江苏省2020届高三数学一轮复习典型题专题训练:圆锥曲线
高三第一轮复习22----圆锥曲线大题训练题

圆锥曲线大题训练题1.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点. (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.2.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |.4. 若动点(,)P x y 在曲线2221(0)4x y b b+=>上变化,则22x y +的最大值为多少?5. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。
5.(2007全国Ⅱ文、理)在直角坐标系xOy 中,以O 为圆心的圆与直线:相切(1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA|、|PO|、|PB|成等比数列,求PA PB ∙的取值范围。
6.(2007北京文、理)如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上.(I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的 外接圆外切,求动圆P 的圆心的轨迹方程.7.设椭圆22a x +22by =1(a >b >0)的左焦点为F 1(-2,0),左准线l 1与x 轴交于点N (-3,0),过点N 且倾斜角为30°的直线l 交椭圆于A 、B 两点.(1)求直线l 和椭圆的方程;(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上;(3)在直线l 上有两个不重合的动点C 、D ,以CD 为直径且过点F 1的所有圆中,求面积最小的圆的半径长.4y 3x =-8.设椭圆2222:1(0)x y C a b a b+=>>过点M,且着焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB =,证明:点Q 总在某定直线上9.已知椭圆的中心在原点,一个焦点是)0,2(F ,且两条准线间的距离为)4(>λλ。
高考数学一轮复习专题训练—圆锥曲线的定值问题

圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
江苏省2020届高三数学一轮复习典型题专题训练:圆锥曲线(含解析)

江苏省2020届高三数学一轮复习典型题专题训练圆锥曲线一、填空题1、(南京市2018高三9月学情调研)在平面直角坐标系xOy 中,双曲线x 216-y 29=1的焦点到其渐近线的距离为 ▲ .2、(南京市2019高三9月学情调研)在平面直角坐标系xOy 中,若抛物线y 2=4x 的准线与双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的交点的纵坐标为2,则该双曲线的离心率是 ▲ .3、(南京市六校联合体2019届高三上学期12月联考)双曲线125922=-y x 的渐近线方程是 ▲ . 4、(南师附中2019届高三年级5月模拟)已知椭圆2212x y +=与双曲线22221x y a b-=(a >0,b >0)有相同的焦点,其左、右焦点分别为F 1、F 2,若椭圆与双曲线在第一象限内的交点为P ,且F 1P =F 1F 2,则双曲线的离心率为 .5、(南京市13校2019届高三12月联合调研)在平面直角坐标系xOy 中,已知y =是双曲线22221x y a b -=的一条渐近线方程,则此双曲线的离心率为 ▲ . 6、(苏州市2018高三上期初调研)若双曲线()2210x y m m-=>的右焦点与抛物线28y x =的焦点重合,则m 的值是7、(徐州市2019届高三上学期期中)已知双曲线2214x y a -=a 的值为▲ .8、(扬州市2019届高三上学期期中)在平面直角坐标系xOy 中,若抛物线22(0)y px p =>上横坐标为1的点到焦点的距离为4,则该抛物线的准线方程为 .9、(扬州市2019届高三上学期期中)在平面直角坐标系xOy 中,已知双曲线2211x y m m -=+的一个焦点为(3,0),则双曲线的渐近线方程为 .10、(常州市2019届高三上学期期末)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,直线20x y ++=经过双曲线C 的焦点,则双曲线C 的渐近线方程为________. 11、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)已知经过双曲线221168x y -=的一个焦点,且垂直于实轴的直线l 与双曲线交于A 、B 两点,12、(苏北三市(徐州、连云港、淮安)2019届高三期末)若抛物线22(0)y px p =>的焦点与双曲线2213y x -=的右焦点重合,则实数p 的值为 .13、(苏州市2019届高三上学期期末)在平面直角坐标系xOy 中,中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点(﹣3,1),则该双曲线的离心率为 . 14、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)在平面直角坐标系xOy 中,若抛物线22y px =的焦点恰好是双曲线22184x y -=的右焦点,则该抛物线的准线方程为 .15、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 2,则b 的值为 ▲ .16、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次模拟(5月))在平面直角坐标系xOy 中,双曲线22221y x a b-=(00a b >>,)的右准线与两条渐近线分别交于A ,B 两点.若△AOB 的面积为4ab ,则该双曲线的离心率为 ▲ . 17、(苏锡常镇四市2019届高三教学情况调查(二))已知双曲线C 的方程为2214x y -=,则其离心率为 .18、(苏锡常镇四市2019届高三教学情况调查(一))抛物线24y x =的焦点坐标为 . 19、(盐城市2019届高三第三次模拟)双曲线1222=-y x 的焦距为______.20、(江苏省2019年百校大联考)双曲线的两个焦点为1F ,2F ,以12F F 为边作正方形12F F MN ,且此双曲线恰好经过边1F N 和2F M 的中点,则此双曲线的离心率为 .二、解答题1、(南京市2018高三9月学情调研)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(1,32).过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线 l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N . (1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值.2、(南京市2019高三9月学情调研)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且直线l :x =2被椭圆E 截得的弦长为2.与坐标轴不垂直的直线交椭圆E 于P ,Q 两点,且PQ 的中点R 在直线l 上.点M (1,0).(1)求椭圆E 的方程; (2)求证:MR ⊥PQ .3、(南京市六校联合体2019届高三上学期12月联考)已知椭圆C :)0(12222>>=+b a by a x 上一点与两焦点构成的三角形的周长为4+23,3.(1)求椭圆C 的方程;(2)设椭圆C 的右顶点和上顶点分别为A 、B ,斜率为12的直线l 与椭圆C 交于P 、Q 两点(点P 在第一象限).若四边形APBQ 面积为7,求直线l 的方程.4、(南师附中2019届高三年级5月模拟)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a>b >0)的左、右焦点分别为F 1,F 2,且点F 1,F 2与椭圆C 的上顶点构成边长为2的等边三角形.(1)求椭圆C 的方程; (2)已知直线l 与椭圆C 相切于点P ,且分别与直线x =﹣4和直线x =﹣1相交于点M 、N .试判断11NF MF 是否为定值,并说明理由.5、(南京市13校2019届高三12月联合调研)如图,F 1、F 2分别为椭圆222210x y (a b )a b+=>>的焦点,椭圆的右准线l 与x 轴交于A 点,若()11,0F -,且122AF AF =. (Ⅰ)求椭圆的方程;(Ⅱ)过F 1、F 2作互相垂直的两直线分别与椭圆交于P 、Q 、 M 、N 四点,求四边形PMQN 面积的取值范围.6、(苏州市2018高三上期初调研)如图,已知椭圆22:14x O y +=的右焦点为F ,点,B C 分别是椭圆O 的上、下顶点,点P 是直线:2l y =-上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M .(1)当直线PM 经过椭圆的右焦点F 时,求FBM ∆的面积; (2)①记直线,BM BP 的斜率分别为12,k k ,求证:12k k ⋅为定值;②求PB PM ⋅的取值范围.7、(宿迁市2019届高三上学期期末)如图所示,椭圆2222:1(0)x y M a b a b+=>>的离心率为22,右准线方程为4x =,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点,A B ,2l 与椭圆交于不同两点,D C . (1)求椭圆M 的方程;(2)证明:直线AC 与直线BD 交于点(0,1)Q ; (3)求线段AC 长的取值范围.8、(扬州市2019届高三上学期期末)在平面直角坐标系中,椭圆M :22221x y a b+=(a >b >0)的离心率为12,左右顶点分別为A ,B ,线段AB 的长为4.P 在椭圆M 上且位于第一象限,过点A ,B 分别作l 1⊥PA ,l 2⊥PB ,直线l 1,l 2交于点C . (1)若点C 的横坐标为﹣1,求P 点的坐标;(2)直线l 1与椭圆M 的另一交点为Q ,且AC AQ λ=,求λ的取值范围.9、(扬州市2019届高三上学期期中)在平面直角坐标系xOy 中,已知直线3100x y --=与圆O :222(0)x y r r +=>相切.(1)直线l 过点(2,1)且截圆O 所得的弦长为6,求直线l 的方程;(2)已知直线y =3与圆O 交于A ,B 两点,P 是圆上异于A ,B 的任意一点,且直线AP ,BP 与y 轴相交于M ,N 点.判断点M 、N 的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.10、(如皋市2019届高三上学期期末)如图,已知椭圆C :()222210x y a b a b +=>>的离心率为12,右准线方程为4x =,A ,B 分别是椭圆C 的左,右顶点,过右焦点F 且斜率为k (k >0)的直线l 与椭圆C 相交于M ,N 两点. (1)求椭圆C 的标准方程;(2)记△AFM ,△BFN 的面积分别为S 1,S 2,若1232S S =,求k 的值; (3)设线段MN 的中点为D ,直线OD 与右准线相交于点E ,记直线AM ,BN ,FE 的斜率分别为k 1,k 2,3k ,求k 2·(k 1-3k ) 的值.11、(苏北三市(徐州、连云港、淮安)2019届高三期末)如图,在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,且右焦点到右准线l 的距离为1.过x 轴上一点(,0)M m (m 为常数,且(0,2))m ∈的直线与椭圆C 交于,A B 两点,与l 交于点P ,D 是弦AB 的中点,直线OD 与l 交于点Q . (1)求椭圆C 的标准方程;(2)试判断以PQ 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.12、(南京市2019届高三第三次模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(1,22),离心率为22.A ,B 分别是椭圆C 的上、下顶点,M 是椭圆C 上异于A ,B 的一点. (1)求椭圆C 的方程;(2)若点P 在直线x -y +2=0上,且BP →=3BM →,求△PMA 的面积;(3)过点M 作斜率为1的直线分别交椭圆C 于另一点N ,交y 轴于点D ,且D 点在线段OA 上(不包括端点O ,A ),直线NA 与直线BM 交于点P ,求OD →·OP →的值.13、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))如图,在平面直角坐标系xOy 中,椭圆22221y x a b+(0)a b 的左焦点为F ,右顶点为A ,上顶点为B .(1)已知椭圆的离心率为12,线段AF 中点的横坐标为22,求椭圆的标准方程;(2)已知△ABF 外接圆的圆心在直线y x -上,求椭圆的离心率e 的值.14、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 121,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有 一个公共点,求证:12k k ⋅为定值.15、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月))如图,在平面直角坐标系xOy 中,已知椭圆22221y x C a b+=:(0a b >>)的上顶点为()03A ,, 圆2224a O x y +=:经过点()01M ,. (1)求椭圆C 的方程;(2)过点M 作直线1l 交椭圆C 于P ,Q 两点,过点M 作直线1l 的垂线2l 交圆O 于另一点N . 若△PQN 的面积为3,求直线1l 的斜率.16、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)32.(1)求椭圆C 的标准方程;(2)设P 为椭圆上顶点,点A 是椭圆C 上异于顶点的任意一点,直线PA 交x 轴于点M .点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:在y 轴的正半轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,请说明理由.参考答案一、填空题 1、32、 53、x y 35±= 42+2解析:由题意得:F 1P =F 1F 2=2,则PF 2=222,所以2a =2﹣(222)=4﹣22,则a =22,所以e =22c a =-=2+22.5、26、37、28、3x =-9、52y x =± 10、3y x =± 11、4 12、4 13、10 14、23x =- 15、2 16、2 17、18、(1,0) 19、3 2051+二、解答题1、解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分(2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0), 所以2-x 0=m . ………………………7分由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y 0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0,解得m =5±133. ………………………15分因为m >2,所以m =5+133. ………………………16分解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P =4k 4k 2+1,所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)), 因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB =k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分2、解:(1)因为椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,所以e 2=c 2a 2=1-b 2a 2=12,即a 2=2b 2. …………………… 2分因为直线l :x =2被椭圆E 截得的弦长为2, 所以点(2,1)在椭圆上,即 4a 2+1b 2=1. 解得a 2=6,b 2=3,所以椭圆E 的方程为 x 26+y 23=1. …………………… 6分 (2)解法一:因为直线PQ 与坐标轴不垂直,故设PQ 所在直线的方程为y =kx +m .设 P (x 1,y 1),Q (x 2, y 2) .因为PQ 的中点R 在直线 l :x =2上,故R (2,2k +m ).联立方程组⎩⎪⎨⎪⎧y =kx +m ,x 26+y 23=1,消去y ,并化简得 (1+2k 2)x 2+4kmx +2m 2-6=0, …………………… 9分 所以x 1+x 2=-4km1+2k 2. (*)由x 1+x 2=-4km1+2k 2=4,得1+2k 2=-km . ① ………………… 12分 因为M (1,0),故k MR =2k +m 2-1=2k +m ,所以k MR ·k PQ =(2k +m )k =2k 2+km =2k 2-(1+2k 2)=-1,所以MR ⊥PQ . …………………… 16分 解法二:设P (x 1,y 1),Q (x 2, y 2).因为PQ 的中点R 在直线 l :x =2上,故设R (2,t ). 因为点P ,Q 在椭圆E :x 26+y 23=1上,所以⎩⎨⎧x 126+y 123=1,x 226+y 223=1,两式相减得 (x 1+x 2) (x 1-x 2)+2(y 1+y 2) (y 1-y 2)=0.………………… 9分 因为线段PQ 的中点为R ,所以x 1+x 2=4,y 1+y 2=2t .代入上式并化简得 (x 1-x 2)+t (y 1-y 2)=0. …………………… 12分 又M (1,0),所以 MR →·PQ →=(2-1)×(x 2-x 1)+(t -0)×(y 2-y 1)=0,因此 MR ⊥PQ . …………………… 16分 3、【解析】(1)由题设得,又e =,解得2,a c ==∴1b =.…2分 故椭圆C 的方程为2214x y +=. …………………………………………4分(2)设直线l 方程为:12y x m =+代入椭圆22:14x C y +=并整理得:222220x mx m ++-=,设1122(,),(,)P x y Q x y ,则12212222x x mx x m +=-⎧⎨=-⎩. …………………………………6分 ||(PQ =21|x x =-==, ……8分 B 到直线PQ 的距离为5121-=m d ,A 到直线PQ 的距离为5121+=m d , ………………………………10分又因为P 在第一象限, 所以11<<-m ,所以5451251221=++-=+)m ()m (d d , 所以74821221=-=⋅+=m PQ )d d (S APBQ , ……………………………12分解得21±=m ,所以直线方程为2121±=x y . …………………………………………14分4、解析:解:(1) 依题意,2c =a =2,所以c =1,b =3, 所以椭圆C 的标准方程为x 24+y 23=1.(4分)(2) ① 因为直线l 分别与直线x =-4和直线x =-1相交, 所以直线l 一定存在斜率.(6分) ② 设直线l :y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12,得(4k 2+3)x 2+8kmx +4(m 2-3)=0. 由Δ=(8km)2-4×(4k 2+3)×4(m 2-3)=0, 得4k 2+3-m 2=0 ①.(8分)把x =-4代入y =kx +m ,得M(-4,-4k +m),把x =-1代入y =kx +m ,得N(-1,-k +m),(10分) 所以NF 1=|-k +m|,MF 1=(-4+1)2+(-4k +m )2=9+(-4k +m )2 ②,(12分) 由①式,得3=m 2-4k 2 ③,把③式代入②式,得MF 1=4(k -m )2=2|-k +m|,∴ NF 1MF 1=|k -m|2|k -m|=12,即NF 1MF 1为定值12.(16分) 5、解:(I) 由F 1(-1,0)得1c =,∴A 点坐标为()2,0a ;……2分∵122AF AF = ∴2F 是1AF 的中点 ∴223,2a b == ∴ 椭圆方程为22132x y += ……4分 (II)当直线MN 与PQ 之一与x 轴垂直时,四边形PMQN 面积142S MN PQ ==;…………5分 当直线PQ ,MN 均与x 轴不垂直时,不妨设PQ :()()10y k x k =+≠,联立22(1)132y k x x y =+⎧⎪⎨+=⎪⎩代入消去y 得()()2222236360k x k x k +++-=设()()1122,,,P x y Q x y 则22121222636,2323k k x x x x k k --+==++ ………8分∴)2122123k PQ x k +=-=+,同理2211123k MN k⎫+⎪⎝⎭=+∴四边形PMQN 面积22221242112613k k S MN PQ k k ⎛⎫++ ⎪⎝⎭==⎛⎫++ ⎪⎝⎭ ………12分令221u k k=+,则()24242,4613613u u S u u +≥==-++,易知S 是以u 为变量的增函数 所以当1,2k u =±=时,min 9625S =,∴96425S ≤< 综上可知,96425S ≤≤,∴四边形PMQN 面积的取值范围为96,425⎡⎤⎢⎥⎣⎦………16分 6、(1)由题意()()0,1,0,1B C -,焦点)F,当直线PM 过椭圆的右焦点F 时,则直线PM11y +=-,即1y =-,联立22141x y y ⎧+=⎪⎪⎨⎪=-⎪⎩,解得17x y ⎧=⎪⎪⎨⎪=⎪⎩或01x y =⎧⎨=-⎩(舍),即17M ⎫⎪⎪⎝⎭. 连BF,则直线11yBF +=,即0x +-=,而2BF a ==,72d ===.故11222MBF S BF d ∆=⋅⋅=⋅. (2)解:法一:①设(),2P m -,且0m ≠,则直线PM 的斜率为()1210k mm---==--,则直线PM 的方程为11y x m=--, 联立221114y x m x y ⎧=--⎪⎪⎨⎪+=⎪⎩化简得224810x x m m ⎛⎫++= ⎪⎝⎭,解得22284,44m m M m m ⎛⎫-- ⎪++⎝⎭, 所以22212412148844m m m k m m m m ---+===--+,()21230k m m --==--, 所以1231344k k m m ⋅=-⋅=-为定值. ②由①知,(),3PB m =-,2322222841212,2,4444m m m m m PM m m m m m ⎛⎫⎛⎫---+=--+= ⎪ ⎪++++⎝⎭⎝⎭, 所以()324222212121536,3,444m m m m m PB PM m m m m ⎛⎫--+++⋅=-⋅= ⎪+++⎝⎭, 令244m t +=> 故()()224154367887t t t t PB PM t tt t-+-++-⋅===-+,因为87y t t=-+在()4,t ∈+∞上单调递增,所以8874794PB PM t t ⋅=-+>-+=,即PB PM ⋅的取值范围为()9,+∞.解法二:①设点()()000,0M x y x ≠,则直线PM 的方程为0011y y x x +=-,令2y =-,得00,21xP y ⎛⎫-- ⎪+⎝⎭.所以()0012000031121,1y y k k x x x y +---===-+, 所以()()()()2200001222000031313113=441y y y y k k x x x y --+-⋅=⋅==--(定值). ②由①知,00,31x PB y ⎛⎫= ⎪+⎝⎭,0000,21xPM x y y ⎛⎫=++ ⎪+⎝⎭,所以,()()()()20000000200023232111x y x x PB PM x y y y y y +⎛⎫⋅=+++=++ ⎪+++⎝⎭ ()()()()()()200000200412723211y y y y y y y -+-+=++=++.令()010,2t y =+∈,则()()8187t t PB PM t tt-+⋅==-++,因为87y t t=-++在()0,2t ∈上单调递减,所以8872792PB PM t t ⋅=-++>-++=,即PB PM ⋅的取值范围为()9,+∞.7、解:(1)由24c e a a c⎧==⎪⎪⎨⎪=⎪⎩得2a c ==,2224b a c ∴=-=,所以椭圆M 的方程22184x y +=.………………………………………………4分 (2)设直线14l y kx =+:,11221122(,),(,),(,),(,)A x y B x y D x y C x y --则,联立221844x y y kx ⎧+=⎪⎨⎪=+⎩,消y 得221+2)16240k x kx ++=(, 1212221624,1+21+2k x x x x k k -∴+=⋅=, …………………………………6分 又212111,BQ DQ y y k k x x --==-, 212121211133BQ DQ y y kx kx k k x x x x --++∴-=-=+-212122483()122+=2+2202412k x x k k k k k x x k -++==-=+,………8分 =BQ DQ k k ∴,故点,,B D Q 三点共线,即直线BD 经过点(0,1)Q同理可得直线AC 经过点(0,1)Q ,所以直线AC 与直线BD 交于点(0,1)Q . …………………………10分(3)由(2)可知22222212121212()()()()AC x x y y x x k x x =++-=++-222121212()(+)4x x k x x x x ⎡⎤=++-⋅⎣⎦2222222222161624+41+21+21+2k k k k k k ⎡⎤⋅⋅=-⨯⎢⎥⎣⎦()()42424+10164+4+1k k k k ⋅=⨯24261161+4+4+1k k k ⎡⎤-=⨯⎢⎥⎣⎦…………………………12分 令22161,6t t k k ==+-则 又由222=16424(12)0k k ∆-⨯⨯+>得23,2k >所以8t > 221616+114+4+166tAC t t ∴=++⎛⎫⎪⎝⎭29161++8+16t t t ⎡⎤=⎢⎥⎣⎦9161+16++8t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ ……………………………………14分21616++810t t t '⎛⎫=-> ⎪⎝⎭在8+t ∈∞(,)上恒成立 16++8t t∴在8+t ∈∞(,)上单调递增 16++818t t ∴>, 910162++8t t ∴<<,9311+162++8t t∴<< 21624AC ∴<<4AC ∴<< …………………………………………………16分8、解:由题意得1224c a a ⎧=⎪⎨⎪=⎩,解得12c a =⎧⎨=⎩,∴2223b a c =-=∴椭圆M 的方程是22143x y +=且(2,0),(2,0)A B - …………3分(1)方法一:设00(,)P x y ,002PA y k x =+,∵1l PA ⊥ ∴直线AC 的方程为02(2)x y x y +=-+, 同理:直线BC 的方程为002(2)x y x y -=--. 联立方程00002(2)2(2)x y x y x y x y +⎧=-+⎪⎪⎨-⎪=--⎪⎩,解得02004x x x y y =-⎧⎪-⎨=⎪⎩,又∵22000004444433y x y y y ---==-, ∴点C 的坐标为004(,)3x y --, …………6分∵点C 的横坐标为1- ∴01x =,又∵P 为椭圆M 上第一象限内一点 ∴032y =∴P 点的坐标为3(1,)2. …………8分(2)设(,)Q Q Q x y ∵AC AQ λ= ∴002(2)43Q Q x x y y λλ-+=+⎧⎪⎨-=⎪⎩,解得:002243Q Q x x y y λλλ⎧=-+-⎪⎪⎨⎪=-⎪⎩∵点Q 在椭圆M 上 ∴22001214(2)()1433x y λλλ-+-+-= 又22003(1)4x y =-整理得:200736(1)721000x x λλ--+-=,解得:02x =或036507x λ-= …………14分∵P 为椭圆M 上第一象限内一点 ∴3650027λ-<<,解得:2516189λ<< …………16分方法二:(1)设AP 的斜率为k ,00(,)P x y , ∵P 为椭圆M 上第一象限内一点∴0k <<∵2000200032244AP BPy y y k k x x x ⋅=⋅==-+-- ∴BP 的斜率为34k-. 联立方程(2)3(2)4y k x y x k =+⎧⎪⎨=--⎪⎩,解得22268431243k x k k y k ⎧-=⎪⎪+⎨⎪=⎪+⎩,即2226812(,)4343k k P k k -++ ∵1l PA ⊥,∴1AC k k =-,则AC 的方程为1(2)y x k=-+∵2l PB ⊥,∴43BC k k =,则BC 的方程为4(2)3y k x =-. 由1(2)4(2)3y x k y k x ⎧=-+⎪⎪⎨⎪=-⎪⎩,得22286431643k x k k y k ⎧-=⎪⎪+⎨-⎪=⎪+⎩,即2228616(,)4343k k C k k --++ …………6分∵点C 的横坐标为1- ∴2286143k k -=-+,解得:12k =±∵0k <<∴12k = ∴P 点的坐标为3(1,)2. …………8分 (2)设(,)Q Q Q x y ,(,)C C C x y ,又直线AC 的方程为:1(2)y x k=-+联立方程221(2)143y x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得222(34)1616120k x x k +++-= ∴221612234Q k x k --⋅=+,解得:226834Q k x k -=+ ∵AC AQ λ= ∴222222222862216(34)743168212(43)129234C Q k x k k k k x k k k k λ-++++====+-+++++, …………14分∵0k <<∴2516(,)189λ∈ …………16分 9、解:∵直线3100x y --=与圆222:(0)O x y r r +=>相切 ∴圆心O 到直线3100x y --=的距离为r == …2分(1)记圆心到直线l 的距离为d,所以2d ==.当直线l 与x 轴垂直时,直线l 的方程为2x =,满足题意; …3分 当直线l 与x 轴不垂直时,设直线l 的方程为1(2)y k x -=-,即(12)0kx y k -+-=所以2d ==,解得34k =-,此时直线l 的方程为34100x y +-= …6分综上,直线l 的方程为2x =或34100x y +-=. …7分 (2)设00(,)P x y .∵直线3y =与圆O 交于A 、B 两点,不妨取(1,3),(1,3)A B -, ∴直线PA 、PB 的方程分别为0033(1)1y y x x --=--,0033(1)1y y x x --=++ 令0x =,得00000033(0,),(0,)11x y x y M N x x -+-+,则220000002000339111M N x y x y x y y y x x x -+-⋅=⋅=-+-(*)…13分 因为点00(,)P x y 在圆C 上,所以220010x y +=,即220010y x =-,代入(*)式得M N y y ⋅=2200209(10)101x x x --=-为定值. …15分 10、【解】(1)设椭圆的焦距为2c (c >0).依题意,12c a =,且24a c =,解得a =2,c =1.故b 2=a 2-c 2=3.所以椭圆C 的标准方程为22143x y +=. …… 4分(2)设点M (x 1,y 1), N (x 2,y 2).据题意,1232S S =,即12132122AF y BF y ⨯⨯=⨯⨯,整理可得1212y y =,所以2NF FM =. 代入坐标,可得()21211212x x y y -=-⎧⎪⎨-=⎪⎩,, 即2121322x x y y =-⎧⎨=-⎩.,又点M , N 在椭圆C 上,所以()()22112211143322143x y x y ⎧+=⎪⎪⎨--⎪+=⎪⎩,,解得1174x y ⎧=⎪⎪⎨⎪=⎪⎩, 所以直线l的斜率8714k ==-. …… 9分(3)法一:依题意,直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩,,整理得()22224384120k x k x k +-+-=,所以2122843k x x k +=+,212241243k x x k -=+.故21224243D x x k x k +==+,()23143D D k y k x k =-=-+, 所以直线OD 的方程为34y x k =-,令x =4,得3E y k =-,即34E k ⎛⎫- ⎪⎝⎭,. 所以33141k k k-==--. …… 12分所以()2121321211122y y k k k k k k x x k ⎛⎫⎛⎫⋅-=⋅+=⋅+ ⎪ ⎪-+⎝⎭⎝⎭ ()()()()()()()()2211221211211111212222k x k x k x x x x x x k x x ----+-+⎡⎤=⋅+=⎢⎥-++-⎣⎦()2121212121212122224k x x x x x x x x x x x x -+++-+-⎡⎤⎣⎦=-+-()()()212121212212122123244k x x x x x x x x x x x x x x -+++-+-+⎡⎤⎣⎦=-+-+222222222222222412841281234343434341282444343k k k k k x k k k k k k x k k ⎡⎤---++--+⎢⎥++++⎣⎦=--⨯-+++22222222222276211833433432824476444343k k x x k k k k x x k k ⎛⎫++- ⎪-+⎝⎭+===+⎛⎫+-- ⎪++⎝⎭. …… 16分法二:依题意,直线l 的方程为()1y k x =-,即11x y k =+,记1m k=, 则直线l 的方程为1x my =+,与椭圆C 联立方程组221143x my x y =+⎧⎪⎨+=⎪⎩,,整理得()2243690m y my ++-=,所以122643m y y m +=-+,122943y y m =-+. 故1223243D y y m y m +==-+,24143D Dx my m =+=+, 所以直线OD 的方程为34my x =-,令x =4,得3E y m =-,即()43E m -,. 所以3341mk m -==--. …… 12分所以()()()()122121213212112212222y y my x y y k k k k k m k x x x x ++⎛⎫⎛⎫⋅-=⋅+=⋅+= ⎪ ⎪-++-⎝⎭⎝⎭()()()()2122122121212121333133my y my y y my my my my m y y my my ++++==+--+-()()()22221222221212222291313439634344343m my m y y my m m m m y y m y y my my m m +-++++==-+-+-+-+++ ()()2222229133434121443m my m m my m +-++==+-++. …… 16分法三:依题意,点M (x 1,y 1), N (x 2,y 2)在椭圆C 上,所以22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,,两式相减,得22222121043x x y y --+=, 即2121212134y y y y x x x x +-⋅=-+-,所以34OD k k ⋅=-,即34OD k k=-,所以直线OD 的方程为34y x k =-,令x =4,得3E y k =-,即34E k ⎛⎫- ⎪⎝⎭,, 所以33141k k k-==--. …… 12分又直线AM 的方程为()12y k x =+,与椭圆C 联立方程组()1222143y k x x y ⎧=+⎪⎨+=⎪⎩,,整理得()2222111431616120k x k x k +++-=,所以211211612243k x k --⋅=+,得211216843k x k -=+,()11112112243ky k x k =+=+. 所以点M 的坐标为211221168124343k k k k ⎛⎫- ⎪++⎝⎭,.同理,点N 的坐标为222222286124343k k k k ⎛⎫-- ⎪++⎝⎭,. 又点M ,N ,F 三点共线,所以12221222122212121243436886114343k k k k k k k k k -++==----++,整理得()()12124330k k k k +-=, 依题意,10k >,20k >,故213k k =.由1211221121124346814143k k k k k k k +==---+可得,21111141144k k k k k -==-,即11114k k k +=. 所以()21311111133344k k k k k k k k ⎛⎫⋅-=⋅+=⋅= ⎪⎝⎭. …… 16分11、(1)由题意,得221c e a a c c⎧==⎪⎪⎨⎪-=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩222,1a b ==,所以椭圆C 的标准方程为2212x y +=. ………………………………………4分(2)由题意,当直线AB 的斜率不存在或为零时显然不符合题意; 所以设AB 的斜率为k ,则直线AB 的方程为()y k x m =-, 又准线方程为2x =,所以P 点的坐标为()2,(2)P k m -,………………………………………………6分由22()22y k x m x y =-⎧⎨+=⎩得,2222()2x k x m +-=,即22222(12)4220k x k mx k m +-+-=所以222214222121D k m k m x k k =⋅=++,22222121D k m km y k m k k ⎛⎫=-=- ⎪++⎝⎭, …………8分 所以12OD k k=-,从而直线OD 的方程为12y x k =-,(也可用点差法求解) 所以Q 点的坐标为12,Q k ⎛⎫- ⎪⎝⎭,…………………………………………………10分所以以,P Q 为直径的圆的方程为()()212(2)0x y k m y k ⎛⎫-+--+= ⎪⎝⎭,即22142(2)0x x m y k m y k ⎛⎫-+++---= ⎪⎝⎭, ………………………………14分因为该式对0k ∀≠恒成立,令0y =,得2x =±所以以PQ 为直径的圆经过定点(2±.………………………………16分 12、解:(1)因为椭圆过点(1,22),离心率为22,所以1a 2+12b 2=1,b 2a 2=1-e 2=12,解得a 2=2,b 2=1,所以椭圆C 的方程为x 22+y 2=1. ························································ 2分(2)由(1)知B (0,-1),设M (x 0,y 0),P (x ,y ).由BP →=3BM →,得(x ,y +1)=3(x 0,y 0+1), 则x =3x 0,y =3y 0+2.又因为P 在直线x -y +2=0上,所以y 0=x 0.① ··································· 4分 因为M 在椭圆C 上,所以x 022+y 02=1,将①代入上式,得x 02=23. ······························································· 6分所以|x 0|=63,从而|x P |=6, 所以S △PMA =S △P AB -S △MAB =12×2×6-12×2×63=263. ···························· 8分(3)方法1由(1)知,A (0,1),B (0,-1).设D (0,m ),0<m <1,M (x 1,y 1),N (x 2,y 2).因为MN 的斜率为1,所以直线MN 的方程为:y =x +m ,联立方程组⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,消去y ,得3x 2+4mx +2m 2-2=0,所以x 1+x 2=-4m3,x 1·x 2=2m 2-23. …………………………………………10分直线MB 的方程为:y =y 1+1x 1x -1,直线NA 的方程为:y =y 2-1x 2x +1,联立解得y P =(y 1+1)x 2+(y 2-1)x 1(y 1+1)x 2-(y 2-1)x 1.……………………………………………12分将y 1=x 1+m ,y 2=x 2+m 代入,得y P =2x 1x 2+m (x 1+x 2)+x 2-x 1x 1+x 2+m (x 2-x 1)=2·2m 2-23-4m 23+(x 2-x 1)-4m 3+m (x 2-x 1)=-43+(x 2-x 1)-4m 3+m (x 2-x 1)=1m . ······························································ 14分所以OD →·OP →=(0,m )·(x P ,y P )=my P =m ·1m=1. ……………………………16分方法2A (0,1),B (0,-1).设M (x 0,y 0),则x 022+y 02=1.因为MN 的斜率为1,所以直线MN 的方程为:y =x -x 0+y 0,则D (0,y 0-x 0),联立方程⎩⎪⎨⎪⎧y =x -x 0+y 0,x 22+y 2=1,消去y ,得3x 2-4(x 0-y 0)x +2(x 0-y 0)2-2=0,所以x N +x 0=4(x 0-y 0)3,…………………………………………………………10分所以x N =x 0-4y 03,y N =-2x 0+y 03,所以直线NA 的方程为:y =y N -1x N x +1=2x 0+y 0+34y 0-x 0x +1 直线MB 的方程为:y =y 0+1x 0x -1联立解得y P =2y 02+x 02+x 0+2y 02y 02-x 02-x 0y 0-2x 0+2y 0.……………………………………12分又因为x 022+y 02=1,所以y P =2+x 0+2y 0(2+x 0+2y 0)(y 0-x 0)=1y 0-x 0,………………………………………14分所以OD →·OP →=(0,y 0-x 0)·(x P ,y P )=(y 0-x 0)1y 0-x 0=1.……………………16分13、【解】(1)因为椭圆22221x y a b +(0)a b 的离心率为12, 所以12c a =,则2a c .因为线段AF, 所以222a c -. 所以2c ,则28a ,2226b a c -.所以椭圆的标准方程为22186x y +. …………………………………………………4分(2)因为(0)(0)A a F c -,,,,所以线段AF 的中垂线方程为:2a cx-. 又因为△ABF 外接圆的圆心C 在直线y x -上, 所以()22a c a cC ---,.…………………………………………………………………6分 因为(0)(0)A a B b ,,,,所以线段AB 的中垂线方程为:()22b a ay x b --. 由C 在线段AB 的中垂线上,得()2222a cb a ac ab -----,整理得,2()b a c b ac -+=,…………………………………………………………10分 即()()0b c a b -+=.因为0a b +>,所以b c =.……………………………………………………………12分 所以椭圆的离心率c e a ===.…………………………………………14分14、【解】(1)设椭圆C2的焦距为2c ,由题意,a =,c a =,222a b c =+,解得b ,因此椭圆C 2的标准方程为22182y x+=. ……………………………3分(2)①1°当直线OP 斜率不存在时,1PA =-,1PB =,则3PA PB =-……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y=(第17题)代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以P A x =,从而||||3||||P A P A P B P A x x x x PA PB x x x x --===--+所以3PA PB =- ……………………………………………………………8分 ②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根,从而20122014y k k x -⋅=-.……………………………………………………………………14分又点在00()P x y ,椭圆C 2:22182y x +=上,所以2200124y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 15、【解】(1)因为椭圆C的上顶点为(0A,所以b = 又圆22214O x y a +=:经过点()01M ,, 所以2a =. …… 2分所以椭圆C 的方程为22143y x +=. …… 4分 (2)若1l 的斜率为0,则PQ =,2MN =,所以△PQN 的面积为463,不合题意,所以直线1l 的斜率不为0. …… 5分设直线1l 的方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,消y ,得22(34)880k x kx ++-=, 设()11P x y ,,()22Q x y ,, 则2124262134k k x k --⋅+=+,2224262134k k x k-+⋅+=+, 所以221212()()PQ x x y y =-+-22212246121134k k k x x k+⋅+=+-=+. …… 8分直线2l 的方程为11y x k=-+,即0x ky k +-=,所以22222111k MN k k =-=++. …… 11分 所以△PQN 的面积12S PQ MN =⋅2222461211232341k k k k+⋅+=⨯⋅=++, 解得12k =±,即直线1l 的斜率为12±. …… 14分。
江苏省—高三数学专题练习及答案 :直线与圆锥曲线3

直线与圆锥曲线(3)参考答案
一.选择题
1.2条 2.- 3.(-∞,0)∪(1,+∞)4. 5.8
6.48 7.x+2y-8=0 8.y=± (x+2)9.6
∴|MN|=4 , 点A到直线l的距离为d= .
∴S△=2(5+m) ,从而S△2=4(1-m)(5+m)2
=2(2-2m)·(5+m)(5+m)≤2( )3=128.
∴S△≤8 ,当且仅当2-2m=5+m,即m=-1时取等号.
故直线l的方程为y=x-1,△AMN的最大面积为8 .
11.解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线 1C.
(3)解析法一:由A(x1,y1),C(x2,y2)在椭圆上.
得 , ①-②得9(x12-x22)+25(y12-y22)=0,
即9× =0(x1≠x2)
将 (k≠0)
代入上式,得9×4+25y0(- )=0(k≠0) 即k= y0(当k=0时也成立).
由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y0-4k=y0- y0=- y0.
(Ⅱ)准线L的方程为 设点Q的坐标为 则
②将 代入②,化简得
由题设 得 无解,
将 代入②,化简得 由题设 得 解得m=2.
从而 得到PF2的方程,
16.解:(Ⅰ)将直线 的方程 代入双曲线C的方程 后,整理得 .…………① 依题意,直线 与双曲线C的右支交于不同两点,得
江苏省各地市2020年高考数学最新联考试题分类大汇编(10)圆锥曲线

江苏省各地市 2020 年高考数学最新联考试题分类大汇编第 10 部分 : 圆锥曲线一、填空题:2. (2020 年 3 月苏、锡、常、镇四市高三数学教课状况检查一) 在平面直角坐标系xOy中,双曲线8kx2ky28的渐近线方程为;2.y22x 【分析】由题知 8x 2y 20 即 y2 2x .x 2y 21 a, b 0b2. (江苏省苏州市2020 年 1 月高三调研 )若双曲线a 2b2的离心率为 2 ,则a=▲.c1b 22,b 23,b3.2.3【分析】a22aaax 2y 2 1(a 0,b0)2020 届高三第一次模拟考试 )已知双曲线 C:a 2b29. (江苏省南京市的右极点、右焦点分别为 A 、 F,它的左准线与x轴的交点为 B ,若 A 是线段 BF 的中点,则双曲线C 的离心率为.Ba 2 ,0 , A a,0 , F c,02ac a9.2 1【分析】由题意知:cc,则,即e 2 2e 1 0 ,解得 e21x 2y 2 1(a 0,b0))双曲线 a 2b 210.(江苏省徐州市 2020 届高三第一次调研考试的两条渐近线将平面区分为 “上、下、左、右 ”四个地区(不含界限) ,若点(1,2)在 “上”地区内,则双曲线离心率e的取值范围是▲.10.1,5x 2 y 2 1ybx 1,2a 2b 2a【分析】双曲线的一条渐近 线为,点 在该直线的上方,由线性规划知识,知:2b e21 ( b)2 5 e 1, 5a ,因此a ,故4. ( 江苏省苏北四市 2020 届高三第一次调研) 若抛物线的焦点坐标为(2,0) ,则抛物线的标准方程是▲.y 2p24.【分析】依据焦点坐标在x轴上,可设抛物线标准方程为2 px,有 2 ,p4,抛物线标准方2程为 y 8x2x 2y11. (江苏省泰州市 2020 届高三年级第一次模拟)双曲线3的离心率是 。
2 【解答】由题知a 21,b 2 3, c 24 于是离心率ec2 1.a 。
江苏省—高三数学专题练习及答案 :直线与圆锥曲线5

直线与圆锥曲线(5)1.已知椭圆的焦点为)1,0(1-F 和)1,0(2F ,直线4=y 是椭圆的一条准线.(1)求椭圆的方程;(2)又设P 在此椭圆上,且1||||21=-PF PF ,求21tan PF F ∠的值.2.(本小题满分12分)已知圆22:414450C x y x y +--+=,(1)若M 为圆上任一点,(2,3)Q -,求MQ 的最大值和最小值;(2)求2u x y =-的最大值和最小值;(3)求32y v x -=+的最大值.3.已知点)0,2(A 、)6,0(B ,O 为坐标原点. (1)若点C 在线段OB 上,且4π=∠BAC ,求ABC ∆的面积; (2)若原点O 关于直线AB 的对称点为D ,延长BD 到P ,且||2||BD PD =.已知直线l :031088410=-++y ax 经过点P ,求直线l 的倾斜角.4..如图,F 为抛物线px y 22=的焦点,)2,4(A 为抛物线内一定点,P 为抛物线上一动点,且||||PF PA +的最小值为8. y(1)求该抛物线方程; P(2)如果过F 的直线l 交抛物线于M 、N 两点, A且32||≥MN ,求直线l 倾斜角的取值范围. O F x5.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)若最大拱高h 不小于6米,则应如何设计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为lh S 4π=,柱体体积为:底面积乘以高.)6.在以O 为原点的直角坐标系中,点)3,4(-A 为OAB ∆的直角顶点.已知||2||OA AB =,且 点B 的纵坐标大于零.(1)求向量的坐标;(2)求圆02622=++-y y x x 关于直线OB 对称的圆的方程;(3)是否存在实数a ,使抛物线12-=ax y 上总有关于直线OB 对称的两个点?若不存 在,说明理由:若存在,求a 的取值范围.1.(1)13422=+x y ; (2)34tan 21=∠PF F 。
高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。
专题09 圆锥曲线-江苏省2020年高考优质模拟题分类汇编(解析版)

1.已知双曲线,则点到的渐近线的距离为_______.2.已知椭圆的左右焦点坐标为,且椭圆经过点。
(1)求椭圆的标准方程;(2)设点是椭圆上位于第一象限内的动点,分别为椭圆的左顶点和下顶点,直线与轴交于点,直线与轴交于点,求四边形的面积。
3.已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线P A交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.4.(江苏省如皋市2019届三调)平面直角坐标系中,双曲线的右焦点为,则以为焦点的抛物线的标准方程是_______.5.(江苏省如皋市2019届三调)已知,为曲线:上在轴两侧的点,过,分别作曲线的切线,则两条切线与轴围成的三角形面积的最小值为_______.6.(江苏省如皋市2019届三调)在平面直角坐标系中,已知椭圆:的右焦点为,为坐标原点,若椭圆上存在一点,使,延长,分別交椭圆于,.(1)求椭圆离心率的最小值;(2)当椭圆的离心率取最小值时,求直线的斜率.7.在平面直角坐标系中,已知定点,点在轴上运动,点在轴上运动,点为坐标平面内的动点,且满足,.(1)求动点的轨迹的方程;(2)过曲线第一象限上一点(其中)作切线交直线于点,连结并延长交直线于点,求当面积取最大值时切点的横坐标.8.(江苏省七市2019届三调)在平面直角坐标系中,双曲线()的右准线与两条渐近线分别交于A,B两点.若△AOB的面积为,则该双曲线的离心率为____.9.(江苏省七市2019届三调)如图,在平面直角坐标系xOy中,已知椭圆()的上顶点为,圆经过点.(1)求椭圆的方程;(2)过点作直线交椭圆于,两点,过点作直线的垂线交圆于另一点.若△PQN 的面积为3,求直线的斜率.10.(江苏省七市2019届二调)在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.11.(江苏省七市2019届二调)如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.①射线与椭圆C1依次交于点,求证:为定值;②过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.12.(江苏省泰州中学等2019届高三第二学期联合调研)若双曲线的离心率为,则实数a的值为_______.13.(江苏省泰州中学等2019届高三第二学期联合调研)椭圆M:的两个顶点A(a,0),B(0,b),过A,B分别作AB的垂线交椭圆M于D,C(不同于顶点),若BC=3AD,则椭圆M的离心率e=_______.14.(苏州19届下学期阶段测试)已知椭圆的离心率,一条准线方程为⑴求椭圆的方程;⑵设为椭圆上的两个动点,为坐标原点,且.①当直线的倾斜角为时,求的面积;②是否存在以原点为圆心的定圆,使得该定圆始终与直线相切?若存在,请求出该定圆方程;若不存在,请说明理由.15.(苏北四市19届期末考前模拟)若抛物线的焦点到双曲线C:的渐近线距离等于,则双曲线C的离心率为____.16.(苏北四市19届期末考前模拟)在平面直角坐标系xOy中,已知分别为椭圆()的左、右焦点,且椭圆经过点和点,其中为椭圆的离心率.(1)求椭圆的方程;(2)过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA.若,求直线l的斜率.17.(苏北四市19届期末考前模拟)如图,在平面直角坐标系中,已知直线:,抛物线:().(1)若直线过抛物线的焦点,求抛物线的方程;(2)已知抛物线上存在关于直线对称的相异两点和.①求证:线段PQ的中点坐标为;②求的取值范围.18.(江苏苏锡常镇四市2019届二调)已知双曲线C的方程为,则其离心率为_______.19.(江苏苏锡常镇四市2019届二调)已知点P在曲线C:上,曲线C在点P处的切线为,过点P且与直线垂直的直线与曲线C的另一交点为Q,O为坐标原点,若OP⊥OQ,则点P的纵坐标为_______.20.(江苏苏锡常镇四市2019届二调)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的左、右顶点分别为A1(﹣2,0),A2(2,0),右准线方程为x=4.过点A1的直线交椭圆C于x轴上方的点P,交椭圆C的右准线于点D.直线A2D与椭圆C的另一交点为G,直线OG与直线A1D交于点H.(1)求椭圆C的标准方程;(2)若HG⊥A1D,试求直线A1D的方程;(3)如果,试求的取值范围.21.(江苏苏锡常镇四市2019届二调)在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.(1)求线段AF的中点M的轨迹方程;(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.22.(江苏省南通市2019届4月)已知椭圆上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF⊥BF,当∠ABF=时,椭圆的离心率为_______.23.(江苏省南通市2019届4月)已知依次满足(1)求点的轨迹;(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.24.在平面直角坐标系xOy 中,双曲线22143x y -=的离心率是____.25.如图,在平面直角坐标系xOy 中,已知椭圆22:143x y C +=的左、右顶点分别为A ,B ,过右焦点F 的直线l 与椭圆C 交于P ,Q 两点(点P 在x 轴上方). (1)若2QF FP =,求直线l 的方程;(2)设直线AP ,BQ 的斜率分别为1k ,2k .是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.26.(江苏省南京市、盐城市2019届高三第二次模拟)在平面直角坐标系中,已知点是抛物线与双曲线的一个交点.若抛物线的焦点为,且,则双曲线的渐近线方程为______.27.(江苏省南京市、盐城市2019届高三第二次模拟)在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.(1)求椭圆的方程; (2)设经过点的直线交椭圆于,两点,点.①若对任意直线总存在点,使得,求实数的取值范围; ②设点为椭圆的左焦点,若点为的外心,求实数的值.28.(江苏省南通、扬州、泰州、苏北四市七市2月)在平面直角坐标系xOy中,已知抛物线的准线为l,直线l与双曲线的两条渐近线分别交于A,B两点,,则的值为_____.29.(江苏省南通、扬州、泰州、苏北四市七市2月)如图,在平面直角坐标系xOy中,椭圆的左焦点为,右顶点为,上顶点为.(1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;(2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2020届高三数学一轮复习典型题专题训练圆锥曲线一、填空题1、(南京市2018高三9月学情调研)在平面直角坐标系xOy 中,双曲线x 216-y 29=1的焦点到其渐近线的距离为 ▲ .2、(南京市2019高三9月学情调研)在平面直角坐标系xOy 中,若抛物线y 2=4x 的准线与双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的交点的纵坐标为2,则该双曲线的离心率是 ▲ .3、(南京市六校联合体2019届高三上学期12月联考)双曲线125922=-y x 的渐近线方程是 ▲ . 4、(南师附中2019届高三年级5月模拟)已知椭圆2212x y +=与双曲线22221x y a b-=(a >0,b >0)有相同的焦点,其左、右焦点分别为F 1、F 2,若椭圆与双曲线在第一象限内的交点为P ,且F 1P =F 1F 2,则双曲线的离心率为 .5、(南京市13校2019届高三12月联合调研)在平面直角坐标系xOy 中,已知3y x =是双曲线22221x y a b -=的一条渐近线方程,则此双曲线的离心率为 ▲ . 6、(苏州市2018高三上期初调研)若双曲线()2210x y m m-=>的右焦点与抛物线28y x =的焦点重合,则m 的值是7、(徐州市2019届高三上学期期中)已知双曲线2214x y a -=的离心率为3,则实数a 的值为▲ .8、(扬州市2019届高三上学期期中)在平面直角坐标系xOy 中,若抛物线22(0)y px p =>上横坐标为1的点到焦点的距离为4,则该抛物线的准线方程为 .9、(扬州市2019届高三上学期期中)在平面直角坐标系xOy 中,已知双曲线2211x y m m -=+的一个焦点为(3,0),则双曲线的渐近线方程为 .10、(常州市2019届高三上学期期末)已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,直线20x y ++=经过双曲线C 的焦点,则双曲线C 的渐近线方程为________.11、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)已知经过双曲线221168x y -=的一个焦点,且垂直于实轴的直线l 与双曲线交于A 、B 两点,12、(苏北三市(徐州、连云港、淮安)2019届高三期末)若抛物线22(0)y px p =>的焦点与双曲线2213y x -=的右焦点重合,则实数p 的值为 .13、(苏州市2019届高三上学期期末)在平面直角坐标系xOy 中,中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点(﹣3,1),则该双曲线的离心率为 . 14、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)在平面直角坐标系xOy 中,若抛物线22y px =的焦点恰好是双曲线22184x y -=的右焦点,则该抛物线的准线方程为 .15、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)在平面直角坐标系xOy 中,已知双曲线22221(00)y x a b a b-=>>,的右顶点(20)A ,到渐近线的 距离为2,则b 的值为 ▲ .16、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次模拟(5月))在平面直角坐标系xOy 中,双曲线22221y x a b-=(00a b >>,)的右准线与两条渐近线分别交于A ,B 两点.若△AOB 的面积为4ab ,则该双曲线的离心率为 ▲ . 17、(苏锡常镇四市2019届高三教学情况调查(二))已知双曲线C 的方程为2214x y -=,则其离心率为 .18、(苏锡常镇四市2019届高三教学情况调查(一))抛物线24y x =的焦点坐标为 . 19、(盐城市2019届高三第三次模拟)双曲线1222=-y x 的焦距为______.20、(江苏省2019年百校大联考)双曲线的两个焦点为1F ,2F ,以12F F 为边作正方形12F F MN ,且此双曲线恰好经过边1F N 和2F M 的中点,则此双曲线的离心率为 .二、解答题1、(南京市2018高三9月学情调研)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点(1,32).过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线 l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N . (1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值.2、(南京市2019高三9月学情调研)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且直线l :x =2被椭圆E 截得的弦长为2.与坐标轴不垂直的直线交椭圆E 于P ,Q 两点,且PQ 的中点R 在直线l 上.点M (1,0).(1)求椭圆E 的方程; (2)求证:MR ⊥PQ .3、(南京市六校联合体2019届高三上学期12月联考)已知椭圆C :)0(12222>>=+b a by a x 上一点与两焦点构成的三角形的周长为4+23,离心率为32.(1)求椭圆C 的方程;(2)设椭圆C 的右顶点和上顶点分别为A 、B ,斜率为12的直线l 与椭圆C 交于P 、Q 两点(点P 在第一象限).若四边形APBQ 面积为7,求直线l 的方程.4、(南师附中2019届高三年级5月模拟)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a>b >0)的左、右焦点分别为F 1,F 2,且点F 1,F 2与椭圆C 的上顶点构成边长为2的等边三角形.(1)求椭圆C 的方程; (2)已知直线l 与椭圆C 相切于点P ,且分别与直线x =﹣4和直线x =﹣1相交于点M 、N .试判断11NF MF 是否为定值,并说明理由.5、(南京市13校2019届高三12月联合调研)如图,F 1、F 2分别为椭圆222210x y (a b )a b+=>>的焦点,椭圆的右准线l 与x 轴交于A 点,若()11,0F -,且122AF AF =. (Ⅰ)求椭圆的方程;(Ⅱ)过F 1、F 2作互相垂直的两直线分别与椭圆交于P 、Q 、 M 、N 四点,求四边形PMQN 面积的取值范围.6、(苏州市2018高三上期初调研)如图,已知椭圆22:14x O y +=的右焦点为F ,点,B C 分别是椭圆O 的上、下顶点,点P 是直线:2l y =-上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M .(1)当直线PM 经过椭圆的右焦点F 时,求FBM ∆的面积; (2)①记直线,BM BP 的斜率分别为12,k k ,求证:12k k ⋅为定值;②求PB PM ⋅的取值范围.7、(宿迁市2019届高三上学期期末)如图所示,椭圆2222:1(0)x y M a b a b+=>>的离心率为22,右准线方程为4x =,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点,A B ,2l 与椭圆交于不同两点,D C . (1)求椭圆M 的方程;(2)证明:直线AC 与直线BD 交于点(0,1)Q ; (3)求线段AC 长的取值范围.8、(扬州市2019届高三上学期期末)在平面直角坐标系中,椭圆M :22221x y a b+=(a >b >0)的离心率为12,左右顶点分別为A ,B ,线段AB 的长为4.P 在椭圆M 上且位于第一象限,过点A ,B 分别作l 1⊥PA ,l 2⊥PB ,直线l 1,l 2交于点C . (1)若点C 的横坐标为﹣1,求P 点的坐标;(2)直线l 1与椭圆M 的另一交点为Q ,且AC AQ λ=,求λ的取值范围.9、(扬州市2019届高三上学期期中)在平面直角坐标系xOy 中,已知直线3100x y --=与圆O :222(0)x y r r +=>相切.(1)直线l 过点(2,1)且截圆O 所得的弦长为26,求直线l 的方程;(2)已知直线y =3与圆O 交于A ,B 两点,P 是圆上异于A ,B 的任意一点,且直线AP ,BP 与y 轴相交于M ,N 点.判断点M 、N 的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.10、(如皋市2019届高三上学期期末)如图,已知椭圆C :()222210x y a b a b +=>>的离心率为12,右准线方程为4x =,A ,B 分别是椭圆C 的左,右顶点,过右焦点F 且斜率为k (k >0)的直线l 与椭圆C 相交于M ,N 两点. (1)求椭圆C 的标准方程;(2)记△AFM ,△BFN 的面积分别为S 1,S 2,若1232S S =,求k 的值; (3)设线段MN 的中点为D ,直线OD 与右准线相交于点E ,记直线AM ,BN ,FE 的斜率分别为k 1,k 2,3k ,求k 2·(k 1-3k ) 的值.11、(苏北三市(徐州、连云港、淮安)2019届高三期末)如图,在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,且右焦点到右准线l 的距离为1.过x 轴上一点(,0)M m (m 为常数,且(0,2))m ∈的直线与椭圆C 交于,A B 两点,与l 交于点P ,D 是弦AB 的中点,直线OD 与l 交于点Q . (1)求椭圆C 的标准方程;(2)试判断以PQ 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.12、(南京市2019届高三第三次模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(1,22),离心率为22.A ,B 分别是椭圆C 的上、下顶点,M 是椭圆C 上异于A ,B 的一点. (1)求椭圆C 的方程;(2)若点P 在直线x -y +2=0上,且BP →=3BM →,求△PMA 的面积;(3)过点M 作斜率为1的直线分别交椭圆C 于另一点N ,交y 轴于点D ,且D 点在线段OA 上(不包括端点O ,A ),直线NA 与直线BM 交于点P ,求OD →·OP →的值.13、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))如图,在平面直角坐标系xOy 中,椭圆22221y x a b+=(0)a b >>的左焦点为F ,右顶点为A ,上顶点为B .(1)已知椭圆的离心率为12,线段AF 中点的横坐标为22,求椭圆的标准方程;(2)已知△ABF 外接圆的圆心在直线y x -=上,求椭圆的离心率e 的值.14、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b+=>>,C 2与C 1的长轴长之比为2∶1,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值;② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有 一个公共点,求证:12k k ⋅为定值.15、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月))如图,在平面直角坐标系xOy 中,已知椭圆22221y x C a b+=:(0a b >>)的上顶点为()03A ,, 圆2224a O x y +=:经过点()01M ,. (1)求椭圆C 的方程;(2)过点M 作直线1l 交椭圆C 于P ,Q 两点,过点M 作直线1l 的垂线2l 交圆O 于另一点N . 若△PQN 的面积为3,求直线1l 的斜率.16、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设P 为椭圆上顶点,点A 是椭圆C 上异于顶点的任意一点,直线PA 交x 轴于点M .点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:在y 轴的正半轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,请说明理由.参考答案一、填空题 1、32、 53、x y 35±= 4、答案:2+22解析:由题意得:F 1P =F 1F 2=2,则PF 2=222-,所以2a =2﹣(222-)=4﹣22,则a =2﹣2,所以e =122c a =-=2+22.5、26、37、28、3x =-9、52y x =± 10、3y x =± 11、4 12、4 13、10 14、23x =- 15、2 16、2 17、18、(1,0) 19、23 20、512+二、解答题1、解:(1)因为椭圆C 的离心率为32,所以a 2=4b 2. ………………………2分 又因为椭圆C 过点(1,32),所以1a 2+34b 2=1, ………………………3分解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1. ………………………5分(2)解法1设P (x 0,y 0),-2<x 0<2, x 0≠1,则x 024+y 02=1.因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2-x 0,-y 0), 所以2-x 0=m . ………………………7分 由A (-2,0),P (x 0,y 0),可得直线AP 的方程为y =y 0x 0+2(x +2),令x =m ,得y =y 0(m +2) x 0+2,即M (m ,y 0(m +2)x 0+2).因为PB ⊥MB ,所以k PB ·k MB =-1,所以k PB ·k MB =y0x 0-1·y 0(m +2)x 0+2 m -1=-1, ………………………10分即y 02(m +2)(x 0-1)( x 0+2)( m -1)=-1. 因为x 024+y 02=1.所以( x 0-2)(m +2)4(x 0-1) ( m -1)=1. ………………………12分因为x 0=2-m ,所以化简得3m 2-10m +4=0,解得m =5±133. ………………………15分因为m >2,所以m =5+133. ………………………16分解法2①当AP 的斜率不存在或为0时,不满足条件. ………………………6分 ②设AP 斜率为k ,则AP :y =k (x +2),联立⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x +2),消去y 得(4k 2+1)x 2+16k 2x +16k 2-4=0.因为x A =-2,所以x P =-8k 2+24k 2+1,所以y P =4k 4k 2+1,所以P (-8k 2+24k 2+1,4k4k 2+1). ………………………8分因为PN 的中点为B ,所以m =2--8k 2+24k 2+1=16k 24k 2+1.(*) ……………………10分因为AP 交直线l 于点M ,所以M (m ,k (m +2)), 因为直线PB 与x 轴不垂直,所以-8k 2+24k 2+1≠1,即k 2≠112,所以k PB =4k4k 2+1-8k 2+24k 2+1-1=-4k 12k 2-1,k MB =k (m +2)m -1. 因为PB ⊥MB ,所以k PB ·k MB =-1,所以-4k 12k 2-1·k (m +2)m -1=-1.(**) ………………………12分将(*)代入(**),化简得48k 4-32k 2+1=0,解得k 2=4±1312,所以m =16k 24k 2+1=5±133. ………………………15分又因为m >2,所以m =5+133. ………………………16分2、解:(1)因为椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,所以e 2=c 2a 2=1-b 2a 2=12,即a 2=2b 2. …………………… 2分因为直线l :x =2被椭圆E 截得的弦长为2, 所以点(2,1)在椭圆上,即 4a 2+1b 2=1. 解得a 2=6,b 2=3,所以椭圆E 的方程为 x 26+y 23=1. …………………… 6分 (2)解法一:因为直线PQ 与坐标轴不垂直,故设PQ 所在直线的方程为y =kx +m .设 P (x 1,y 1),Q (x 2, y 2) .因为PQ 的中点R 在直线 l :x =2上,故R (2,2k +m ).联立方程组⎩⎪⎨⎪⎧y =kx +m ,x 26+y 23=1,消去y ,并化简得 (1+2k 2)x 2+4kmx +2m 2-6=0, …………………… 9分 所以x 1+x 2=-4km1+2k 2. (*)由x 1+x 2=-4km 1+2k 2=4,得1+2k 2=-km . ① ………………… 12分 因为M (1,0),故k MR =2k +m 2-1=2k +m ,所以k MR ·k PQ =(2k +m )k =2k 2+km =2k 2-(1+2k 2)=-1,所以MR ⊥PQ . …………………… 16分 解法二:设P (x 1,y 1),Q (x 2, y 2).因为PQ 的中点R 在直线 l :x =2上,故设R (2,t ). 因为点P ,Q 在椭圆E :x 26+y 23=1上,所以⎩⎨⎧x 126+y 123=1,x 226+y 223=1,两式相减得 (x 1+x 2) (x 1-x 2)+2(y 1+y 2) (y 1-y 2)=0.………………… 9分 因为线段PQ 的中点为R ,所以x 1+x 2=4,y 1+y 2=2t .代入上式并化简得 (x 1-x 2)+t (y 1-y 2)=0. …………………… 12分 又M (1,0),所以 MR →·PQ →=(2-1)×(x 2-x 1)+(t -0)×(y 2-y 1)=0,因此 MR ⊥PQ . …………………… 16分 3、【解析】(1)由题设得4+23,又32e =,解得2,3a c ==,∴1b =.…2分 故椭圆C 的方程为2214x y +=. …………………………………………4分(2)设直线l 方程为:12y x m =+代入椭圆22:14x C y +=并整理得:222220x mx m ++-=,设1122(,),(,)P x y Q x y ,则12212222x x mx x m +=-⎧⎨=-⎩. …………………………………6分 221212||()()PQ x x y y =-+-222212112151||1()48442k x x x x x x m =+-=+⋅+-=⋅-, ……8分 B 到直线PQ 的距离为5121-=m d ,A 到直线PQ 的距离为5121+=m d , ………………………………10分又因为P 在第一象限, 所以11<<-m ,所以5451251221=++-=+)m ()m (d d , 所以74821221=-=⋅+=m PQ )d d (S APBQ , ……………………………12分解得21±=m ,所以直线方程为2121±=x y . …………………………………………14分4、解析:解:(1) 依题意,2c =a =2,所以c =1,b =3, 所以椭圆C 的标准方程为x 24+y 23=1.(4分)(2) ① 因为直线l 分别与直线x =-4和直线x =-1相交, 所以直线l 一定存在斜率.(6分) ② 设直线l :y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12,得(4k 2+3)x 2+8kmx +4(m 2-3)=0. 由Δ=(8km)2-4×(4k 2+3)×4(m 2-3)=0, 得4k 2+3-m 2=0 ①.(8分)把x =-4代入y =kx +m ,得M(-4,-4k +m),把x =-1代入y =kx +m ,得N(-1,-k +m),(10分) 所以NF 1=|-k +m|,MF 1=(-4+1)2+(-4k +m )2=9+(-4k +m )2 ②,(12分) 由①式,得3=m 2-4k 2 ③,把③式代入②式,得MF 1=4(k -m )2=2|-k +m|,∴ NF 1MF 1=|k -m|2|k -m|=12,即NF 1MF 1为定值12.(16分) 5、解:(I) 由F 1(-1,0)得1c =,∴A 点坐标为()2,0a ;……2分∵122AF AF = ∴2F 是1AF 的中点 ∴223,2a b == ∴ 椭圆方程为22132x y += ……4分 (II)当直线MN 与PQ 之一与x 轴垂直时,四边形PMQN 面积142S MN PQ ==;…………5分 当直线PQ ,MN 均与x 轴不垂直时,不妨设PQ :()()10y k x k =+≠,联立22(1)132y k x x y =+⎧⎪⎨+=⎪⎩代入消去y 得()()2222236360k x k x k +++-=设()()1122,,,P x y Q x y 则22121222636,2323k k x x x x k k --+==++ ………8分∴ ()22122431123k PQ k x x k +=+-=+,同理221431123k MN k⎛⎫+ ⎪⎝⎭=+∴四边形PMQN 面积22221242112613k k S MN PQ k k ⎛⎫++ ⎪⎝⎭==⎛⎫++ ⎪⎝⎭ ………12分令221u k k =+,则()24242,4613613u u S u u +≥==-++,易知S 是以u 为变量的增函数所以当1,2k u =±=时,min 9625S =,∴96425S ≤< 综上可知,96425S ≤≤,∴四边形PMQN 面积的取值范围为96,425⎡⎤⎢⎥⎣⎦………16分 6、(1)由题意()()0,1,0,1B C -,焦点()3,0F,当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为113x y +=-,即313y x =-, 联立2214313x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩,解得83717x y ⎧=⎪⎪⎨⎪=⎪⎩或01x y =⎧⎨=-⎩(舍),即831,77M ⎛⎫ ⎪ ⎪⎝⎭. 连BF ,则直线:113x yBF +=,即 330x y +-=,而2BF a ==,()22831233377372713d +⋅-===+. 故113322277MBF S BF d ∆=⋅⋅=⋅⋅=. (2)解:法一:①设(),2P m -,且0m ≠,则直线PM 的斜率为()1210k mm---==--,则直线PM 的方程为11y x m=--, 联立221114y x m x y ⎧=--⎪⎪⎨⎪+=⎪⎩化简得224810x x m m ⎛⎫++= ⎪⎝⎭,解得22284,44m m M m m ⎛⎫-- ⎪++⎝⎭, 所以22212412148844m m m k m m m m ---+===--+,()21230k m m --==--, 所以1231344k k m m ⋅=-⋅=-为定值. ②由①知,(),3PB m =-,2322222841212,2,4444m m m m m PM m m m m m ⎛⎫⎛⎫---+=--+= ⎪ ⎪++++⎝⎭⎝⎭, 所以()324222212121536,3,444m m m m m PB PM m m m m ⎛⎫--+++⋅=-⋅= ⎪+++⎝⎭, 令244m t +=> 故()()224154367887t t t t PB PM t tt t-+-++-⋅===-+,因为87y t t=-+在()4,t ∈+∞上单调递增,所以8874794PB PM t t ⋅=-+>-+=,即PB PM ⋅的取值范围为()9,+∞.解法二:①设点()()000,0M x y x ≠,则直线PM 的方程为0011y y x x +=-,令2y =-,得00,21xP y ⎛⎫-- ⎪+⎝⎭.所以()0012000031121,1y y k k x x x y +---===-+, 所以()()()()2200001222000031313113=441y y y y k k x x x y --+-⋅=⋅==--(定值). ②由①知,00,31x PB y ⎛⎫= ⎪+⎝⎭,0000,21xPM x y y ⎛⎫=++ ⎪+⎝⎭,所以,()()()()20000000200023232111x y x x PB PM x y y y y y +⎛⎫⋅=+++=++ ⎪+++⎝⎭ ()()()()()()200000200412723211y y y y y y y -+-+=++=++.令()010,2t y =+∈,则()()8187t t PB PM t tt-+⋅==-++,因为87y t t=-++在()0,2t ∈上单调递减,所以8872792PB PM t t ⋅=-++>-++=,即PB PM ⋅的取值范围为()9,+∞.7、解:(1)由2224c e a a c⎧==⎪⎪⎨⎪=⎪⎩ 得22,2a c ==,2224b a c ∴=-=,所以椭圆M 的方程22184x y +=.………………………………………………4分 (2)设直线14l y kx =+:,11221122(,),(,),(,),(,)A x y B x y D x y C x y --则,联立221844x y y kx ⎧+=⎪⎨⎪=+⎩,消y 得221+2)16240k x kx ++=(, 1212221624,1+21+2k x x x x k k -∴+=⋅=, …………………………………6分 又212111,BQ DQ y y k k x x --==-, 212121211133BQ DQ y y kx kx k k x x x x --++∴-=-=+-212122483()122+=2+2202412k x x k k k k k x x k -++==-=+,………8分 =BQ DQ k k ∴,故点,,B D Q 三点共线,即直线BD 经过点(0,1)Q同理可得直线AC 经过点(0,1)Q ,所以直线AC 与直线BD 交于点(0,1)Q . …………………………10分(3)由(2)可知22222212121212()()()()AC x x y y x x k x x =++-=++-222121212()(+)4x x k x x x x ⎡⎤=++-⋅⎣⎦2222222222161624+41+21+21+2k k k k k k ⎡⎤⋅⋅=-⨯⎢⎥⎣⎦()()42424+10164+4+1k k k k ⋅=⨯24261161+4+4+1k k k ⎡⎤-=⨯⎢⎥⎣⎦…………………………12分 令22161,6t t k k ==+-则 又由222=16424(12)0k k ∆-⨯⨯+>得23,2k >所以8t > 221616+114+4+166tAC t t ∴=++⎛⎫⎪⎝⎭29161++8+16t t t ⎡⎤=⎢⎥⎣⎦9161+16++8t t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ ……………………………………14分21616++810t t t '⎛⎫=-> ⎪⎝⎭在8+t ∈∞(,)上恒成立 16++8t t∴在8+t ∈∞(,)上单调递增 16++818t t ∴>, 910162++8t t ∴<<,9311+162++8t t∴<< 21624AC ∴<<426AC ∴<<. …………………………………………………16分8、解:由题意得1224c a a ⎧=⎪⎨⎪=⎩,解得12c a =⎧⎨=⎩,∴2223b a c =-=∴椭圆M 的方程是22143x y +=且(2,0),(2,0)A B - …………3分(1)方法一:设00(,)P x y ,002PA y k x =+,∵1l PA ⊥ ∴直线AC 的方程为02(2)x y x y +=-+, 同理:直线BC 的方程为002(2)x y x y -=--. 联立方程00002(2)2(2)x y x y x y x y +⎧=-+⎪⎪⎨-⎪=--⎪⎩,解得02004x x x y y =-⎧⎪-⎨=⎪⎩,又∵22000004444433y x y y y ---==-, ∴点C 的坐标为004(,)3x y --, …………6分∵点C 的横坐标为1- ∴01x =,又∵P 为椭圆M 上第一象限内一点 ∴032y =∴P 点的坐标为3(1,)2. …………8分(2)设(,)Q Q Q x y ∵AC AQ λ= ∴002(2)43Q Q x x y y λλ-+=+⎧⎪⎨-=⎪⎩,解得:002243Q Qx x y y λλλ⎧=-+-⎪⎪⎨⎪=-⎪⎩∵点Q 在椭圆M 上 ∴22001214(2)()1433x y λλλ-+-+-= 又22003(1)4x y =-整理得:200736(1)721000x x λλ--+-=,解得:02x =或036507x λ-= …………14分∵P 为椭圆M 上第一象限内一点 ∴3650027λ-<<,解得:2516189λ<< …………16分方法二:(1)设AP 的斜率为k ,00(,)P x y , ∵P 为椭圆M 上第一象限内一点 ∴302k << ∵2000200032244AP BPy y y k k x x x ⋅=⋅==-+-- ∴BP 的斜率为34k-. 联立方程(2)3(2)4y k x y x k =+⎧⎪⎨=--⎪⎩,解得22268431243k x k k y k ⎧-=⎪⎪+⎨⎪=⎪+⎩,即2226812(,)4343k k P k k -++ ∵1l PA ⊥,∴1AC k k =-,则AC 的方程为1(2)y x k=-+∵2l PB ⊥,∴43BC k k =,则BC 的方程为4(2)3y k x =-. 由1(2)4(2)3y x k y k x ⎧=-+⎪⎪⎨⎪=-⎪⎩,得22286431643k x k k y k ⎧-=⎪⎪+⎨-⎪=⎪+⎩,即2228616(,)4343k k C k k --++ …………6分∵点C 的横坐标为1- ∴2286143k k -=-+,解得:12k =±∵302k <<∴12k = ∴P 点的坐标为3(1,)2. …………8分 (2)设(,)Q Q Q x y ,(,)C C C x y ,又直线AC 的方程为:1(2)y x k=-+联立方程221(2)143y x kx y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得222(34)1616120k x x k +++-= ∴221612234Q k x k --⋅=+,解得:226834Q k x k -=+ ∵AC AQ λ= ∴222222222862216(34)743168212(43)129234C Q k x k k k k x k k k k λ-++++====+-+++++, …………14分∵302k <<∴2516(,)189λ∈ …………16分 9、解:∵直线3100x y --=与圆222:(0)O x y r r +=>相切 ∴圆心O 到直线3100x y --=的距离为|10|1019r ==+. …2分(1)记圆心到直线l 的距离为d ,所以1062d =-=.当直线l 与x 轴垂直时,直线l 的方程为2x =,满足题意; …3分 当直线l 与x 轴不垂直时,设直线l 的方程为1(2)y k x -=-,即(12)0kx y k -+-= 所以2|12|21k d k -==+,解得34k =-,此时直线l 的方程为34100x y +-= …6分综上,直线l 的方程为2x =或34100x y +-=. …7分 (2)设00(,)P x y .∵直线3y =与圆O 交于A 、B 两点,不妨取(1,3),(1,3)A B -, ∴直线PA 、PB 的方程分别为0033(1)1y y x x --=--,0033(1)1y y x x --=++ 令0x =,得00000033(0,),(0,)11x y x y M N x x -+-+,则220000002000339111M N x y x y x y y y x x x -+-⋅=⋅=-+-(*)…13分 因为点00(,)P x y 在圆C 上,所以220010x y +=,即220010y x =-,代入(*)式得M N y y ⋅=2200209(10)101x x x --=-为定值. …15分 10、【解】(1)设椭圆的焦距为2c (c >0).依题意,12c a =,且24a c =,解得a =2,c =1.故b 2=a 2-c 2=3.所以椭圆C 的标准方程为22143x y +=. …… 4分(2)设点M (x 1,y 1), N (x 2,y 2).据题意,1232S S =,即12132122AF y BF y ⨯⨯=⨯⨯,整理可得1212y y =,所以2NF FM =. 代入坐标,可得()21211212x x y y -=-⎧⎪⎨-=⎪⎩,, 即2121322x x y y =-⎧⎨=-⎩.,又点M , N 在椭圆C 上,所以()()22112211143322143x y x y ⎧+=⎪⎪⎨--⎪+=⎪⎩,,解得1174358x y ⎧=⎪⎪⎨⎪=⎪⎩., 所以直线l 的斜率35587214k ==-. …… 9分(3)法一:依题意,直线l 的方程为()1y k x =-.联立方程组()221143y k x x y ⎧=-⎪⎨+=⎪⎩,,整理得()22224384120k x k x k +-+-=,所以2122843k x x k +=+,212241243k x x k -=+.故21224243D x x k x k +==+,()23143D D k y k x k =-=-+, 所以直线OD 的方程为34y x k =-,令x =4,得3E y k =-,即34E k ⎛⎫- ⎪⎝⎭,. 所以33141k k k-==--. …… 12分所以()2121321211122y y k k k k k k x x k ⎛⎫⎛⎫⋅-=⋅+=⋅+ ⎪ ⎪-+⎝⎭⎝⎭ ()()()()()()()()2211221211211111212222k x k x k x x x x x x k x x ----+-+⎡⎤=⋅+=⎢⎥-++-⎣⎦()2121212121212122224k x x x x x x x x x x x x -+++-+-⎡⎤⎣⎦=-+-()()()212121212212122123244k x x x x x x x x x x x x x x -+++-+-+⎡⎤⎣⎦=-+-+222222222222222412841281234343434341282444343k k k k k x k k k k k k x k k ⎡⎤---++--+⎢⎥++++⎣⎦=--⨯-+++22222222222276211833433432824476444343k k x x k k k k x x k k ⎛⎫++- ⎪-+⎝⎭+===+⎛⎫+-- ⎪++⎝⎭. …… 16分法二:依题意,直线l 的方程为()1y k x =-,即11x y k =+,记1m k=, 则直线l 的方程为1x my =+,与椭圆C 联立方程组221143x my x y =+⎧⎪⎨+=⎪⎩,,整理得()2243690m y my ++-=,所以122643m y y m +=-+,122943y y m =-+. 故1223243D y y my m +==-+,24143D Dx my m =+=+, 所以直线OD 的方程为34my x =-,令x =4,得3E y m =-,即()43E m -,. 所以3341mk m -==--. …… 12分所以()()()()122121213212112212222y y my x y y k k k k k m k x x x x ++⎛⎫⎛⎫⋅-=⋅+=⋅+= ⎪ ⎪-++-⎝⎭⎝⎭()()()()2122122121212121333133my y my y y my my my my m y y my my ++++==+--+-()()()22221222221212222291313439634344343m my m y y my m m m m y y m y y my my m m +-++++==-+-+-+-+++ ()()2222229133434121443m my m m my m +-++==+-++. …… 16分法三:依题意,点M (x 1,y 1), N (x 2,y 2)在椭圆C 上,所以22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,,两式相减,得22222121043x x y y --+=, 即2121212134y y y y x x x x +-⋅=-+-,所以34OD k k ⋅=-,即34OD k k=-,所以直线OD 的方程为34y x k =-,令x =4,得3E y k =-,即34E k ⎛⎫- ⎪⎝⎭,, 所以33141k k k-==--. …… 12分又直线AM 的方程为()12y k x =+,与椭圆C 联立方程组()1222143y k x x y ⎧=+⎪⎨+=⎪⎩,,整理得()2222111431616120k x k x k +++-=,所以211211612243k x k --⋅=+,得211216843k x k -=+,()11112112243ky k x k =+=+. 所以点M 的坐标为211221168124343k k k k ⎛⎫- ⎪++⎝⎭,. 同理,点N 的坐标为222222286124343k k k k ⎛⎫-- ⎪++⎝⎭,. 又点M ,N ,F 三点共线,所以12221222122212121243436886114343k k k k k k k k k -++==----++,整理得()()12124330k k k k +-=, 依题意,10k >,20k >,故213k k =.由1211221121124346814143k k k k k k k +==---+可得,21111141144k k k k k -==-,即11114k k k +=. 所以()21311111133344k k k k k k k k ⎛⎫⋅-=⋅+=⋅= ⎪⎝⎭. …… 16分11、(1)由题意,得2221c e a a c c⎧==⎪⎪⎨⎪-=⎪⎩,解得21a c ⎧=⎪⎨=⎪⎩,所以222,1a b ==,所以椭圆C 的标准方程为2212x y +=. ………………………………………4分(2)由题意,当直线AB 的斜率不存在或为零时显然不符合题意; 所以设AB 的斜率为k ,则直线AB 的方程为()y k x m =-, 又准线方程为2x =,所以P 点的坐标为()2,(2)P k m -,………………………………………………6分由22()22y k x m x y =-⎧⎨+=⎩得,2222()2x k x m +-=,即22222(12)4220k x k mx k m +-+-=所以222214222121D k m k m x k k =⋅=++,22222121D k m km y k m k k ⎛⎫=-=- ⎪++⎝⎭, …………8分 所以12OD k k=-,从而直线OD 的方程为12y x k =-,(也可用点差法求解) 所以Q 点的坐标为12,Q k ⎛⎫- ⎪⎝⎭,…………………………………………………10分所以以,P Q 为直径的圆的方程为()()212(2)0x y k m y k ⎛⎫-+--+= ⎪⎝⎭,即22142(2)0x x m y k m y k ⎛⎫-+++---= ⎪⎝⎭, ………………………………14分因为该式对0k ∀≠恒成立,令0y =,得22x m =±-,所以以PQ 为直径的圆经过定点(22,0)m ±-.………………………………16分 12、解:(1)因为椭圆过点(1,22),离心率为22,所以1a 2+12b 2=1,b 2a 2=1-e 2=12,解得a 2=2,b 2=1,所以椭圆C 的方程为x 22+y 2=1. ························································ 2分(2)由(1)知B (0,-1),设M (x 0,y 0),P (x ,y ).由BP →=3BM →,得(x ,y +1)=3(x 0,y 0+1), 则x =3x 0,y =3y 0+2.又因为P 在直线x -y +2=0上,所以y 0=x 0.① ··································· 4分 因为M 在椭圆C 上,所以x 022+y 02=1,将①代入上式,得x 02=23. ······························································· 6分所以|x 0|=63,从而|x P |=6, 所以S △PMA =S △P AB -S △MAB =12×2×6-12×2×63=263. ···························· 8分(3)方法1由(1)知,A (0,1),B (0,-1).设D (0,m ),0<m <1,M (x 1,y 1),N (x 2,y 2).因为MN 的斜率为1,所以直线MN 的方程为:y =x +m ,联立方程组⎩⎪⎨⎪⎧y =x +m ,x 22+y 2=1,消去y ,得3x 2+4mx +2m 2-2=0, 所以x 1+x 2=-4m3,x 1·x 2=2m 2-23. …………………………………………10分直线MB 的方程为:y =y 1+1x 1x -1,直线NA 的方程为:y =y 2-1x 2x +1,联立解得y P =(y 1+1)x 2+(y 2-1)x 1(y 1+1)x 2-(y 2-1)x 1.……………………………………………12分将y 1=x 1+m ,y 2=x 2+m 代入,得y P =2x 1x 2+m (x 1+x 2)+x 2-x 1x 1+x 2+m (x 2-x 1)=2·2m 2-23-4m 23+(x 2-x 1)-4m 3+m (x 2-x 1)=-43+(x 2-x 1)-4m 3+m (x 2-x 1)=1m . ······························································ 14分所以OD →·OP →=(0,m )·(x P ,y P )=my P =m ·1m=1. ……………………………16分方法2A (0,1),B (0,-1).设M (x 0,y 0),则x 022+y 02=1.因为MN 的斜率为1,所以直线MN 的方程为:y =x -x 0+y 0,则D (0,y 0-x 0),联立方程⎩⎪⎨⎪⎧y =x -x 0+y 0,x 22+y 2=1,消去y ,得3x 2-4(x 0-y 0)x +2(x 0-y 0)2-2=0,所以x N +x 0=4(x 0-y 0)3,…………………………………………………………10分所以x N =x 0-4y 03,y N =-2x 0+y 03,所以直线NA 的方程为:y =y N -1x N x +1=2x 0+y 0+34y 0-x 0x +1 直线MB 的方程为:y =y 0+1x 0x -1联立解得y P =2y 02+x 02+x 0+2y 02y 02-x 02-x 0y 0-2x 0+2y 0.……………………………………12分又因为x 022+y 02=1,所以y P =2+x 0+2y 0(2+x 0+2y 0)(y 0-x 0)=1y 0-x 0,………………………………………14分所以OD →·OP →=(0,y 0-x 0)·(x P ,y P )=(y 0-x 0)1y 0-x 0=1.……………………16分13、【解】(1)因为椭圆22221x y a b +=(0)a b >>的离心率为12,所以12c a =,则2a c =. 因为线段AF 中点的横坐标为22, 所以222a c -=. 所以2c =,则28a =,2226b a c -==.所以椭圆的标准方程为22186x y +=. …………………………………………………4分(2)因为(0)(0)A a F c -,,,,所以线段AF 的中垂线方程为:2a cx -=. 又因为△ABF 外接圆的圆心C 在直线y x -=上, 所以()22a c a cC ---,.…………………………………………………………………6分 因为(0)(0)A a B b ,,,,所以线段AB 的中垂线方程为:()22b a ay x b --=. 由C 在线段AB 的中垂线上,得()2222a cb a ac ab -----=,整理得,2()b a c b ac -+=,…………………………………………………………10分 即()()0b c a b -+=.因为0a b +>,所以b c =.……………………………………………………………12分 所以椭圆的离心率2222c c e a b c===+. …………………………………………14分14、【解】(1)设椭圆C 2的焦距为2c ,由题意,22a =,32c a =,222a b c =+,解得2b =,因此椭圆C 2的标准方程为22182y x +=. ……………………………3分(2)①1°当直线OP 斜率不存在时,21PA =-,21PB =+,则2132221PA PB -==-+. ……………………………4分2°当直线OP 斜率存在时,设直线OP 的方程为y kx =,xO F A B(第17题)y PABxyO代入椭圆C 1的方程,消去y ,得22(41)4k x +=, 所以22441A x k =+,同理22841P x k =+.………6分所以222P A x x =,由题意,P A x x 与同号,所以2P A x x =,从而||||21322||||21P A P A P B P A x x x x PA PB x x x x ---====--++.所以322PA PB =-为定值. ……………………………………………………………8分 ②设00()P x y ,,所以直线1l 的方程为010()y y k x x -=-,即1100y k x k y x =+-, 记100t k y x =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=, 因为直线1l 与椭圆C 1有且只有一个公共点,所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410k t -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分 同理可得,222020020(4)210x k x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210x k x y k y --+-=的两根,从而20122014y k k x -⋅=-.……………………………………………………………………14分又点在00()P x y ,椭圆C 2:22182y x +=上,所以2200124y x =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分 15、【解】(1)因为椭圆C 的上顶点为()03A ,,所以3b =, 又圆22214O x y a +=:经过点()01M ,, 所以2a =. …… 2分所以椭圆C 的方程为22143y x +=. …… 4分 (2)若1l 的斜率为0,则463PQ =,2MN =,所以△PQN 的面积为463,不合题意,所以直线1l 的斜率不为0. …… 5分设直线1l 的方程为1y kx =+,由221431y x y kx ⎧+=⎪⎨⎪=+⎩,消y ,得22(34)880k x kx ++-=, 设()11P x y ,,()22Q x y ,, 则2124262134k k x k --⋅+=+,2224262134k k x k-+⋅+=+, 所以221212()()PQ x x y y =-+-22212246121134k k k x x k+⋅+=+-=+. …… 8分直线2l 的方程为11y x k=-+,即0x ky k +-=,所以22222111k MN k k =-=++. …… 11分 所以△PQN 的面积12S PQ MN =⋅2222461211232341k k k k+⋅+=⨯⋅=++, 解得12k =±,即直线1l 的斜率为12±. …… 14分。