,AD=6,DC=8,BC=12,点E在底边BC上,点F在AB上.(1)若EF平分直角梯形ABCD的周长,设BE的长为x,试用含x的代数式表示△BEF的面积.(2)是否存在线段EF将直角梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由.(3)若线段EF将直角梯形ABCD的周长分为1∶2两部分,将△BEF的面积记为S1,五边形AFECD的面积记为S2,且S1∶S2=k,求出k的最大值.第25题图初三模考试题精心整理汇编京睿试题库 :..第 7 页 共 11 页..: 为了孩子的将来保驾护航2009年北京市东城区中考数学二模试卷答 案一、选择题1.C 2.D 3.C 4.D 5.A 6.B 7.C 8.B 二、填空题 9.1 10.32 11.413 12.85三、解答题 13.解:原式211321-+-==-214.解:原式=x 3+x 2-x 3+x -x -7=x 2-7.∵x 2-9=0, ∴x 2=9.∴原式=9-7=2. 15.解:(x +1)2=3,x +1=±3.∴x 1=-1+3,x 2=-1-3. 16.解:原式aaa a212422+--=⋅)2(12)2)(2(+--+=⋅a a a a aa1=.17.解:(1)∵x =-1是方程的一个根,∴1+m -3=0 解得m =2(2)方程为x 2-mx -3=0 Δ=b 2-4ac =m 2+12∵对于任意实数m ,m 2≥0,∴m 2+12>0.∴对于任意的实数m ,方程有两个不相等的实数根. 四、解答题18.(1)∠ACB =∠CAD (或∠BAC =∠ADC )(2)∵∠B =∠ACD ,又∠ACB =∠CAD , ∴△ABC ∽△DCA .ACBC ADAC =∴,即AC 2=BC ·AD .∵AC =6,BC =9, ∴62=9·AD ,解得AD =4. 19.(1)树状图如图:第19题答图所有可能的结果有(白,白)、(白,红)、(白,黑)、(红,白)、(红,红)、(红,黑)、(黑,白)、(黑,红)、(黑,黑).(2)P (甲、乙颜色相同)3193==.五、解答题20.解:过C 点作CD ⊥AB 于点D .由∠ACB =90°,∠CAB =60°,得∠ABC =30°.又AB =24,得1221==AB AC .在Rt △CDA 中,ACCD CAD=∠sin ,∴CD =AC ·sin ∠CAD =12m 3623=⨯.∴铺设管道的最低费用=50·CD ≈519元.第20题答图21.证明:(1)连结OC ,∵AE ⊥CD ,CF ⊥AB , 又∵CE =CF , ∴∠1=∠2. ∵OA =OC , ∴∠2=∠3. ∴∠1=∠3.∴OC ∥AE . ∴OC ⊥CD .∴DE 是⊙O 的切线.第21题答图 (2)解:∵AB =6,321===∴AB OC OB .在Rt △OCD 中,OC =3,OD =OB +BD =6, ∴∠D =30°,∠COD =60°. 在Rt △ADE 中,AD =AB +BD =9,2921==∴AD AE .初三模考试题精心整理汇编京睿试题库 :..第 9 页 共 11 页..: 为了孩子的将来保驾护航在△OBC 中,∵∠COD =60°,OB =OC , ∴BC =OB =3. 22.解:答案不唯一.(1)(2)第22题答图六、解答题23.解:(1)等腰直角.(2)等腰,α .(3)结论仍然成立.证明:在△ABF 和△EBC 中,⎪⎩⎪⎨⎧=∠=∠=,,,BC BF EBC ABF BE BA ∴△ABF ≌△EBC .∴AF =CE .∠AFB =∠ECB . ∵M ,N 分别是AF 、CE 的中点, ∴FM =CN .∴△MFB ≌NCB .∴BM =BN .∠MBF =∠NBC .∴∠MBN =∠MBF +∠FBN =∠FBN +∠NBC =∠FBC =α .24.解:(1)133-=x y .(2)由题意可知133+=x y 向下平移两个单位长度得133-=x y ,第23题答图∴AD ∥BC ,AB =2. ∵x =3,∴AB ∥CD . ∴四边形ABCD 为平行四边形.⎪⎩⎪⎨⎧-==,133,3x y x 得C 点坐标为(3,0),∴D (3,2).由勾股定理可得BC =2.∵四边形ABCD 为平行四边形,AB =2,BC =2 ∴四边形ABCD 为菱形. ∴周长为8.①②第24题答图(3)二次函数为:212:22++-=b bx x y ,初三模考试题精心整理汇编京睿试题库 :..第 11 页 共 11 页..: 为了孩子的将来保驾护航化为顶点式为:21)(2+-=b x y ,∴二次函数的图象不会经过点B 和点C .设二次函数的图象与四边形有交点,当二次函数的图象经过点A 时,将A (0,1)代入二次函数,解得22-=b ,22=b (不合题意,舍去).当二次函数的图象经过点D 时,将D (3,2)代入二次函数,解得263+=b ,263-=b (不合题意,舍去).所以实数b 的取值范围:26322+≤≤-b .25.解:(1)由已知得梯形周长=36,高=8,面积=72.由题意,BF =18-x .过点F 作FG ⊥BC 于点G ,过点A 作AK ⊥BC 于点K ,则△BFG ∽△BAK . 可得)18(54x FG -=. )128(53625221≤≤+-=⋅=∆∴x x x FG BE BEF S .(2)不存在由(1)36536522=+-x x ,整理得:(x -9)2=-9,此方程无解.不存在线段EF 将直角梯形ABCD 的周长和面积同时平分.(3)由已知易知,线段EF 将直角梯形ABCD 的周长分为1∶2两部分,只能是FB +BE与F A +AD +DC +CE 的比是1∶2.17212:1SSS S k -==, 第25题答图 要使k 取最大值,只需S 1取最大值.与(1)同理,)12(54x FG-=, )122(524252211<≤+-=⋅=x x x FG BE S当x =6时,S 1取最大值572.此时41=k , ∴k 的最大值是41.。

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图(3)
P G
F
E D
F
E
D
E
D D
图 12 (4)
BC=2AC
(3)
任意直角三角形
(2)
AB=2AC
(1)AC=BC
B
C
A
B C A
B
C
A
B
C
A
中考数学二轮复习题精选
(第二辑参考答案)
1、10
2、1300
3、2π
4、答:①9;②112;③1
52
n -⨯(n ≥1的整数);④2,502.
5、C
6、C
7、(略)
8、解: (1)m<-8或m>8时⊙O 上任何一点到直线MN 的距离都不等于3………….2’ (2) m=-8或m=8时⊙O 上有且只有一点到直线MN 的距离等于3………………….4’ (3) -8<m<-2或2<m<8时⊙O 上有且只有二点到直线MN 的距离等于3…………6’ (4)当m=-2或m=2时⊙O 上有且只有三个点到直线MN 的距离等于3;
当-2<m<2时⊙O 上有且只有四个点到直线MN 的距离等于3.………………….8’ (只写出y 轴一侧情形给一半分,第四问讨论出一种情况给一半分) 9、
(1)取斜边AB 中点D 连结CD, ∵AC=BC ∴CD ⊥AB.可证⊿ADC ≌⊿BDC 并相似于⊿ABC
(2)斜边AB=2AC ∴∠B=300,作∠CAB 的平分线交BC 于D, ∠DAB=∠B=300
,作DE ⊥AB 于E. 可证⊿ADC ≌⊿ADE ≌⊿BDE 并相似于⊿ABC.
(3)取斜边AB 的中点D,连结CD, ∴CD=AD=BD=
AB 2
1
,作DE ⊥AC,DF ⊥BC, 可证⊿ADE ≌⊿CDE ≌⊿DCF ≌⊿DBF 并相似于⊿ABC.
(4)作CD ⊥AB 于D,取BC 中点E,作EG ⊥CD 于G,EF ⊥BD 于F, ∵BE=EC=AC=DE,DGEF 为矩形 可证⊿ADC ≌⊿CGE ≌⊿DGE ≌⊿EFD ≌⊿EFB 并相似于⊿ABC.
(每画对一个,并能简要说明画法及理由得2分.只画图没有说明得1分.说明或画图不准确酌情扣分.) 10、(1)180cm . …………(4分) (2)12 cm .……(3分) (3)记灯泡为点P ,如图
∵AD ∥A ′D ′,∴∠PAD =∠PA ′D ′,∠PDA =∠P D ′A ′. ∴△PAD ∽△PA ′D ′.
根据相似三角形对应高的比等于相似比的性质,可得
AD PN
A D PM
=''.…………………………………………(1分)
(直接得出三角形相似或比例线段均不扣分)
设灯泡离地面距离为,x 由题意,得 PM =x ,PN =,x a -AD = na ,A ′D ′= na b +, ∴
na x a
na b x
-=+…………………………………………………………………(1分)
11、(1) C(-1,2)……………………………………………………………………2’ (2) M(5
22,
3t
t +-)……………………………………………………………………5’ (3)∵点P 速度第秒2个单位,∴QP=2t, AP=4-2t;
S=
10
9)21(52)2(52522)24(21.2122+--=---=+-=t t t t t MN AM ……………7’ ∴当t=21时,S 有最大值为10
9
……………………………………………………………8’
12、解:(1)过点A 作AE ⊥BC ,交BC 于点E ,如图4.由AD=2,BC=4,
得AE =2.………………………………(3分)
∵ND =t ,∴PC=1+t .

PQ PC
AE EC
=. 即123
PQ t
+=.∴223t PQ +=.………(6分)
(2)∵点M 以每秒2个单位长运动,∴BM =2t ,CM =4—2t .……………(8分)
∴S △CMQ =1122(42)223t CM PQ t +⋅=
⋅-⋅=2224
333t t -++.
即S =2224
333
t t -++.………………………………………………(12分)
(3)①若QM =QC ,∵QP ⊥MC ,∴MP =CP .而MP =4—(1+t +2t )=3—3t ,
即1+t =3—3t ,∴t =
2
1
.……………………………………(加1分) ②若CQ =CM ,∵CQ 2=CP 2+PQ 2=222
)1(9
13)322()1(t t t +=+++, ∴CQ=
)1(313t +.∵CM =4—2t ,∴)1(3
13
t +=4—2t
.∴t =
.(加2分) ③若MQ =MC ,∵MQ 2=MP 2+PQ 2
=222228515485(33)(
)3999
t t t t +-+=-+,

98591549852+-t t =2)24(t -,即09
59
9109492=--t t .
图4
P
解得t =
4959或t =—1(舍去).∴t =49
59.…………………(加3分) ∴当t 的值为
21,23131885 ,4959
时,△CMQ 为等腰三角形. 13、解:由y=
x 2
3
+3,令x=0,得y=3,∴B 点坐标为(0,3) 1分 令y=0,得x=-2,∴A 点坐标为(-2,0) 1分
∵四边形ABCD 为等腰梯形,BC ∥AD ,D 点坐标为(6,0)∴C 点坐标为(4,3) 1分
(2)∵直线l 沿x 轴正方向平移m 个(m >0)单位长度与AD 、BC 分别交于N 、M 点,∴AB ∥MN ∴四边形ABMN 为平行四边形∴面积:S ABMN =BO ·m
即3m=12 m=4 3分
所以直线l 沿x 轴正方向平移4个单位长度时,四边形ABMN 的面积为12个单位面积.
(3) 如图,设经过n 秒的运动, 能使设A ′B ′平分∠BB ′D
这时B ′点坐标为(2n ,3),A ′点坐标为(3n -2,0) 2分 ∵BC ∥AD ∴∠1=∠3 又∠1=∠2∴∠2=∠3
∴A ′D=B ′D 即△DA ′B ′为等腰三角形 2分
(A ′D )2=(3n -8)2 (B ′D )2=(6-2n )2+3
2
∴(3n -8)2=(6-2n)2
+9
整理得:5n 2
-24n+19=0
∴n=1或n=
519
2分 ∴当n=519时 BB ′=5
19
×2>4(舍去)
∵BB ′=1×2<4,AA ′=1×3<8,
∴当n=1秒时,A ′B ′平分∠BB ′D 2分
14、如图13-1,E 、F 、M 、N 是正方形ABCD 四条边AB 、BC 、CD 、DA 上可以移动的四个点,每组对边上的两个点,可以连接成一条线段。

⑴如图13-2,如果EF ∥BC , MN ∥CD ,那么EF MN (位置),EF MN (大小) ⑵如图13-3,如果E 与A ,F 与C ,M 与B ,N 与D 重合,那么EF MN (位置),EF MN (大小)
F E D 图13-2
(N ) (F )
(E )
图13-3 E D
图13-1
⑶当点E 、F 、M 、N 不再处于正方形ABCD 四条边AB 、BC 、CD 、DA 特殊的位置时,猜想线段EF 、MN 满足什么位置关系时,才会有EF=MN ,画出相应的图形,并证明你的猜想。

解:(1)EF ⊥MN ,EF=MN ;-----------------------3分
(2)EF ⊥MN ,EF=MN ;-----------------------6分
(3)猜想:当EF ⊥MN 时,才会有EF=MN ,如图,连接EF ,作EF ⊥MN 。

证明猜想:过点N 作NG ⊥BC ,过点F 作FH ⊥AB , 又∵EF ⊥MN
在Rt △MNG 和Rt △EFH 中, ∠1=∠2(等角的余角相等) ∠MGN=∠EHF=90°, FH=NG
∴Rt △MNG ≌ Rt △EFH
∴EF=MN---------------------------------------------- 12分
E D。

相关文档
最新文档