中考数学选择题精选及答案

合集下载

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(本题共有10小题.每题3分.共30分)1.(3分)﹣2的绝对值等于()A.2 B.﹣2 C.D.±22.(3分)计算2a﹣a.正确的结果是()A.﹣2a3B.1 C.2 D.a3.(3分)要使分式有意义.x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 4.(3分)数据5.7.8.8.9的众数是()A.5 B.7 C.8 D.9、5.(3分)如图.在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.则CD的长是()A.20 B.10 C.5 D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图.则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中.三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm.则△ABC的周长为()A.60cm B.45cm C.30cm D.cm 9.(3分)如图.△ABC是⊙O的内接三角形.AC是⊙O的直径.∠C =50°.∠ABC的平分线BD交⊙O于点D.则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图.已知点A(4.0).O为坐标原点.P是线段OA上任意一点(不含端点O.A).过P、O两点的二次函数y1和过P、A 两点的二次函数y2的图象开口均向下.它们的顶点分别为B、C.射线OB与AC相交于点D.当OD=AD=3时.这两个二次函数的最大值之和等于()A.B.C.3 D.4二、填空题(本题共有6小题.每题4分.共24分)11.(4分)当x=1时.代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中.每人各打10发子弹.根据命中环数求得方差分别是=0.6.=0.8.则运动员的成绩比较稳定.14.(4分)如图.在△ABC中.D、E分别是AB、AC上的点.点F在BC的延长线上.DE∥BC.∠A=46°.∠1=52°.则∠2=度.15.(4分)一次函数y=kx+b(k.b为常数.且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图.将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形.这个黑色菱形可分割成n个边长为1的小三角形.若=.则△ABC的边长是.三、解答题(本题共有8小题.共66分)17.(6分)计算:+(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图.已知反比例函数y=(k≠0)的图象经过点(﹣2.8).(1)求这个反比例函数的解析式;(2)若(2.y1).(4.y2)是这个反比例函数图象上的两个点.请比较y1、y2的大小.并说明理由.20.(8分)已知:如图.在▱ABCD中.点F在AB的延长线上.且BF =AB.连接FD.交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3.求AD的长.21.(8分)某市开展了“雷锋精神你我传承.关爱老人从我做起”的主题活动.随机调查了本市部分老人与子女同住情况.根据收集到的数据.绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他A50%B5%根据统计图表中的信息.解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人.请估计该市与子女“同住”的老人总数.22.(10分)已知.如图.在梯形ABCD中.AD∥BC.DA=DC.以点D 为圆心.DA长为半径的⊙D与AB相切于A.与BC交于点F.过点D 作DE⊥BC.垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4.=.求CF的长.23.(10分)为进一步建设秀美、宜居的生态环境.某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.现计划用210000元资金.购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍.恰好用完计划资金.求这三种树各能购买多少棵?(3)若又增加了10120元的购树款.在购买总棵树不变的前提下.求丙种树最多可以购买多少棵?24.(12分)如图1.已知菱形ABCD的边长为2.点A在x轴负半轴上.点B在坐标原点.点D的坐标为(﹣.3).抛物线y=ax2+b (a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2).过点B作BE⊥CD于点E.交抛物线于点F.连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t.使△ADF与△DEF相似?若存在.求出t的值;若不存在.请说明理由;②连接FC.以点F为旋转中心.将△FEC按顺时针方向旋转180°.得△FE′C′.当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时.求t的取值范围.(写出答案即可)参考答案与试题解析一、选择题(本题共有10小题.每题3分.共30分)1.【分析】根据绝对值的性质.当a是正有理数时.a的绝对值是它本身a;即可解答.【解答】解:根据绝对值的性质.|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质.①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.【分析】根据合并同类项的法则:把同类项的系数相加.所得结果作为系数.字母和字母的指数不变.进行运算即可.【解答】解:2a﹣a=a.故选:D.【点评】此题考查了同类项的合并.属于基础题.关键是掌握合并同类项的法则.3.【分析】根据分母不等于0.列式即可得解.【解答】解:根据题意得.x≠0.故选:B.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次.且次数最多. 所以众数是8.故选:C.【点评】本题考查了众数的定义.熟记定义是解题的关键.需要注意.众数有时候可以不止一个.5.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半.即可求出CD的长.【解答】解:∵在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线的性质.在直角三角形中.斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).6.【分析】根据扇形统计图整个圆的面积表示总数(单位1).然后结合图形即可得出唱歌兴趣小组人数所占的百分比.也可求出圆心角的度数.【解答】解:唱歌所占百分数为:1﹣50%﹣30%=20%.唱歌兴趣小组人数的扇形的圆心角度数为:360°×20%=72°.故选:B.【点评】此题考查了扇形统计图.解答本题的关键是熟练扇形统计图的特点.用整个圆的面积表示总数(单位1).用圆的扇形面积表示各部分占总数的百分数.7.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看.所得到的图形.即可得出答案.【解答】解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形.所以这个几何体是长方体;故选:D.【点评】本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看.所得到的图形.8.【分析】根据三角形的中位线平行且等于底边的一半.又相似三角形的周长的比等于相似比.问题可求.【解答】解:∵△ABC三条中位线围成的三角形与△ABC相似. ∴相似比是.∵△ABC中的三条中位线围成的三角形周长是15cm.∴△ABC的周长为30cm.故选:C.【点评】本题主要考查三角形的中位线定理.要熟记相似三角形的周长比、高、中线的比等于相似比.面积比等于相似比的平方.9.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数.进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径.∴∠ABC=90°.∵∠C=50°.∴∠BAC=40°.∵∠ABC的平分线BD交⊙O于点D.∴∠ABD=∠DBC=45°.∴∠CAD=∠DBC=45°.∴∠BAD=∠BAC+∠CAD=40°+45°=85°.故选:B.【点评】本题考查的是圆周角定理.即在同圆或等圆中.同弧或等弧所对的圆周角相等.直径所对的圆周角是直角.10.【分析】过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M.则BF+CM是这两个二次函数的最大值之和.BF∥DE∥CM.求出AE=OE=2.DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.推出△OBF∽△ODE.△ACM∽△ADE.得出=.=.代入求出BF和CM.相加即可求出答案.【解答】解:过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M. ∵BF⊥OA.DE⊥OA.CM⊥OA.∴BF∥DE∥CM.∵OD=AD=3.DE⊥OA.∴OE=EA=OA=2.由勾股定理得:DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.∵BF∥DE∥CM.∴△OBF∽△ODE.△ACM∽△ADE.∴=.=.∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x.即=.=.解得:BF=x.CM=﹣x.∴BF+CM=.故选:A.【点评】本题考查了二次函数的最值.勾股定理.等腰三角形性质.相似三角形的性质和判定的应用.主要考查学生运用性质和定理进行推理和计算的能力.题目比较好.但是有一定的难度.二、填空题(本题共有6小题.每题4分.共24分)11.【分析】把x=1直接代入代数式x+2中求值即可.【解答】解:当x=1时.x+2=1+2=3.故答案为:3.【点评】本题考查了代数式求值.明确运算顺序是关键.12.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式.熟记公式结构是解题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.即可求出答案.【解答】解:∵=0.6.=0.8.∴<.甲的方差小于乙的方差.∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.14.【分析】先根据三角形的外角性质求出∠DEC的度数.再根据平行线的性质得出结论即可.【解答】解:∵∠DEC是△ADE的外角.∠A=46°.∠1=52°.∴∠DEC=∠A+∠1=46°+52°=98°.∵DE∥BC.∴∠2=∠DEC=98°.故答案为:98.【点评】本题考查的是平行线的性质及三角形的外角性质.用到的知识点为:两直线平行.内错角相等.15.【分析】先根据一次函数y=kx+b过(2.3).(0.1)点.求出一次函数的解析式.再求出一次函数y=x+1的图象与x轴的交点坐标.即可求出答案.【解答】解∵一次函数y=kx+b过(2.3).(0.1)点.∴.解得:.一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(﹣1.0)点.∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程.关键是根据函数的图象求出一次函数的图象与x轴的交点坐标.再利用交点坐标与方程的关系求方程的解.16.【分析】设正△ABC的边长为x.根据等边三角形的高为边长的倍.求出正△ABC的面积.再根据菱形的性质结合图形表示出菱形的两对角线.然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积.然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x.则高为x.S△ABC=x•x=x2.∵所分成的都是正三角形.∴结合图形可得黑色菱形的较长的对角线为x﹣.较短的对角线为(x﹣)=x﹣1.∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2.∴==.整理得.11x2﹣144x+144=0.解得x1=(不符合题意.舍去).x2=12.所以.△ABC的边长是12.故答案为:12.【点评】本题考查了菱形的性质.等边三角形的性质.熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键.本题难点在于根据三角形的面积与菱形的面积列出方程.三、解答题(本题共有8小题.共66分)17.【分析】分别进行二次根式的化简、零指数幂.然后代入tan45°=1.进行运算即可.【解答】解:原式=4﹣1+4+1=8.【点评】此题考查了实数的运算.解答本题关键是掌握零指数幂的运算.二次根式的化简.属于基础题.18.【分析】①+②消去未知数y求x的值.再把x=3代入②.求未知数y的值.【解答】解:①+②得3x=9.解得x=3.把x=3代入②.得3﹣y=1.解得y=2.∴原方程组的解是.【点评】本题考查了解二元一次方程组.熟练掌握加减消元法的解题步骤是关键.19.【分析】(1)把经过的点的坐标代入解析式进行计算即可得解;(2)根据反比例函数图象的性质.在每一个象限内.函数值y随x的增大而增大解答.【解答】解:(1)把(﹣2.8)代入y=.得8=.解得:k=﹣16.所以y=﹣;(2)y1<y2.理由:∵k=﹣16<0.∴在每一个象限内.函数值y随x的增大而增大.∵点(2.y1).(4.y2)都在第四象限.且2<4.【点评】本题考查了待定系数法求反比例函数解析式.反比例函数图象的增减性.是中学阶段的重点.需熟练掌握.20.【分析】(1)由四边形ABCD是平行四边形.根据平行四边形的对边平行且相等.即可得AB=DC.AB∥DC.继而可求得∠CDE=∠F.又由BF=AB.即可利用AAS.判定△DCE≌△FBE;(2)由(1).可得BE=EC.即可求得BC的长.又由平行四边形的对边相等.即可求得AD的长.【解答】(1)证明:∵四边形ABCD是平行四边形.∴AB=DC.AB∥DC.∴∠CDE=∠F.又∵BF=AB.∴DC=FB.在△DCE和△FBE中.∵∴△DCE≌△FBE(AAS)(2)解:∵△DCE≌△FBE.∴EB=EC.∵EC=3.∴BC=2EB=6.∵四边形ABCD是平行四边形.∴AD=BC.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中.注意数形结合思想的应用.21.【分析】(1)有统计图表中的信息可知:其他所占的比例为5%.又人数为25人.所以可以求出总人数.进而求出a和b的值;(2)有(1)的数据可将条形统计图补充完整;(3)用该老人的总数15万人乘以与子女“同住”所占的比例30%即为估计值.【解答】解:(1)老人总数为250÷50%=500(人).b=%=15%.a=1﹣50%﹣15%﹣5%=30%.(2)如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人).【点评】本题考查了条形统计图、用样本估计总数的知识.解题的关键是从统计图中整理出进一步解题的信息.22.【分析】(1)根据AD∥BC和AB切圆D于A.求出DAB=∠ADE =∠DEB=90°.即可推出结论;(2)根据矩形的性质求出AB=DE=4.根据垂径定理求出CF=2CE.设AD=3k.则BC=4k.BE=3k.EC=k.DC=AD=3k.在△DEC中由勾股定理得出一个关于k的方程.求出k的值.即可求出答案.【解答】(1)证明:∵⊙D与AB相切于点A.∴AB⊥AD.∵AD∥BC.DE⊥BC.∴DE⊥AD.∴∠DAB=∠ADE=∠DEB=90°.∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形.∴DE=AB=4.∵DC=DA.∴点C在⊙D上.∵D为圆心.DE⊥BC.∴CF=2EC.∵.设AD=3k(k>0)则BC=4k.∴BE=3k.EC=BC﹣BE=4k﹣3k=k.DC=AD=3k.由勾股定理得DE2+EC2=DC2.即42+k2=(3k)2.∴k2=2.∵k>0.∴k=.∴CF=2EC=2.【点评】本题考查了勾股定理.切线的判定和性质.矩形的判定.垂径定理等知识点的应用.通过做此题培养了学生的推理能力和计算能力.用的数学思想是方程思想.题目具有一定的代表性.是一道比较好的题目.23.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵.得出等式方程.求出即可;(3)假设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.则乙种树每棵200元.丙种树每棵×200=300(元);(2)设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000.解得x=300∴2x=600.1000﹣3x=100.答:能购买甲种树600棵.乙种树300棵.丙种树100棵;(3)设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.解得:y≤201.2.∵y为正整数.∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用.将现实生活中的事件与数学思想联系起来.读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化.购买总棵树不变的情况下得出不等式方程.24.【分析】(1)根据已知条件求出AB和CD的中点坐标.然后利用待定系数法求该二次函数的解析式;(2)本问是难点所在.需要认真全面地分析解答:①如图2所示.△ADF与△DEF相似.包括三种情况.需要分类讨论:(I)若∠ADF=90°时.△ADF∽△DEF.求此时t的值;(II)若∠DF A=90°时.△DEF∽△FBA.利用相似三角形的对应边成比例可以求得相应的t的值;(III)∠DAF≠90°.此时t不存在;②如图3所示.画出旋转后的图形.认真分析满足题意要求时.需要具备什么样的限制条件.然后根据限制条件列出不等式.求出t的取值范围.确定限制条件是解题的关键.【解答】解:(1)由题意得AB的中点坐标为(﹣.0).CD的中点坐标为(0.3).分别代入y=ax2+b得.解得..∴y=﹣x2+3.(2)①如图2所示.在Rt△BCE中.∠BEC=90°.BE=3.BC=2∴sin C===.∴∠C=60°.∠CBE=30°∴EC=BC=.DE=又∵AD∥BC.∴∠ADC+∠C=180°∴∠ADC=180°﹣60°=120°要使△ADF与△DEF相似.则△ADF中必有一个角为直角.(I)若∠ADF=90°∠EDF=120°﹣90°=30°在Rt△DEF中.DE=.求得EF=1.DF=2.又∵E(t.3).F(t.﹣t2+3).∴EF=3﹣(﹣t2+3)=t2∴t2=1.∵t>0.∴t=1此时=2..∴.又∵∠ADF=∠DEF∴△ADF∽△DEF(II)若∠DF A=90°.可证得△DEF∽△FBA.则设EF=m.则FB=3﹣m∴.即m2﹣3m+6=0.此方程无实数根.∴此时t不存在;(III)由题意得.∠DAF<∠DAB=60°∴∠DAF≠90°.此时t不存在.综上所述.存在t=1.使△ADF与△DEF相似;②如图3所示.依题意作出旋转后的三角形△FE′C′.过C′作MN⊥x轴.分别交抛物线、x轴于点M、点N.观察图形可知.欲使△FE′C′落在指定区域内.必须满足:EE′≤BE且MN≥C′N.∵F(t.3﹣t2).∴EF=3﹣(3﹣t2)=t2.∴EE′=2EF=2t2.由EE′≤BE.得2t2≤3.解得t≤.∵C′E′=CE=.∴C′点的横坐标为t﹣.∴MN=3﹣(t﹣)2.又C′N=BE′=BE﹣EE′=3﹣2t2.由MN≥C′N.得3﹣(t﹣)2≥3﹣2t2.解得t≥或t≤﹣﹣3(舍).∴t的取值范围为:.【点评】本题是动线型中考压轴题.综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点.难度较大.对考生能力要求很高.本题难点在于第(2)问.(2)①中.需要结合△ADF与△DEF 相似的三种情况.分别进行讨论.避免漏解;(2)②中.确定“限制条件”是解题关键.。

中考数学试题(及答案)

中考数学试题(及答案)

中考数学试题(及答案)一、选择题1.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 2.下列四个实数中,比1-小的数是( ) A .2- B .0C .1D .2 3.在数轴上,与表示6的点距离最近的整数点所表示的数是( )A .1B .2C .3D .4 4.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或0 5.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个 6.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .7.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解8.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样10.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒11.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )A .12OM AC =B .MB MO =C .BD AC ⊥ D .AMB CND ∠=∠12.cos45°的值等于( )A .2B .1C .32D .22二、填空题13.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)14.若a ,b 互为相反数,则22a b ab +=________.15.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是16.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______17.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.18.正六边形的边长为8cm ,则它的面积为____cm 2.19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x =上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 . 三、解答题21.(问题背景)如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .22.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线(0)m y x x=>经过点B . (1)求直线10y kx =-和双曲线m y x =的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值;③当1361DC =时,请直接写出t 的值.23.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E .(1)求证:直线CD 是⊙O 的切线.(2)求证:CD BE AD DE ⋅=⋅.24.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选:D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.2.A解析:A【解析】试题分析:A .﹣2<﹣1,故正确;B .0>﹣1,故本选项错误;C .1>﹣1,故本选项错误;D .2>﹣1,故本选项错误;故选A .考点:有理数大小比较.3.B解析:B【解析】【分析】的大小,即可得到结果.【详解】46 6.25<<,2 2.5∴<<,的点距离最近的整数点所表示的数是2,故选:B .【点睛】此题考查了实数与数轴,以及算术平方根,熟练掌握各自的性质是解本题的关键.4.A解析:A【解析】【分析】把x =﹣1代入方程计算即可求出k 的值.【详解】解:把x =﹣1代入方程得:1+2k +k 2=0,解得:k =﹣1,故选:A .【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.6.C解析:C【解析】从上面看,看到两个圆形,故选C.7.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.8.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC ,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.9.C解析:C【解析】试题分析:设商品原价为x ,表示出三家超市降价后的价格,然后比较即可得出答案. 解:设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ;乙超市售价为:x (1﹣15%)2=0.7225x ;丙超市售价为:x (1﹣30%)=70%x=0.7x ;故到丙超市合算.故选C .考点:列代数式.10.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.11.A解析:A【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形, ∵12OM AC =, ∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°= 22. 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 二、填空题13.2m 【解析】【分析】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 解直角三角形求出EFCF 即可解决问题【详解】延长AD 交BC 的延长线于点E 作DF⊥CE 于点F 在△DCF 中∵CD=4mDF :CF =1:3解析:2m .【解析】【分析】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .解直角三角形求出EF ,CF ,即可解决问题.【详解】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .在△DCF 中,∵CD =4m ,DF :CF =1:,∴tan ∠DCF =,∴∠DCF =30°,∠CDF =60°.∴DF =2(m ),CF =2(m ),在Rt △DEF 中,因为∠DEF =50°,所以EF =≈1.67(m )∴BE =EF+FC+CB =1.67+2+5≈10.13(m ), ∴AB =BE•tan50°≈12.2(m ),故答案为12.2m .【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.15.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k≠0.考点:根的判别式.16.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.17.4×109【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>10时n是正解析:4×109【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109,故答案为4.4×109.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:516. 【解析】【分析】【详解】 画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 20.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x ∴顶点坐标为解析:(±11 ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②, ∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=11 ∴y=-12x 211, ∴顶点坐标为(2b a -=11244ac b a -=112),即(11112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.三、解答题21.【问题背景】:EF =BE +FD ;【探索延伸】:结论EF =BE +DF 仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.22.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】【分析】(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.【详解】(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -∴将点(12,0)A 代入得12100k -= 解得56k = 故直线的表达式为5106y x =- 将点(,5)B a -代入直线的表达式得51056a -=- 解得6a =(6,5)B ∴- ∵双曲线(0)m y x x=>经过点(6,5)B - 56m ∴=-,解得30m =- 故双曲线的表达式为30y x =-; (2)①//AC y 轴,点A 的坐标为(12,0)A∴点C 的横坐标为12将其代入双曲线的表达式得305122y =-=- ∴C 的纵坐标为52-,即52AC = 由题意得512t AC ⋅==,解得52t = 故当点C 在双曲线上时,t 的值为52; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下:若点D 与点A 重合由题意知,点C 坐标为(12,)t -由两点距离公式得:222(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+22AC t =由勾股定理得222AB BC AC +=,即226136(5)t t ++-+=解得12.2t =因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK由(1)知,直线AB 的表达式为5106y x =- 令0x =得10y =-,则(0,10)M -,即10OM =点K 为CD 的中点,BD BC ⊥12BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12AK DK CK CD === BK DK CK AK ∴===∴A 、D 、B 、C 四点共圆,点K 为圆心BCD DAB ∴∠=∠(圆周角定理)105tan tan 126OM BCD DAB OA ∴∠=∠===;③过点B 作⊥BM OA 于M由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置此时,四边形ACBD 是矩形,则5AC BD ==,即5t =因此,分以下2种情况讨论:如图2,当05t <<时,过点C 作CN BM ⊥于N(6,5(1),2,0),(12,)B A t C --12,6,6,5,OA OM AM OA OM BM AC t ∴===-===90CBN DBM BDM DBM ∠+∠=∠+∠=︒CBN BDM ∴∠=∠又90CNB BMD ∠=∠=︒CNB BMD ∴∆~∆ CN BN BM DM ∴= AM BM AC BM DM -∴=,即655t DM-= 5(5)6DM t ∴=- 56(5)6AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD += 即222513616(5)(6t t ⎡⎤+-+=⎢⎥⎣⎦解得52t =或152t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)(6t t ⎡⎤--+=⎢⎥⎣⎦解得152t =或52t =(不符题设,舍去) 综上所述,t 的值为52或152.【点睛】本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.24.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.。

2022年四川乐山中考数学真题及答案

2022年四川乐山中考数学真题及答案
【详解】解:连接OD、DE,
∵四边形ABCD是平行四边形,
∴点B、点D到对角线AC的距离相等,
∴S△ADE=S△ABE= ,
∵AD⊥x轴,
∴AD∥OE,
∴S△ADE=S△ADO= ,
设点D(x,y) ,
∴S△ADO= OA×AD= xy= ,
∴k=xy=3.
故答案为:3.
【点睛】本题考查的是反比例系数k的几何意义,涉及到平行四边形的性质及反比例函数图象上点的坐标特点等相关知识,利用同底等高的两个三角形面积相等得到S△ADE=S△ABE是解题的关键.
所以原不等式组解集为: .
【点睛】本题考查了解一元一次不等式组并把解集在数轴上表示,熟练掌握一元一次不等式的解法是解决本题的关键.
19. 如图,B是线段AC的中点, ,求证: .
【答案】证明过程见详解
【解析】
【分析】运行平行线的性质可证∠A=∠EBC,∠DBA=∠C,结论即可得证.
【详解】证明∵B是AC中点,
【答案】24
【解析】
【分析】根据菱形的面积公式,菱形的面积等于对角线乘积的一半,计算即可得出答案.
【详解】解:由题意得:
故答案为:24.
【点睛】本题考查的知识点是菱形的面积公式,掌握求菱形面积的方法是解此题的关键.
14. 已知 ,则 ______.
【答案】
【解析】
【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得 的值,进而代入代数式即可求解.
3. 点 所在象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
【答案】B
【解析】
【分析】根据各象限内点的坐标特征解答即可.
【详解】解:点(−1,2)所在的象限是第二象限.

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。

答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。

答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。

答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。

答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。

解:首先,将方程因式分解为(x - 6)(x + 2) = 0。

然后,解得x = 6或x = -2。

答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。

若长方体的体积为V,求V的表达式。

解:由题意可知,a + c = 2b,所以c = 2b - a。

长方体的体积V = abc = ab(2b - a)。

答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。

2024年河北省中考数学真题试卷及答案

2024年河北省中考数学真题试卷及答案

2024年河北省中考数学真题试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A. B.C.D. 2. 下列运算正确的是( )A. 734a a a -=B. 222326a a a ⋅=C. 33(2)8a a -=-D. 44a a a ÷=3. 如图,AD 与BC 交于点O,ABO 和CDO 关于直线PQ 对称,点A,B 的对称点分别是点C,D .下列不一定正确的是( )A. AD BC ⊥B. AC PQ ⊥C. ABO CDO △≌△D. AC BD ∥4. 下列数中,能使不等式516x -<成立的x 的值为( )A. 1B. 2C. 3D. 45. 观察图中尺规作图的痕迹,可得线段BD 一定是ABC ∆的( )A. 角平分线B. 高线C. 中位线D. 中线6. 如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A. B. C. D.7. 节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A. 若5x =,则100y =B. 若125y =,则4x =C. 若x 减小,则y 也减小D. 若x 减小一半,则y 增大一倍 8. 若a,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯个相加个相乘,则a 与b 的关系正确的是( )A. 38a b +=B. 38a b =C. 83a b +=D. 38a b =+9. 淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A. 1B. 1C. 1D. 1110. 下面是嘉嘉作业本上的一道习题及解答过程: ABC 中,ABC 的外角,连接CD .四边形ABCD 是平行四边形.AC =,∵∠ABC =∠+2∠,1∠=∠.又∵45∠=∠,MA MC =∵MAD MCB △≌△(∵______).∵MD MB =.∵四边形ABCD 是平行四边形.若以上解答过程正确,∵,∵应分别为( )A. 13∠=∠,AASB. 13∠=∠,ASAC. 23∠∠=,AASD. 23∠∠=,ASA11. 直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M,N,如图所示,则a β+=( )A. 115︒B. 120︒C. 135︒D. 144︒12. 在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A. 点AB. 点BC. 点CD. 点D13. 已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy-,则A =( )A. xB. yC. x y +D. x y -14. 扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S ,该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )A. B. C. D.15. “铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A. “20”左边的数是16B. “20”右边的“□”表示5C. 运算结果小于6000D. 运算结果可以表示为41001025a +16. 平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A. ()6,1或()7,1B. ()15,7-或()8,0C. ()6,0或()8,0D. ()5,1或()7,1二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分) 17. 某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.18. 已知a,b,n 均为正整数.(1)若1n n <<+,则n =______.(2)若1,1n n n n -<<<<+,则满足条件的a 的个数总比b 的个数少______个.19. 如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______.(2)143B C D △的面积为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤) 20. 如图,有甲、乙两条数轴.甲数轴上的三点A,B,C 所对应的数依次为4-,2,32,乙数轴上的三点D,E,F 所对应的数依次为0,x ,12.(1)计算A,B,C 三点所对应的数的和,并求AB AC的值.(2)当点A 与点D 上下对齐时,点B,C 恰好分别与点E,F 上下对齐,求x 的值.21. 甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率.(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率. 22. 中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值.(2)求CP 的长及sin APC ∠的值.23. 情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成∵,∵,∵三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长.(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24. 某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下: 当0x p ≤<时,80x y p =.当150p x ≤≤时,()2080150x p y p-=+-. (其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩.(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:∵直接写出这100名员工原始成绩的中位数.∵若∵中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25. 已知O的半径为3,弦MN=,ABC中,90,3,∠=︒==.在平面上,先将ABC AB BCABC和O按图1位置摆放(点B与点N重合,点A在O上,点C在O内),随后移动ABC,使点=.B在弦MN上移动,点A始终在O上随之移动,设BN x∥时,如图2,求点B到OA的距离,并求此时(1)当点B与点N重合时,求劣弧AN的长.(2)当OA MNx的值.(3)设点O到BC的距离为d.∵当点A在劣弧MN上,且过点A的切线与AC垂直时,求d的值.∵直接写出d的最小值.26. 如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标. (2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上. 淇淇说:无论t 为何值,2C 总经过一个定点. 请选择其中一人的说法进行说理. (3)当4t =时∵求直线PQ 的解析式.∵作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n.2024年河北省中考数学真题试卷答案一、选择题.1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】A5. 【答案】B6. 【答案】D7. 【答案】C8. 【答案】A【解析】解:由题意得:()8822a b⨯= ∵38222a b ⨯=∵38a b +=故选:A .9. 【答案】C【解析】解:由题意得:221a a +=解得:1x =1x =-故选:C .10. 【答案】D【解析】证明:∵AB AC =,∵3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠ ∵∵23∠=∠.又∵45∠=∠,MA MC =∵MAD MCB △≌△(∵ASA ).∵MD MB =.∵四边形ABCD 是平行四边形.故选:D .11. 【答案】B【解析】解:正六边形每个内角为:()621801206-⨯︒=︒ 而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒∵720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒∵7204120240ENM NMB ∠+∠=︒-⨯︒=︒∵1802360ENM NMB βα+∠++∠=︒⨯=︒∵360240120αβ+=︒-︒=︒故选:B .12. 【答案】B【解析】解:设(),A a b ,AB m =,AD n =∵矩形ABCD∵AD BC n ==,AB CD m ==∵(),D a b n +,(),B a m b +,(),C a m b n ++ ∵b b b n a m a a +<<+,而b b n a m a m+<++ ∵该矩形四个顶点中“特征值”最小的是点B.故选:B .13. 【答案】A【解析】解:∵22A y xy y x xy -++的结果为x y xy- ∵22y x y A x xy xy xy y -+=++ ∵()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++ ∵A x =故选:A .14. 【答案】C【解析】解:设该扇面所在圆的半径为R221203603R R S ππ==∵23R S π=∵该折扇张开的角度为n ︒时,扇面面积为n S ∵223360360360120n R S R n n n nS S π=⨯⨯===π ∵1120120120n S m n S nSn S ==== ∵m 是n 的正比例函数∵0n ≥∵它的图像是过原点的一条射线.故选:C .15. 【答案】D【解析】解:设一个三位数与一个两位数分别为10010x y z ++和10m n +则由题意得:20,5,2,mz nz ny nx a ==== ∵4mz nz=,即4=m n ∵当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍.当1,2n y ==时,则4,5,m z x a === ∵A.“20”左边的数是248⨯=,故本选项不符合题意.B.“20”右边的“□”表示4,故本选项不符合题意.∵a 上面的数应为4a∵运算结果可以表示为:()1000411002541001025a a a +++=+∵D 选项符合题意当2a =时,计算的结果大于6000,故C 选项不符合题意故选:D .16. 【答案】D【解析】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:∵16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立.∵16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.故选:D .二、填空题.17. 【答案】8918. 【答案】 ∵. 3 ∵. 2【解析】解:(1)∵34<<,而1n n <+∵3n =.故答案为:3.(2)∵a,b,n 均为正整数.∵n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<<+<<<<观察0,1,2,3,4,5,6,7,8,9,而200=,211=,224=,239=,2416=∵()21n -与2n 之间的整数有()22n -个 2n 与()21n +之间的整数有2n 个∵满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个)故答案为:2.19. 【答案】 ∵. 1 ∵. 7【解析】解:(1)连接11B D ,12B D ,12B C ,13B C ,33C D∵ABC 的面积为2,AD 为BC 边上的中线∵112122ABD ACD ABC S S S △△△∵点A ,1C ,2C ,3C 是线段4CC 的五等分点 ∵1122334415AC AC C C C C C C CC =====∵点A ,1D ,2D 是线段3DD 的四等分点 ∵11223314AD AD D D D D DD ====∵点A 是线段1BB 的中点 ∵1112AB AB BB == 在11AC D △和ACD 中1111AC AC C AD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∵()11SAS AC D ACD ≌∵111AC D ACD S S ==△△,11C D A CDA ∠=∠∵11AC D △的面积为1故答案为:1.(2)在11AB D 和ABD △中1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩∵()11SAS AB D ABD ≌∵111AB D ABD S S ==△△,11B D A BDA ∠=∠∵180BDA CDA ∠+∠=︒∵1111180B D A C D A ∠+∠=︒∵1C ,1D ,1B 三点共线∵111111112AB C AB D AC D S S S △△△∵1122334AC C C C C C C ===∵14114428AB C AB C S S △△∵11223AD D D D D ==,111AB D S =△∵13113313AB D AB D S S ==⨯=△△在33AC D △和ACD 中 ∵333AC AD AC AD==,33C AD CAD ∠=∠ ∵33C AD CAD △∽△ ∵3322339C AD CAD SAC S AC ⎛⎫=== ⎪⎝⎭ ∵339919C AD CAD S S ==⨯=△△∵1122334AC C C C C C C ===∵43334491233AC D C AD S S ==⨯=△△ ∵41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△∵143B C D △的面积为7故答案为:7.三、解答题.20. 【答案】(1)30,16 (2)2x = 21. 【答案】(1)13 (2)填表见解析,49【小问1详解】解:当1,2a b ==-时1a b +=-,20a b+=,()123a b -=--= ∵取出的卡片上代数式的值为负数的概率为:13.【小问2详解】解:补全表格如下:∵所有等可能的结果数有9种,和为单项式的结果数有4种 ∵和为单项式的概率为49. 22. 【答案】(1)45︒,14(2m 【小问1详解】解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m 4AE BQ ==()m ,3AC BD ==()m∵431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒ ∵CE PE =∵45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==.【小问2详解】 解:∵1CE PE ==m ,90CEP ∠=︒∵CP ==m如图,过C 作CH AP ⊥于H∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ∵()22249x x AC +==解得:17x =∵CH =m∵sin34CH APC CP ∠===.23. 【答案】(1)1EF =;(2)BE GE AH GH ===,2BE =BP 或2【解析】解:如图,过G '作G K FH ''⊥于K 结合题意可得:四边形FOG K '为矩形∵FO KG '=由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=︒∵AHG ,H G D '',AFE △为等腰直角三角形 ∵G KH ''为等腰直角三角形设H K KG x ''==∵H G H D '''==∵AH HG ==,HF FO x ==∵正方形的边长为2∵= ∵OA =∵x x +=解得:1x =∵))1111EF AF x ====.(2)∵AFE △为等腰直角三角形,1EF AF ==.∵AE ==∵2BE =∵)12GE H G =='='=-2AH GH ===∵BE GE AH GH ===.如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线此时BP '=,2P Q ''==,符合要求 或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线此时CP CQ ==2PQ ==∵2BP =综上:BP 或2-24. 【答案】(1)甲、乙的报告成绩分别为76,92分 (2)125 (3)∵130;∵95%【小问1详解】解:当100p =时,甲的报告成绩为:809576100y ⨯==分乙的报告成绩为:()201301008092150100y ⨯-=+=-分.【小问2详解】解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分 ∵10x p ≤<时,18092x y p ==丙①,()1804064x y p -==丁② 由∵-∵得320028p = ∵8007p = ∵1800929207131807x p⨯==≈>,故不成立,舍.∵140150p x ≤-≤时,()1209280150x p y p -==+-丙③,()120406480150x p y p --==+-丁④ 由∵-∵得:80028150p =- ∵8507p = ∵185020792808501507x ⎛⎫- ⎪⎝⎭=+- ∵19707x = ∵16908504077x p -=<=,故不成立,舍.∵11040,150x p p x ≤-<≤≤时,()1209280150x p y p -==+-丙⑤()1804064x y p -==丁⑥联立∵∵解得:1125,140p x ==,且符合题意综上所述125p =.【小问3详解】解:∵共计100名员工,且成绩已经排列好∵中位数是第50,51名员工成绩的平均数由表格得第50,51名员工成绩都是130分∵中位数为130.∵当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍.当130p ≤时,则()201309080150p p -=+-,解得110p =,符合题意∵ 由表格得到原始成绩为110及110以上的人数为()10012295-++= ∵合格率为:95100%95%100⨯=.25. 【答案】(1)π (2)点B 到OA 的距离为2;3 (3)∵3d =-23 【小问1详解】解:如图,连接OA ,OB∵O 的半径为3,3AB =∵3OA OB AB ===∵AOB 为等边三角形∵60AOB ∠=︒∵AN 的长为60π3π180.【小问2详解】解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO∵OA MN ∥ ∵90IBH BHO HOI BIO ∠=∠=∠=∠=︒∵四边形BIOH 是矩形∵BH OI =,BI OH =∵MN =OH MN ⊥∵MH NH ==而3OM =∵2OH BI ==∵点B 到OA 的距离为2.∵3AB =,BI OA ⊥∵AI =∵3OI OA AI BH =-==∵33x BN BH NH ==+==.【小问3详解】解:∵如图,∵过点A 的切线与AC 垂直∵AC 过圆心过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒∵四边形KOJB 为矩形∵OJ KB =∵3AB =,BC =∵AC ==∵cosAB AK BAC AC AO∠==== ∵AK∵3OJ BK ==即3d =-如图,当B 为MN 中点时过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∵90OJL ∠>︒∵OL OJ >,此时OJ 最短如图,过A 作AQ OB ⊥于Q ,而3AB AO ==∵B 为MN 中点,则OB MN ⊥∵由(2)可得2OB =∵1BQ OQ ==∵AQ ==∵90ABC AQB ∠=︒=∠∵90OBJ ABO ABO BAQ ∠+∠=︒=∠+∠∵OBJ BAQ ∠=∠∵tan tan OBJ BAQ ∠=∠∵OJ BQ BJ AQ ==设OJ m =,则BJ =∵()2222m += 解得:23m =(不符合题意的根舍去) ∵d 的最小值为23. 26. 【答案】(1)12a =,()2,2Q - (2)两人说法都正确,理由见解析(3)∵410=-y x ;∵112-或112+ (4)2n t m =+- 【小问1详解】解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q .∵1680a -=解得:12a = ∵抛物线为:()221122222y x x x =-=-- ∵()2,2Q -.【小问2详解】解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-当0x =时 ∵222221111:()2222222C y x t t t t =--+-=-+-=- ∵()0,2-在2C 上∵嘉嘉说法正确.∵22211:()222C y x t t =--+- 2122x xt =-+- 当0x =时,=2y - ∵22211:()222C y x t t =--+-过定点()0,2-.∵淇淇说法正确. 【小问3详解】解:∵当4t =时()2222111:()246222C y x t t x =--+-=--+ ∵顶点()4,6P ,而()2,2Q -设PQ 为y ex f =+∵4622e f e f +=⎧⎨+=-⎩解得:410e f =⎧⎨=-⎩ ∵PQ 为410=-y x .∵如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意)∵4x =±∵交点()46J --,交点()4K +由直线l PQ ∥,设直线l 为4y x b =+∵(446b -+=-解得:22b =∵直线l 为:422y x =+当4220y x =+=时,112x =-此时直线l 与x 轴交点的横坐标为112-同理当直线l 过点()4K +直线l 为:422y x =-当4220y x =-=时,112x =+此时直线l 与x 轴交点的横坐标为112+【小问4详解】解:如图,∵()21222y x =--,22211:()222C y x t t =--+- ∵2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP∵四边形APBQ 是平行四边形当点M 是到直线PQ 的距离最大的点,最大距离为d,点N 到直线PQ 的距离恰好也为d 此时M 与B 重合,N 与A 重合∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭ ∵L 的横坐标为2t 2+ ∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦∵L 的横坐标为2m n + ∵222m n t ++= 解得:2n t m =+-.。

2024年河南省中考数学真题试卷及答案

2024年河南省中考数学真题试卷及答案

2024年河南省中考数学真题试卷一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 22. 据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A. 8578410⨯B. 105.78410⨯C. 115.78410⨯D. 120.578410⨯ 3. 如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A. 60︒B. 50︒C. 40︒D. 30︒4. 信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A. B. C. D. 5. 下列不等式中,与1x ->组成的不等式组无解的是( )A. 2x >B. 0x <C. <2x -D. 3x >-6. 如图,在ABCD 中,对角线AC ,BD 相交于点O,点E 为OC 的中点,EF AB ∥交BC 于点F .若4AB =,则EF 的长为( )A. 12 B. 1 C. 43 D. 27. 计算3()a a a a a ⋅⋅⋅个的结果是( )A. 5aB. 6aC. 3a a +D. 3a a 8. 豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 139. 如图,O 是边长为ABC 的外接圆,点D 是BC 的中点,连接BD ,CD .以点D 为圆心,BD 的长为半径在O 内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10. 把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误的是( )A. 当440W P =时,2A I =B. Q 随I 的增大而增大C. I 每增加1A,Q 的增加量相同D. P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分) 11. 请写出2m 的一个同类项:_______.12. 2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为___________分.13. 若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为___________. 14. 如图,在平面直角坐标系中,正方形ABCD 的边AB 在x 轴上,点A 的坐标为()20-,,点E 在边CD 上.将BCE 沿BE 折叠,点C 落在点F 处.若点F 的坐标为()06,,则点E 的坐标为___________.15. 如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为_________,最小值为_________.三、解答题(本大题共8个小题,共75分)16. (1)计算(01 (2)化简:231124a a a +⎛⎫+÷ ⎪--⎝⎭. 17. 为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.技术统计表根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是_________(填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为________分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误()1⨯-,且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好. 18. 如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E,反比例函数()0k y x x=>的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象. (3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为________.19. 如图,在Rt ABC △中,CD 是斜边AB 上的中线,∥BE DC 交AC 的延长线于点E .(1)请用无刻度的直尺和圆规作ECM ∠,使ECM A ∠=∠,且射线CM 交BE 于点F (保留作图痕迹,不写作法).(2)证明(1)中得到的四边形CDBF 是菱形20. 如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.图1 图2(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m .参考数据 1.73≈). 21. 为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B 两种食品作为午餐.这两种食品每包质量均为50g ,营养成分表如下.(1)若要从这两种食品中摄入4600kJ 热量和70g 蛋白质,应选用A,B 两种食品各多少包? (2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g ,且热量最低,应如何选用这两种食品? 22. 从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =-+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由. 23. 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验,请运用已有经验,对“邻等对补四边形”进行研究定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30︒和45︒角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有________(填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质. 如图2,四边形ABCD 是邻等对补四边形,AB AD =,AC 是它的一条对角线.∠写出图中相等的角,并说明理由∠若BC m =,DC n =,2BCD θ∠=,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt ABC △中,90B ,3AB =,4BC =,分别在边BC ,AC 上取点M,N,使四边形ABMN 是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出BN 的长.2024年河南省中考数学真题试卷答案一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的) 1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】A5. 【答案】A6. 【答案】B7. 【答案】D8. 【答案】D9. 【答案】C10. 【答案】C【解析】解∠根据图1知:当440W P =时,2A I =,故选项A 正确,但不符合题意 根据图2知:Q 随I 的增大而增大,故选项B 正确,但不符合题意根据图2知:Q 随I 的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故选项C 错误,符合题意根据图1知:I 随P 的增大而增大,又Q 随I 的增大而增大,则P 越大,插线板电源线产生的热量Q 越多,故选项D 正确,但不符合题意故选:C .二、填空题(每小题3分,共15分)11. 【答案】m (答案不唯一)12. 【答案】913. 【答案】1214. 【答案】()3,1015.【答案】 ∠. 1 ∠. 1【解析】解:∠90ACB ∠=︒,3CA CB == ∠190452BAC ABC ∠=∠=⨯︒=︒∠线段CD 绕点C 在平面内旋转,1CD =∠点D 在以点C 为圆心,1为半径的圆上∠BE AE ⊥∠90AEB ∠=︒∠点E 在以AB 为直径的圆上在Rt ABE △中,cos AE AB BAE =⋅∠∠AB 为定值∠当cos BAE ∠最大时,AE 最大,cos BAE ∠最小时,AE 最小 ∠当AE 与C 相切于点D,且点D 在ABC 内部时,BAE ∠最小,AE 最大,连接CD ,CE ,如图所示:则CD AE ⊥∠90ADE CDE ∠=∠=︒∠AD ==∠AC AC =∠45CED ABC ==︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =+=+即AE 的最大值为1当AE 与C 相切于点D,且点D 在ABC 外部时,BAE ∠最大,AE 最小,连接CD ,CE ,如图所示:则CD AE ⊥∠90CDE ∠=︒∠AD ==∠四边形ABCE 为圆内接四边形 ∠180135CEA ABC =︒-=︒∠∠∠18045CED CEA =︒-=︒∠∠∠90CDE ∠=︒∠CDE 为等腰直角三角形∠1DE CD ==∠1AE AD DE =-=-即AE 的最小值为1故答案为:1;1.三、解答题(本大题共8个小题,共75分) 16. 【答案】(1)9(2)2a +17. 【答案】(1)甲 29(2)甲 (3)乙队员表现更好 18. 【答案】(1)6y x= (2)见解析 (3)92【小问1详解】解:反比例函数k y x =的图象经过点()3,2A ∠23k = ∠6k = ∠这个反比例函数的表达式为6y x =【小问2详解】解:当1x =时,6y =当2x =时,3y =当6x =时,1y =∠反比例函数6y x=的图象经过()1,6,()2,3,()6,1 画图如下:【小问3详解】解:∠()6,4E 向左平移后,E 在反比例函数的图象上∠平移后点E 对应点的纵坐标为4当4y =时,64x=解得32x = ∠平移距离为39622-=.故答案为:92.19. 【答案】(1)见解析(2)见解析【小问1详解】解:如图【小问2详解】证明:∠ECM A∠=∠∠CM AB∥∠∥BE DC∠四边形CDBF是平行四边形∠在Rt ABC△中,CD是斜边AB上的中线∠12 CD BD AB ==∠平行四边形CDBF是菱形.20. 【答案】(1)见解析(2)塑像AB的高约为6.9m 【小问1详解】证明:如图,连接BM.则AMB APB∠=∠.∠AMB ADB∠>∠∠APB ADB ∠>∠.【小问2详解】解:在Rt AHP 中,60APH ∠=︒,6PH =. ∠tan AH APH PH∠=∠tan 606AH PH =⋅︒==∠30APB ∠=︒∠603030BPH APH APB ∠=∠-∠=︒-︒=︒.在Rt BHP △中,tan BH BPH PH ∠=∠tan 306BH PH =⋅︒==∠()4 1.73 6.9m AB AH BH =-==≈⨯≈.答:塑像AB 的高约为6.9m .21. 【答案】(1)选用A 种食品4包,B 种食品2包(2)选用A 种食品3包,B 种食品4包【小问1详解】解:设选用A 种食品x 包,B 种食品y 包根据题意,得7009004600,101570.x y x y +=⎧⎨+=⎩解方程组,得4,2.x y =⎧⎨=⎩答:选用A 种食品4包,B 种食品2包.【小问2详解】解:设选用A 种食品a 包,则选用B 种食品()7-a 包根据题意,得()1015790a a +-≥.∠3a ≤.设总热量为kJ w ,则()70090072006300w a a a =+-=-+.∠2000-<∠w 随a 的增大而减小.∠当3a =时,w 最小.∠7734a -=-=.答:选用A 种食品3包,B 种食品4包.22. 【答案】(1)010v (2)()20m /s(3)小明的说法不正确,理由见解析【小问1详解】解:205h t v t =-+220051020v v t ⎛⎫=--+ ⎪⎝⎭ ∠当010v t =时,h 最大 故答案为:010v 【小问2详解】解:根据题意,得 当010v t =时,20h = ∠20005201010v v v ⎛⎫-⨯+⨯= ⎪⎝⎭∠()020m /s v =(负值舍去)【小问3详解】解:小明的说法不正确.理由如下:由(2),得2520h t t =-+当15h =时,215520t t =-+解方程,得11t =,23t =∠两次间隔的时间为312s -=∠小明的说法不正确.23. 【答案】(1)∠∠ (2)∠ACD ACB ∠=∠.理由见解析;∠2cos m n θ+(3)5或7 【小问1详解】解:观察图知,图∠和图∠中不存在对角互补,图2和图4中存在对角互补且邻边相等 故图∠和图∠中四边形是邻等对补四边形故答案为:∠∠【小问2详解】解:∠ACD ACB ∠=∠,理由:延长CB 至点E,使BE DC =,连接AE∠四边形ABCD 是邻等对补四边形∠180ABC D ∠+∠=︒∠180ABC ABE ∠+∠=︒∠ABE D ∠=∠∠AB AD =∠()SAS ABE ADC ≌∠E ACD ∠=∠,AE AC =∠E ACB ∠=∠∠ACD ACB ∠=∠∠过A 作AF EC ⊥于F∠AE AC = ∠()()1112222m n CF CE BC BE BC DC +==+=+= ∠2BCD θ∠=∠ACD ACB θ∠=∠=在Rt AFC △中,cos CF θAC= ∠cos 2cos CF m n AC θθ+== 【小问3详解】解:∠90B ,3AB =,4BC =∠5AC∠四边形ABMN 是邻等对补四边形 ∠180ANM B ∠+∠=︒∠90ANM =︒当AB BM =时,如图,连接AM ,过N 作NH BC ⊥于H∠22218AM AB BM =+=在Rt AMN 中222218MN AM AN AN =-=- 在Rt CMN 中()()22222435MN CM CN AN =-=--- ∠()()22218435AN AN -=--- 解得 4.2AN = ∠45CN = ∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠1225NH =,1625CH = ∠8425BH =∠BN ==当AN AB =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠BM NM =,故不符合题意,舍去 当AN MN =时,连接AM ,过N 作NH BC ⊥于H∠90MNC ABC ∠=∠=︒,C C ∠=∠ ∠CMN CAB ∽△△ ∠CN MN BC AB =,即543CN CN -= 解得207CN =∠90NHC ABC ∠=∠=︒,C C ∠=∠ ∠NHC ABC ∽534∠127NH =,167CH = ∠127BH =∠BN ==当BM MN =时,如图,连接AM∠AM AM =∠Rt Rt ABM ANM ≌ ∠AN AB =,故不符合题意,舍去综上,BN 的长为5或7.。

2024年天津市中考数学真题试卷及答案

2024年天津市中考数学真题试卷及答案

2024年天津市中考数学真题试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算()33--的结果是()A.6B.3C.0D.-62.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B.C. D.3.的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A.70.0810⨯B.60.810⨯C.5810⨯D.48010⨯1-的值等于()A.0B.1C.12- 17.计算3311x x x ---的结果等于() A.3 B.x C.1x x - D.231x - 8.若点()()()123,1,,1,,5A x B x C x -都在反比例函数5y x =的图象上,则123,,x x x 的大小关系是() A.123x x x << B.132x x x << C.321x x x <<D.213x x x << 9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳子长y 尺,则可以列出的方程组为()A. 4.50.51y x x y -=⎧⎨-=⎩B. 4.50.51y x x y -=⎧⎨+=⎩C. 4.51x y x y +=⎧⎨-=⎩D. 4.51x y y x +=⎧⎨-=⎩10.如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A.60B.65C.70D.7511.如图,ABC 中,30B ∠=,将ABC 绕点C 顺时针旋转60得到DEC ,点,A B 的对应点分别为,D E ,延长BA 交DE 于点F ,下列结论一定正确的是()A.ACB ACD ∠=∠B.AC DE ∥C.AB EF =D.BF CE ⊥12.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =-≤≤.有下列结论:①小球从抛出到落地需要6s①小球运动中的高度可以是30m①小球运动2s 时的高度小于运动5s 时的高度.其中,正确结论的个数是()A.0B.1C.2D.3第II 卷二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球,4个黑球,3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为______.14.计算86x x ÷的结果为______.15.计算)11的结果为___. 16.若正比例函数y kx =(k 是常数,0k ≠)的图象经过第一、第三象限,则k 的值可以是_____________(写出一个即可).17.如图,正方形ABCD 的边长为对角线,AC BD 相交于点O ,点E 在CA 的延长线上,5OE =,连接DE .(1)线段AE 的长为______(2)若F 为DE 的中点,则线段AF 的长为______.18.如图,在每个小正方形的边长为1的网格中,点,,A F G 均在格点上.(1)线段AG 的长为______(2)点E 在水平网格线上,过点,,A E F 作圆,经过圆与水平网格线的交点作切线,分别与,AE AF 的延长线相交于点,,B C ABC △中,点M 在边BC 上,点N 在边AB 上,点P 在边AC 上.请用无刻度的直尺,在如图所示的网格中,画出点,,M N P ,使MNP △的周长最短,并简要说明点,,M N P 的位置是如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程) 19.解不等式组213317x x x +≤⎧⎨-≥-⎩①②请结合题意填空,完成本题的解答.(1)解不等式①,得______(2)解不等式①,得______(3)把不等式①和①的解集在数轴上表示出来:(4)原不等式组的解集为______.20.为了解某校八年级学生每周参加科学教育的时间(单位:h ),随机调查了该校八年级a 名学生,根据统计的结果,绘制出如下的统计图①和图①.请根据相关信息,解答下列问题:(1)填空:a 的值为______,图①中m 的值为______,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为______和______(2)求统计的这组学生每周参加科学教育的时间数据的平均数(3)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h 的人数约为多少?21.已知AOB 中,30,ABO AB ∠=︒为O 的弦,直线MN 与O 相切于点C .(1)如图①,若AB MN ∥,直径CE 与AB 相交于点D ,求AOB ∠和BCE ∠的大小(2)如图①,若,OB MN CG AB ⊥∥,垂足为,G CG 与OB 相交于点,3F OA =,求线段OF 的长. 22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图①,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数)(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km ,文化广场离家1.5km .张华从家出发,先匀速骑行了4min 到画社,在画社停留了15min ,之后匀速骑行了6min 到文化广场,在文化广场停留6min 后,再匀速步行了20min 返回家.下面图中x 表示时间,y 表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:①填空:张华从文化广场返回家的速度为______km /min①当025x ≤≤时,请直接写出张华离家的距离y 关于时间x 的函数解析式(2)当张华离开家8min 时,他的爸爸也从家出发匀速步行了20min 直接到达了文化广场,那么从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是多少?(直接写出结果即可)24.将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图①,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围①设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可). 25.已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标(2)当2OM OP ==,求a 的值 (3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN 上,点F在线段DN 上,NE NF +=,当DE MF +,求a 的值.2024年天津市中考数学真题试卷答案解析一、选择题.1.【答案】A2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】B9.【答案】A10.【答案】B11.【答案】D【解析】解:记BF 与CE 相交于一点H,如图所示:①ABC 中,将ABC 绕点C 顺时针旋转60得到DEC ①60BCE ACD ∠=∠=︒①30B ∠=︒①在BHC 中,18090BHC BCE B ∠=︒-∠-∠=︒ ①BF CE ⊥故D 选项是正确的,符合题意设ACH x ∠=︒①60ACB x ∠=︒-︒,①30B ∠=︒①()180306090EDC BAC x x ∠=∠=︒-︒-︒-︒=︒+︒①9060150EDC ACD x x ∠+∠=︒+︒+︒=︒+︒ ①x ︒不一定等于30︒①EDC ACD ∠+∠不一定等于180︒①AC DE ∥不一定成立故B 选项不正确,不符合题意①6060ACB x ACD x ∠=︒-︒∠=︒︒,,不一定等于0︒ ①ACB ACD ∠=∠不一定成立故A 选项不正确,不符合题意①将ABC 绕点C 顺时针旋转60得到DEC ①AB ED EF FD ==+①BA EF >故C 选项不正确,不符合题意故选:D12.【答案】C【解析】解:令0h =,则23050t t -=,解得:10t =,26t = ①小球从抛出到落地需要6s ,故①正确①()223055345h t t t =-=--+①最大高度为45m①小球运动中的高度可以是30m ,故①正确 当2t =时,23025240h =⨯-⨯=;当5t =时,23055525h =⨯-⨯= ①小球运动2s 时的高度大于运动5s 时的高度,故①错误 故选C . 二、填空题.13.【答案】31014.【答案】2x15.【答案】1016.【答案】1(答案不唯一)【解析】17.【答案】【解析】(1)四边形ABCD 是正方形 OA OC OD OB ∴===,90DOC ∠=︒ ∴在Rt DOC 中,222OD OC DC += 3DC =3OD OC OA OB ∴====5OE =∴532AE OE OA =-=-=(2)延长DA 到点G ,使AG AD =,连接EG 由E 点向AG 作垂线,垂足为H①F 为DE 的中点,A 为GD 的中点 ①AF 为DGE △的中位线在Rt EAH △中,45EAH DAC ∠=∠=︒ AH EH ∴=222AH EH AE +=AH EH ∴==GH AG AH ∴=-== 在Rt EHG △中,2222810EG EH GH ∴=+=+=∴=EG AF 为DGE △的中位线12AF EG ∴==18.【答案】①.图见解析,说明见解析【解析】(1)由勾股定理可知,AG ==故答案为(2)如图,根据题意,切点为M ;连接ME 并延长,与网格线相交于点1M ;取圆与网格线的交点D 和格点H ,连接DH 并延长,与网格线相交于点2M ;连接12M M ,分别与,AB AC 相交于点,N P ,则点,,M N P 即为所求.三、解答题.19.【答案】(1)1x ≤(2)3x ≥-(3)见解析(4)31x -≤≤【解析】【小问1详解】解:解不等式①得1x ≤故答案为:1x ≤【小问2详解】解:解不等式①得3x ≥-故答案为:3x ≥-【小问3详解】解:在数轴上表示如下:【小问4详解】解:由数轴可得原不等式组的解集为31x -≤≤故答案为:31x -≤≤.20.【答案】(1)50,34,8,8(2)8.36(3)150人【小问1详解】解:36%50÷=(人)%1750100%34%m =÷⨯=34m ∴=在这组数据中,8出现了17次,次数最多∴众数是8将这组数据从小到大依次排列,处于最中间的第25,26名学生的分数都是8∴中位数是(88)28+÷=故答案为:50,34,8,8.【小问2详解】 63778179151088.36,3717158x ⨯+⨯+⨯+⨯+⨯==++++ ∴这组数据的平均数是8.36.【小问3详解】在所抽取的样本中,每周参加科学教育的时间是9h 的学生占30%∴根据样本数据,估计该校八年级学生500人中,每周参加科学教育的时间是9h 的学生占30%,有50030%150⨯=.∴估计该校八年级学生每周参加科学教育的时间是9h 的人数约为150.21.【答案】(1)120AOB ∠=︒;30BCE ∠=︒(2【小问1详解】AB 为O 的弦OA OB ∴=.得A ABO ∠=∠.△AOB 中,180A ABO AOB ∠+∠+∠=︒又30ABO ∠=︒1802120AOB ABO ∴∠=︒-∠=︒.直线MN 与O 相切于点,C CE 为O 的直径CE MN ∴⊥.即90ECM ∠=︒.又AB MN ∥90CDB ECM ∴∠=∠=︒.在Rt ODB 中,9060BOE ABO ∠=︒-∠=︒.12BCE BOE ∠∠=30BCE ∴∠=︒.【小问2详解】如图,连接OC .∵直线MN 与O 相切于点,C CE 为O 的直径①90OCM ∠=︒①//OC MN①90OCM COB ∠=∠=︒.CG AB ⊥,得90FGB ∠=︒.∴在Rt FGB 中,由30ABO ∠=︒得9060BFG ABO ∠=︒-∠=︒.60CFO BFG ∴∠=∠=︒.在Rt COF △中,tan ,3OC CFO OC OA OF∠=== 33tan tan60OC OF CFO ∠∴=== 22.【答案】(1)54m(2)59m【小问1详解】解:设CD x =,由36DE =,得36CE CD DE x =+=+.EC AB ⊥,垂足为C90BCE ACD ∠∠∴==︒.在Rt BCD 中,tan 45BC CDB CDB CD∠=∠=︒, tan tan45BC CD CDB x x ∠∴=⋅=⋅︒=. 在Rt BCE 中,tan 31BC CEB CEB CE ∠=∠=︒, ()tan 36tan31BC CE CEB x ∴=⋅∠=+⋅︒.()36tan31x x ∴=+⋅︒. 得36tan31360.6541tan3110.6x ⨯︒⨯=≈=-︒-. 答:线段CD 的长约为54m .【小问2详解】在Rt ACD △中,tan 6AC CDA CDA CD∠=∠=︒, tan 54tan6540.1 5.4AC CD CDA ∠∴=⋅≈⨯︒≈⨯=.5.45459AB AC BC ∴=+≈+≈.答:桥塔AB 的高度约为59m .23.【答案】(1)①0.15,0.6,1.5;①0.075;①当04x ≤≤时,0.15y x =;当419x <≤时,0.6y =;当1925x <≤时,0.15 2.25y x =-(2)1.05km【小问1详解】解:①画社离家0.6km ,张华从家出发,先匀速骑行了4min 到画社①张华的骑行速度为()0.640.15km /min ÷=①张华离家1min 时,张华离家0.1510.15km ⨯=张华离家13min 时,还在画社,故此时张华离家还是0.6km张华离家30min 时,在文化广场,故此时张华离家还是1.5km .故答案为:0.15,0.6,1.5.①()1.5 5.1 3.10.075km /min ÷-=故答案为:0.075.①当04x ≤≤时,张华的匀速骑行速度为()0.640.15km /min ÷=①0.15y x =当419x <≤时,0.6y =当1925x <≤时,设次数的函数解析式为:y kx b =+把()19,0.6,()25,1.5代入y kx b =+,可得出:190.625 1.5k b k b +=⎧⎨+=⎩解得:0.152.25k b =⎧⎨=-⎩ ①0.15 2.25y x =-综上:当04x ≤≤时,0.15y x =,当419x <≤时,0.6y =,当1925x <≤时,0.15 2.25y x =-.【小问2详解】张华爸爸的速度为:()1.5200.075km /min ÷=设张华爸爸距家km y ',则()0.07580.0750.6y x x =-=-'当两人从画社到文化广场的途中()0.6 1.5y <<两人相遇时,有600.1.005 2..2575x x --= 解得:22x =①()0.07580.0750.60.075220.6 1.05km y x x =-=-=⨯-='故从画社到文化广场的途中()0.6 1.5y <<两人相遇时离家的距离是1.05km .24.【答案】(1)((,(2)①3522t <<S ≤≤ 【小问1详解】解:如图:过点C 作CH OA ⊥①四边形OABC 是平行四边形,2,60OC AOC ∠==,()3,0A①2360OC AB OA B AOC ====∠=∠=︒,CB ,,①CH OA ⊥①30OCH ∠=︒ ①112OH OC ==①CH①(1C①3CB OA ==①134+=①(4B故答案为:(,(4 【小问2详解】解:①①过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上 ①60OO C AOC ''∠=∠=︒,O P OP '=①22OO OP t =='①()3,0A①3OA =①23AO OO OA t ''=-=-①四边形OABC 为平行四边形①2AB OC ==,AB OC ∥,60O AB AOC '∠=∠=︒①EO A '是等边三角形①23AE AO t '==-①BE AB AE =-①()22352BE AB AE t t =-=--=-①25BE t =-+当O '与点A 重合时此时AB 与C O ''的交点为E 与A 重合,1322OP OA == 如图:当C '与点B 重合时此时AB 与C O ''的交点为E 与B 重合,1522CB OP +== ①t 的取值范围为3522t << ①如图:过点C 作CH OA ⊥由(1)得出(C ,60COA ∠=︒①tan 60MP OP ︒=MP t =①MP =当213t ≤<时,2111222S O P OP MP t '==⨯==0>,开口向上,对称轴直线0=t①在213t ≤<时,2S =随着t 的增大而增大①92S ≤< 当312t ≤≤时,如图:()()())111121222S O P MC MP OP CM MP t t t =+⨯''=+⨯=+-=-=0>,S 随着t 的增大而增大①在32t =时32S ===在1t =时1S ==①当312t ≤≤时,2S ≤≤ ①当3522t <<时,过点E 作,如图:①由①得出EO A '是等边三角形,EN AO ⊥ ①()11323222AN AO t t ==-=-'①tan EAO '∠=EN AN =①32EN t ⎫=-⎪⎭12S AO EN '=-⨯⨯()1323222t t ⎡⎤⎫=----⎪⎢⎥⎭⎣⎦24=+-①0<①开口向下,在2t ==时,S 有最大值①42S =+=①在3522t <<时,352222-=-①23322S ⎛⎫=+= ⎪⎝⎭则在3522t <<时4S <≤ 当51124t ≤≤时,如图()()11232522S AO BC MP t t =-⨯+⨯=--⨯--=+'+'①0<,S 随着t 的增大而减小①在51124t ≤≤时,则把51124t t ==,分别代入2S =+得出52S =+=114S =+=①在51124t ≤≤时S ≤≤综上S ≤≤25.【答案】(1)该抛物线顶点P 的坐标为1,2 (2)10(3)1【小问1详解】解:201a b a +==,,得22b a =-=-.又1c =- ∴该抛物线的解析式为221y x x =--. ()222112y x x x =--=--∴该抛物线顶点P 的坐标为()1,2-【小问2详解】解:过点(),1M m 作MH x ⊥轴,垂足为1H m >,则901MHO HM OH m ∠=︒==,,.在Rt MOH 中,由222HM OH OM OM +==, 221m ∴+=⎝⎭.解得123322m m ==-,(舍). ∴点M 的坐标为3,12⎛⎫ ⎪⎝⎭. 20a b +=,即12b a -=.∴抛物线22y ax ax c =-+的对称轴为1x =.对称轴与x 轴相交于点D ,则190OD ODP ∠==︒,.在Rt OPD 中,由222OD PD OP OP +==, 221PD ∴+=⎝⎭.解得32PD =负值舍去. 由0a >,得该抛物线顶点P 的坐标为31,2⎛⎫-⎪⎝⎭. ∴该抛物线的解析式为()2312y a x =--. 点3,12M ⎛⎫ ⎪⎝⎭在该抛物线上,有2331122a ⎛⎫=-- ⎪⎝⎭. 10a ∴=【小问3详解】解:过点(),1M m 作MH x ⊥轴,垂足为1H m >,则901MHO HM OH m ∠=︒==,,.1DH OH OD m ∴=-=-.∴在Rt DMH △中,()222211DM DH HM m =+=-+. 过点N 作NK x ⊥轴,垂足为K ,则90DKN ∠=︒.90MDN DM DN ∠=︒=,,又90DNK NDK MDH ∠∠∠=︒-= NDK DMH ∴≌△△.①1DK MH ==,1NK DH m ==-①点N 的坐标为()2,1m -.在Rt DMN △中,45DMN DNM ∠=∠=︒22222MN DM DN DM =+=,即MN =.根据题意,NE NF +=,得ME NF =.在DMN 的外部,作45DNG DME ∠=∠=︒,且NG DM =,连接GF 得90MNG DNM DNG ∠∠∠︒=+=.GNF DME ∴≌△△.①GF DE =.DE MF GF MF GM ∴+=+≥.当满足条件的点F 落在线段GM 上时,DE MF +取得最小值,即GM =. 在Rt GMN △中,22223GM NG MN DM =+=223DM ∴=.得25DM =.()2115m ∴-+=.解得1231m m ==-,(舍). ∴点M 的坐标为()3,1,点N 的坐标为()2,2-. 点()()3,12,2M N -,都在抛物线22y ax ax c =-+上 得196,244a a c a a c =-+-=-+.1a ∴=.。

中考数学试卷典型题及答案

中考数学试卷典型题及答案

一、选择题(每题3分,共30分)1. 已知等差数列{an}的首项为2,公差为3,则第10项an=()A. 29B. 30C. 31D. 32答案:C解析:由等差数列的通项公式an = a1 + (n-1)d,代入a1=2,d=3,n=10,得an = 2 + (10-1)×3 = 2 + 27 = 29。

2. 已知函数f(x) = 2x - 3,若f(a) = f(b),则a和b的关系是()A. a = bB. a = b + 3C. a = b - 3D. ab = 3答案:C解析:由f(a) = f(b),代入函数f(x) = 2x - 3,得2a - 3 = 2b - 3,化简得a = b。

3. 在△ABC中,∠A=60°,∠B=45°,则∠C=()A. 75°B. 105°C. 120°D. 135°答案:C解析:三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 60° - 45° = 75°。

4. 若方程x^2 - 5x + 6 = 0的两根为x1和x2,则x1 + x2的值为()A. 2B. 5C. 6D. 7答案:B解析:根据一元二次方程的根与系数的关系,x1 + x2 = -b/a,代入a=1,b=-5,得x1 + x2 = -(-5)/1 = 5。

5. 已知直线l的方程为2x - y + 1 = 0,点P(1,2)关于直线l的对称点Q的坐标为()A. (2,0)B. (0,2)C. (-1,0)D. (0,-1)答案:A解析:点P关于直线l的对称点Q,其横坐标x' = 2x - 2a/(2b),纵坐标y' =2y - 2b/(2a),代入a=1,b=-1,x=1,y=2,得x' = 2×1 - 2×1/(2×(-1)) = 2,y' = 2×2 - 2×(-1)/(2×1) = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年新疆课改实验区中考数学选择题
1(07年新疆课改)1.64的平方根是( ) A .8
B .8-
C .8±
D .以上都不对
2(07年新疆课改)2.如图,已知170∠=,要使AB CD ∥,则须具备另一个条件( ) A .270∠=
B .2100∠=
C .2110∠=
D .3110∠=
3(07年新疆课改)3.下面所给点的坐标满足2y x =-的是( ) A .(21)-,
B .(12)-,
C .(12),
D .(21),
4(07年新疆课改)4.如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,
则下列结论中错误..的是( ) A .COE DOE ∠=∠
B .CE DE =
C .BC B
D =
D .O
E BE =
5(07年新疆课改)5.红星中学冬季储煤120吨,若每天用煤x 吨,则使用天数y 与x 的函数关系的大致图像是( )
6(07年新疆课改)6.不等式组35
223(1)4(1)
x x x x -⎧-⎪
⎨⎪-<+⎩≤的解集是( )
A .1x ≤
B .7x >-
C .71x -<≤
D .无解
7(07年新疆课改)7.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( ) A .
1
2
B .
13
C .
23
D .
14
8(07年新疆课改)8.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8 名,只需要了解自己的成绩以及全部成绩的( )
3
1 2


B C
(第2题图)
A O




(第4题图)
y
x O y
x
O y
x O y
x
O A.
B.
C.
D.
A .平均数
B .众数
C .中位数
D .方差
9(07年新疆课改)9.如图,把一个长方形纸片对折两次,然后沿图中虚线剪下 一个角,为了得到一个正方形,剪切线与折痕所成的角α的
大小等于( ) A .30
B .45
C .60
D .90
10(07年新疆课改)10.将抛物线2
1y x =+的图像绕原点O 旋转180,则旋转后的抛物线的函数关系式( ) A .2
y x =-
B .2
1y x =-+
C .2
1y x =-
D .2
1y x =--
2007年新疆课改实验区中考选择题答案:
1.C 2.C
3.B
4.D
5.A
6.C
7.B
8.C
9.B
10.D
11(07年新疆乌鲁木齐)1.6-的相反数是( ) A.6
B.6-
C.
16
D.16
-
12(07年新疆乌鲁木齐)2.下列实数中是无理数的是( ) A.0
B.0.38
C.2
D.
35
13(07年新疆乌鲁木齐)3.据2007年6月13日《乌鲁木齐晚报》报道,截至6月12日乌拉泊水库库容是325940000m ,用科学记数法表示这个库容量(保留两个有效数字),应为( ) A.632610m ⨯
B.732.610m ⨯
C.732.510m ⨯
D.830.2610m ⨯
14(07年新疆乌鲁木齐)4.下列运算中正确的是( ) A.235a a a =
B.23
5
()a a =
C.623a a a ÷= D.55102a a a +=
15(07年新疆乌鲁木齐)5.图1是某物体的三视图,则物体的形状可能是( ) A.四棱柱
B.球
C.圆锥
D.圆柱
16(07年新疆乌鲁木齐)6.下列图形中能够说明12∠>∠的是( )
(第9题图)
图1
1 2
1 2
1
2
1
2
A.
B . C.
D .
17(07年新疆乌鲁木齐)7.若反比例函数k
y x
=(k 为常数,0k ≠)的图象经过点(34)-,,则下列各点在该函数图象上的是( ) A.(68)-,
B.(68)-,
C.(34)-, D.(34)--,
2007年新疆乌鲁木齐中考选择题答案:1A,2C,3B,4A,5D,6D,7C。

相关文档
最新文档