九年级数学下册第2章二次函数教案(新版)北师大版

合集下载

九年级数学下册第二章二次函数2.5二次函数与一元二次方程教案新版北师大版

九年级数学下册第二章二次函数2.5二次函数与一元二次方程教案新版北师大版
(1)h与t的关系式是什么?
(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.
图Hale Waihona Puke -5-4由学生熟悉的实例引入,配以课件演示,激发学生的学习热情,在教与学的双边活动中营造出了一个宽松的课堂气氛,活跃了学生的思维,从而顺利引出课题.
活动
二:
实践
探究
交流
新知
【探究1】二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标与一元二次方程ax2+bx+c=0(a≠0)的解的关系.
图2-5-5
(1)每个图象与x轴有几个交点?
(2)一元二次方程x2+2x=0,x2-2x+1=0有几个实数根?用判别式验证一下.一元二次方程x2-2x+2=0有实数根吗?
(3)二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的坐标和一元二次方程ax2+bx+c=0(a≠0)的根有什么关系?
处理方式:让学生以小组为单位进行讨论,充分发表自己的见解,寻求最合理的答案.
教师进行巡视,参与到学生的讨论之中,解答学生的疑难问题,获取信息,为讲解做准备.最后得出结论二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c(a≠0)的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0(a≠0)的根.
授课
类型
新授课
课时
教具
多媒体课件
教学活动
教学
步骤
师生活动
设计意图
回顾
问题:
1.一元二次方程的一般形式是________,其根的判别式是________,求根公式是________.

九年级数学下册第二章二次函数2.4二次函数的应用教案(新版)北师大版

九年级数学下册第二章二次函数2.4二次函数的应用教案(新版)北师大版

2.4.1 二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题. 二、课时安排1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程(一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+ ()2320300.4x =--+24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.y x x ++π=由157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. (五)随堂检测1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?5.如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 根据题意可得:等腰三角形的直角边为2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积30202,.322x ==-+当时金属框围成的图形面积最大 )((()2x 602m ,1022103210210m .=--+⨯-=此时矩形的一边长为另一边长为)2S 3002002m .=-最大3.解: (1)设矩形广场四角的小正方形的边长为x 米,根据题意得4x 2+(100-2x )(80-2x )=5 200, 整理,得x 2-45x +350=0,解得:x 1=35,x 2=10,经检验x 1=35,x 2=10均适合题意, 所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y 元,广场四角的小正方形的边长为x 米,则y =30[4x 2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y =80x 2-3 600x +240 000,配方,得 y =80(x -22.5)2+199 500.当x =22.5时,y 的值最小,最小值为199 500. 所以当矩形广场四角的小正方形的边长为22.5米时, 铺设矩形广场地面的总费用最少,最少费用为199 500元. 4. ⑴在矩形ABCD 中,∠B=∠C=90°, ∴在Rt△BFE 中, ∠1+∠BFE=90°, 又∵EF⊥DE, ∴∠1+∠2=90°, ∴∠2=∠BFE, ∴Rt△BFE∽Rt△CED, ∴BF BE CE CD =, ∴8y xx m-= 即28x x y m -=.⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,.∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt△BFE≌Rt△CED.∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意,得y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题: “最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件. 若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a 0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x (x≤13.5)元,那么销售量可以表示为 : 件;每件T恤衫的利润为: 元;所获总利润可以表示为: 元;即y=-200x2+3 700x-8 000=-200(x-9.25)2+9 112.5∴当销售单价为 元时,可以获得最大利润, 最大利润是 元. 活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值. (三)重难点精讲例题2.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为10的整数倍).(1)设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围. (2)设宾馆一天的利润为w 元,求w 与x 的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 【解析】 (1)y=50-10x; (2)w=(180+x-20)y=(180+x-20)(50-10x)=2x 34x 8 000.10-++ (3)因为w=2x 34x 8 000,10-++ 所以x=b -2a=170时,w 有最大值,而170>160,故由函数性质知,x=160时,利润最大,此时订房数y=50- 10x =34,此时的利润为10 880元.例题3 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1 500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x 元,列方程,得(5+x)(200-10x)=1 500,解得x1=10, x2=5.因为要顾客得到实惠,5<10,所以x=5. 答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=( x +5)(200-10x)= -10x2+150x+1 000,当x=1507.522(10)ba-=-=⨯-时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米2.为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5 000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3 500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在距离OA 1m处达到最大高度2.25m.如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?4.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数:(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) 【答案】1. 【解析】选A. 抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.2. 【解析】(1)由题意可知,当x ≤100时,购买一个需5 000元,故y 1=5 000x当x>100时,因为购买个数每增加一个,其价格减少10元但售价不得低于3 500元/个,所以x ≤5 000 3 50010025010-+=即100<x≤250时,购买一个需5 000-10(x-100)元,故y 1=6 000x-10x 2; 当x>250时,购买一个需3 500元,故y 1=3 500x;21 5 000x,y 6 000x 10x ,3 500x,⎧⎪=-⎨⎪⎩所以 0x 100100x 250x 250≤≤<≤>2500080%4000.y x x =⨯=(2) 当0≤x ≤100时,y 1=5 000x ≤500 000<1 400 000; 当100<x ≤250时,y 1=6 000x -10x 2=-10(x -300)2+900 000<1 400 000;∴由35001400000x = 得到x=400由40001400000x = 得到350400x =<故选择甲商家,最多能购买400个太阳能路灯3.【解析】建立如图所示的坐标系,根据题意,得,点A(0,1.25),顶点B(1,2.25).设抛物线的表达式为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25.当y=0时,得点C(2.5,0);同理,点D(-2.5,0).根据对称性,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.4.解析:(1)由题意,得:w = (x -20)·y=(x -20)·(-10x+500)=-10x 2+700x-10 000当352b x a=-=时,w 有最大值. 答:当销售单价定为35元时,每月可获得最大利润.(2)由题意,得21070010 000 2 000.x x -+-=解这个方程,得x 1 = 30,x 2 = 40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.(3)∵10a =-<0∴抛物线开口向下.∴当30≤x≤40时,w≥2 000.∵x≤32,∴当30≤x≤32时,w≥2 000.设成本为P (元),由题意,得P=20(-10x+500)=-200x+10 000, ∵k=-200<0,∴P 随x 的增大而减小.∴当x = 32时,P 最小=3 600.答:想要每月获得的利润不低于2 000元,每月的成本最少需要3 600元.六.板书设计2.4.2二次函数的应用探究:例题2:例题3:“何时获得最大利润” 问题解决的基本思路.1.根据实际问题列出二次函数关系式;2.根据二次函数的最值问题求出最大利润.。

九年级数学下册 第2章 二次函数教案 (新版)北师大版

九年级数学下册 第2章 二次函数教案 (新版)北师大版

第二章二次函数1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.通过对实际问题的分析,体会二次函数的意义,形成模型思想.2.能用描点法画出二次函数的图象,并能根据图象对二次函数的性质进行分析,进一步积累研究函数性质的经验,发展几何直观.3.能用配方法将一般的二次函数的表达式化为y=a(x-h)2+k的形式,由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴.4.能利用二次函数的图象求一元二次方程的近似解,理解一元二次方程与二次函数的关系.5.能利用二次函数解决实际问题,对变量的变化情况进行初步讨论,提高应用意识.6.会用待定系数法确定二次函数的表达式.1.通过探索,使学生经历“观察发现——归纳猜想——灵活应用”的过程,体会由一般到特殊的探究方法.进一步体会数形结合思想、函数思想、数学建模等思想方法的运用.2.在具体的情境中去发现问题和提出问题,在合作交流中解决问题.1.要使学生体验数学的文化价值,使学生感受数学美,培养学生利用运动变化的观点观察事物.2.进一步树立科学的人生观、价值观和辩证唯物主义世界观.二次函数是描述现实世界变量之间关系的重要数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章中所提及的求最大利润、最大面积等实际问题.二次函数的图象是抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线形拱桥,抛物线形隧道等.和一次函数、反比例函数一样,二次函数还是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验,为高中阶段继续学习函数做好铺垫.【重点】1.二次函数的概念.2.二次函数的图象与性质及其应用.3.二次函数与一元二次方程的关系.【难点】1.利用二次函数的图象与性质解决相关的实际问题.2.利用二次函数的图象确定一元二次方程的近似根.1.注重实际问题情境的创设,帮助学生形成模型思想.九年级的数学学习抽象性逐渐增强,本章更体现了这一特点.由此,在数学中要创设丰富的实际问题情境,使学生理解二次函数的意义,能够用二次函数表示实际问题,从而建立二次函数模型.2.鼓励学生采用多种方法和方式体会二次函数的性质.讨论二次函数的性质时要尽可能结合图象进行,建议运用多种教学形式,如小组活动、学生讲解等,使学生养成从多个角度认识问题的习惯,进而比较全面准确地理解二次函数的性质.二次函数图象的平移问题是教学中的难点,可以让学生将自己的思路表达出来,互相启发和借鉴,从而在多种理解方式中体会图象平移的核心.3.注重知识之间的联系.教学中要注意数学思想方法的挖掘,关注知识之间的联系.在讨论二次函数图象的对称轴和顶点坐标时,要尽量引导学生进行图象和图象之间、表达式和表达式之间的比较,进而建立图象和表达式之间的联系,以实现对二次函数图象的对称轴和顶点坐标的理解.4.引导学生积极思考.本章内容是初中数学较难的一部分,学生在学习过程中难免会遇到困难,教师要设置适当的问题,引导学生进行探索.在探索二次函数性质的几节课中,教学的速度要放慢,不必急于给出结论甚至应用,而是让学生经历探索新知识的过程,从而真正将知识内化.在本章的学习中,都不要一味地加大计算的难度,部分实际问题可鼓励学生使用计算器进行运算.5.注重信息技术的应用.在本章教学中,要尽可能利用信息技术手段,注重信息技术与本章内容的结合,以便有效地改变教与学的方式,提高课堂教学的效益.例如,在研究二次函数的图象与性质、二次函数与一元二次方程的关系时,可以在学生亲身画图、观察、想象等动手动脑活动的基础上,借助计算机、多媒体向学生展示更加丰富的函数图象,这样不仅为学生理解和掌握相关内容提供更多的形象支持,同时也可以让学生获得视觉上的愉悦,增强好奇心,激发学习兴趣.但不能用计算机、多媒体的演示完全取代学生的亲身实践活动.1二次函数1.经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.【重点】1.经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.【难点】列二次函数关系式表示简单变量之间的关系,并能利用尝试求值的方法解决实际问题.【教师准备】多媒体课件.【学生准备】复习正比例函数、一次函数、反比例函数等函数的相关概念.导入一:课件出示:观察下面的函数关系式:(1)y=2x+5;(2)y=x2+5.这两个函数关系式有什么相同点和不同点?【师生活动】复习正比例函数、一次函数、反比例函数等函数的相关概念.【学生活动】学生独立思考后小组交流,观察新函数的特征,尝试给新函数下定义.[设计意图]通过与一次函数的对比,让学生初步感知二次函数的特征,让学生类比一次函数的概念构建出二次函数的概念.导入二:课件出示:赵州桥,又称大石桥、安济桥,是位于河北省赵县城南五里洨河上的一座石拱桥,是我国古代石拱桥的杰出代表,其设计者是隋代杰出的工匠李春,建造于公元605年.赵州桥的设计构思和工艺的精巧,在我国古桥中是首屈一指的,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中期才出现,比我国晚了一千二百多年,赵州桥的雕刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品.问题请同学们观察赵州桥的桥拱的形状,它的形状可以近似地看成一种函数图象,这和我们之前所学的函数图象一样吗?[设计意图]通过视频,让学生再次了解赵州桥,在对学生进行爱国主义教育的同时,引出本节课的课题,激发了学生的好奇心和探求新知的欲望.结合课本给出的引例、做一做和想一想中的问题,设出未知数,列出关于x的函数关系式.课件出示:【引例】某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.师要求同学们认真分析题目,回答以下问题:(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.【学生活动】独立思考,代表回答:(1)自变量:橙子树的棵数、橙子树之间的距离、橙子树接受阳光的多少等;因变量:橙子的个数、橙子的质量等.(2)如果设果园增种x棵橙子树,那么果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.(3)果园橙子的总产量y与x之间的关系式为y=(x+100)(600-5x)=-5x2+100x+60000.【师生活动】观察关系式y=-5x2+100x+60000中的y是不是x的函数,并对比所学的函数,感受它们的相同点和不同点:根据函数的定义,y是x的函数,自变量x的最高次数是2,所以通过类比,猜想此函数为二次函数.[设计意图]利用学生熟悉的身边情境,小梯度地设计问题,逐步引导学生分析题目,设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式.【师生活动】师生共同回忆与存款有关的知识:1.银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.2.利息=本金×利率×期数(时间).3.本息和=本金+利息.【学生活动】根据上面的提示,独立完成后,小组交流,得出关系式,代表展示.解:y=100(x+1)2=100x2+200x+100.观察y=100x2+200x+100与y=-5x2+100x+60000的相同点.【学生活动】通过观察,寻找它们的相同点,并与同伴相互交流,统一答案.【教师点评】自变量的最高次数都是2.[设计意图]通过对生活中熟悉情境的分析,让学生初步感知函数的模型思想,尝试归问题1已知矩形的周长为40 cm,它的面积可能是100 cm2吗?可能是75 cm2吗?还可能是多少?你能表示这个矩形的面积与其一边长的关系吗?【师生活动】师生先复习一元二次方程及其解法,然后由学生先独立解决,再小组交流,最后代表展示.解:(1)设其中一边长为x cm,则x=-x2+20x=100,解得x1=x2=10.x=-x2+20x=75,解得x1=5,x2=15.这个矩形的面积与其一边长的关系为S=x=-x2+20x.【教师点评】只要和为20的两数都可以作为该矩形的长和宽,所以其面积还可以为64,51,36,….问题2两数的和是20,设其中一个数是x,你能写出这两数之积y的表达式吗?【学生活动】学生独立解答,同伴交流.解:y=x(20-x)=-x2+20x.[设计意图]在几何和代数的背景中再次体会函数的模型,为下一步归纳总结二次函数的定义奠定良好的基础.二、二次函数的定义【对比观察】让学生再一次观察三个式子的共同点:(1)y=-5x2+100x+60000;(2)y=100x2+200x+100;(3)y=-x2+20x.【学生活动】观察思考后,小组交流想法,组长发言:共同特点是:①这些式子都是最高次数为2的函数;②表达式右边都是关于x的整式.【教师引导】类比一次函数与反比例函数的表达式,归纳出二次函数的定义及一般形式.【师生总结】二次函数的定义.一般地,若两个变量x,y之间的对应关系可以表示成y=ax2+bx+c(a,b,c是常数,a≠0)的形式,则称y是x的二次函数.【师生活动】探讨a≠0的原因.[设计意图]让学生通过观察、思考、分析等数学活动,从不同实际背景的实例中抽象出二次函数的概念,使之经历概念的形成过程,培养其抽象思维和归纳概括的能力,感受从特殊到一般的数学思想方法,从而突破本节课的难点.[知识拓展]理解二次函数概念的注意事项:①常数a≠0;②自变量x的最高次数为2;③等号的右边是整式;④要确定二次函数的关系式,只要确定a,b,c的值就可以了.【思考】二次函数的表达式y=ax2+bx+c中的a≠0, 系数b,c可以等于0吗?【学生活动】学生思考并交流,得出结论:系数b,c可以等于0.【教师点评】1.二次函数的一般形式:y=ax2+bx+c (a≠0,b≠0,c≠0).2.系数a≠0,但是b,c都可以为0.3.二次函数的几种不同表示形式:(1)y=ax2(a≠0,b=0,c=0).(2) y=ax2+c (a≠0,b=0,c ≠0).(3) y=ax2+bx (a≠0,b≠0,c=0).(4)一般形式:y=ax2+bx+c (a≠0,b≠0,c≠0).(二)二次函数自变量的取值范围【议一议】本节课的上述问题中,自变量能取哪些值?学生讨论各题的取值范围.【教师点评】自变量的取值范围是函数的一个有机组成部分,今后除了解决最值问题外,一般不刻意讨论自变量的取值范围.[设计意图]通过对二次函数一般形式的了解,进一步加深了学生对二次函数概念的理解,是对数学符号语言应用能力的提升,同时强调了易错点.1.二次函数的概念:形如y=ax2+bx+c(其中a,b,c都是常数,a≠0)的函数.2.理解二次函数概念的注意事项:(1)常数a≠0;(2)自变量x的最高次数为2;(3)等号的右边是整式;(4)要确定二次函数的关系式,只要确定a,b,c的值就可以了.1.(2014·兰州中考)下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+解析:A,y=3x-1是一次函数,故A错误;B,y=ax2+bx+c(a≠0)是二次函数,故B错误;C,s=2t2-2t+1是二次函数,故C正确;D,y=x2+不是二次函数,故D错误.故选C.2.已知二次函数y=1-3x+5x2,则其二次项系数a,一次项系数b,常数项c分别是()A.a=1,b=-3,c=5B.a=1,b=3,c=5C.a=5,b=3,c=1D.a=5,b=-3,c=1解析:∵函数y=1-3x+5x2是二次函数,∴a=5,b=-3,c=1.故选D.3.已知二次函数y=x2+3x-5,当x=2时,y=.解析:当x=2时,y=22+3×2-5=4+6-5=10-5=5.故填5.4.(2014·安徽中考)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.解析:∵一月份新产品的研发资金为a元,二月份起,每月新产品的研发资金与上月相比增长率都是x,∴二月份研发资金为a×(1+x),∴三月份的研发资金y=a×(1+x)×(1+x)=a(1+x)2.故填a(1+x)2.1二次函数二次函数的定义:一般地,若两个变量x,y之间的对应关系可以表示成y=ax2+bx+c(a,b,c是常数,a≠0)的形式,则称y是x的二次函数.一、教材作业【必做题】1.教材第30页随堂练习第1,2题.2.教材第30页习题2.1第1,2题.【选做题】教材第31页习题2.1第3,4题.二、课后作业【基础巩固】1.已知函数:①y=3x-1;②y=3x2-1;③y=3x3+2x2;④y=2x2-2x+1.其中二次函数的个数为()A.1B.2C.3D.42.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是()A.3B.5C.-3或5D.3或-53.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.4.一个边长为2 cm的正方形,将它的边长增加x cm后,增加的面积为y cm2,写出y与x的函数关系式:.5.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,增加赢利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利y元,每件衬衫降价x元,请你写出y与x之间的关系式.【能力提升】6.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品的年产量y与x的函数关系是()A.y=20(1-x)2B.y=20+2xC.y=20(1+x)2D.y=20+20x2+20x7.已知y=(m-1)是关于x的二次函数,则m的值是.8.已知函数y=(m2-m)x2+(m-1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?【拓展探究】9.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是y元,镜子的宽度是x m.(边框厚度忽略不计)(1)求y与x之间的关系式;(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.【答案与解析】1.B(解析:①y=3x-1为一次函数;②y=3x2-1为二次函数;③y=3x3+2x2自变量最高次数为3,不是二次函数;④y=2x2-2x+1为二次函数.故是二次函数的有2个.)2.D(解析:根据题意,得x2+2x-7=8,即x2+2x-15=0,解得x=3或x=-5.)3.a≠-1(解析:根据二次函数的定义可得a+1≠0,即a≠-1.)4.y=x2+4x(解析:原边长为2 cm的正方形面积为2×2=4(cm2),边长增加x cm后边长变为(x+2)cm,则面积变为(x+2)2 cm2,故y=(x+2)2-4=x2+4x.)5.解:降价x元后的销量为(20+2x)件,单件的利润为(40-x)元,故可得利润y=(40-x)(20+2x)=2(40-x)(10+x)=-2x2+60x+800(0<x<40).6.C(解析:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,∴一年后产品的年产量是20(1+x),∴两年后产品的年产量y与x的函数关系是y=20(1+x)2.)7.-3(解析:∵y=(m-1)是关于x的二次函数,∴m2+2m-1=2,解得m=1或m=-3.∵m-1≠0,∴m ≠1,∴m=-3.故填-3.)8.解:(1)根据一次函数的定义,得m2-m=0,解得m=0或m=1.又∵m-1≠0,即m≠1,∴当m=0时,这个函数是一次函数. (2)根据二次函数的定义,得m2-m≠0,解得m1≠0,m2≠1,∴当m ≠0且m≠1时,这个函数是二次函数.9.解:(1)y=(2x+2x+x+x)×30+45+2x2×120=240x2+180x+45,所以y与x之间的关系式为y=240x2+180x+45. (2)由题意可列方程为240x2+180x+45=195,整理得8x2+6x-5=0,即(2x-1)(4x+5)=0,解得x1=0.5,x2=-1.25(舍去).∴x=0.5,2x=1.答:镜子的长和宽分别是1 m和0.5 m.本节课是二次函数概念的基本认识,知识比较简单,所以学生接受起来比较容易,学生通过自主探究基本上可以掌握本节课的重点知识.本节课的难点是通过实际应用问题认识二次函数的概念,所以在教学时,始终坚持以应用意识为主线,强调观察与思考,分析与归纳.在课堂上,从实际出发提出问题,引导学生从不同的角度分析问题,提出解决方案,并且互相交流,在学习数学的同时培养合作交流的意识.对于少部分基础不太好的学生,进行分层教学,多多引导他们运用类比的思想方法探究二次函数的概念,收到了非常好的效果.对于少部分基础不太好的学生估计不足,对他们的学习状况过于乐观,他们对于函数概念的理解比原来想象的要差,所以在复习回顾这个环节上还应加大力度.要在课前布置复习作业,要求学生复习函数的概念以及正比例函数、一次函数和反比例函数的相关内容,为新课学习做好知识储备.随堂练习(教材第30页)1.解:y=-+3x2与s=1+t+5t2是二次函数.2.解:(1)y=π(1+x)2-π·12=πx2+2πx. (2)当x=1时,y=π·12+2π·1=3π(cm2).当x=时,y=π·()2+2π·=2π(1+)(cm2).当x=2时,y=π·22+2π·2=8π(cm2).习题2.1(教材第30页)1.从左到右依次填:4.9,19.6,44.1,78.4,122.5.2.答案不唯一,如:篮球运动员投篮时,篮球出手后的高度与运行的时间之间是二次函数关系.3.解:(1)根据题意列式为S=2x2+4x(x+0.5)=6x2+2x. (2)y=5(6x2+2x)=30x2+10x.4.解:y=(x-20)t=(x-20)(-3x+70)=-3x2+130x-1400.1.对于本节课知识的学习,学生可以采用自主探究加合作交流的方法,利用“由一般到特殊”的方法去探究新知.2.利用类比一次函数、反比例函数概念的方法得出二次函数的概念及关系式,要重点把握二次函数概念的几个注意事项.在运用二次函数关系式表示数量关系时,要找出题目中的等量关系,这是解决问题的关键.已知函数y=(m2+m).(1)当函数是二次函数时,求m的值;(2)当函数是一次函数时,求m的值.〔解析〕(1)这个函数是二次函数的条件是m2-2m+2=2并且m2+m≠0.(2)这个函数是一次函数的条件是m2-2m+2=1并且m2+m≠0.解:(1)依题意,得m2-2m+2=2,解得m=2或m=0.又m2+m≠0,解得m≠0且m≠-1,因此m=2.(2)依题意,得m2-2m+2=1,解得m1=m2=1.又m2+m≠0,解得m≠0且m≠-1.因此m=1.[解题策略]本题主要考查一次函数与二次函数的定义与一般形式.2二次函数的图象与性质1.经历探索二次函数的图象的画法和性质的过程,获得利用图象研究函数性质的经验.2.能根据描点法画出二次函数的图象,并能根据图象认识和理解二次函数的性质.3.建立二次函数表达式与图象之间的联系,理解表达式中的系数对图象的影响.4.能利用二次函数图象的对称轴和顶点坐标公式解决问题.1.渗透解析几何、数形结合、函数等数学思想,培养学生发现问题、解决问题及逻辑思维的能力.2.通过学生合作交流解决问题,培养学生合作交流的能力及观察、分析、归纳、总结的能力.1.通过数形结合理解二次函数的性质,体验函数具体解决现实问题的功能.2.充分理解并认识到二次函数图象可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求.【重点】1.画出二次函数的图象,并根据图象探究二次函数的性质.2.能利用二次函数图象的对称轴和顶点坐标公式解决问题.【难点】掌握并运用二次函数的图象与性质解决实际问题.第课时1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.3.能够作出二次函数y=-x2的图象,并能够比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系.1.在讨论函数图象的过程中,进一步提高学生运用描点法画函数图象的能力.2.充分运用函数图象认识和理解二次函数的性质,提高发现问题、分析问题和解决问题的能力.1.激发学生学习数学的兴趣,体会学习数学的快乐.2.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养学生的合作交流意识.【重点】作出函数y=±x2的图象,并根据图象认识和理解二次函数y=±x2的性质.【难点】类比函数y=x2的图象及性质学习y=-x2的图象及性质,并能比较出它们的异同点.【教师准备】多媒体课件.【学生准备】复习利用描点法画函数图象的方法及一次函数和反比例函数的图象与性质.导入一:课件出示:【引入】在你打篮球或观看篮球比赛时,你是否注意投篮时篮球的运行路线是什么样的?【学生分析】运行路线先高后低,有一定的弧度,整体是弧形.【引入】这种运行路线所形成的图形在我们日常生活中无处不在,比如喷泉流经过的路线、一些拱形桥的桥拱的形状、导弹运行的路线等.问题这和我们以前所学的函数图象一样吗?[设计意图]通过学生生活中常见的一些物体的运动轨迹引出二次函数的图象,激发学生学习兴趣,提出本节课学习的内容,课堂效果非常好.导入二:思考下面的问题:在二次函数y=x2中,y随x的变化而变化的规律是什么?你想直观地了解它的性质吗?【师生活动】复习一次函数与反比例函数中y随x的变化而变化的规律及其性质.【学生活动】猜想二次函数的图象及其性质,并与其他同学进行交流.[设计意图]开门见山,直入正题,既揭示了本节课的主题,又通过对旧知识的复习,明确了本节课的探究任务.一、画二次函数y=x的图象老师引导学生回忆:画函数图象的一般步骤是什么?【学生活动】1.回忆画函数图象的步骤:列表,描点,连线.2.按上面的步骤画出y=x2的图象.代表展示:(1)列表.(2)(3)用光滑的曲线连接各点.【师生活动】共同订正学生画图过程中所出现的错误.二、二次函数y=x2的性质课件出示:【议一议】对于二次函数y=x2的图象:(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?(3)当x<0时,随着x值的增大,y的值如何变化?当x>0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.思路一【师生活动】要求学生认真观察图象,分组完成5个问题.【学生活动】先独立解决问题后与同伴交流,然后小组内统一答案.代表依次发言.【教师点评】二次函数y=x2的图象是一条抛物线,它的开口方向向上,且关于y轴对称.对称轴与抛物线的交点是抛物线的顶点,它是图象的最低点.思路二【教师明确】二次函数的性质基本上从:开口方向、对称轴、顶点坐标、增减性、最值这五个方面研究.【师生活动】根据对5个问题的探究,完成下面的表格.2[设计意图],体会数形结合思想.此外,通过小组交流解决问题,进一步培养了团结协作能力.次函数y=x2的图象有什么关系?与同伴进行交流.【学生活动】要求学生类比画y=x2图象的操作步骤,独立画出函数y=-x2的图象.代表板演.。

2023九年级数学下册第二章二次函数1二次函数教案(新版)北师大版

2023九年级数学下册第二章二次函数1二次函数教案(新版)北师大版
教学手段:
1.多媒体设备:利用多媒体课件和投影设备,展示二次函数的图像、公式和案例。通过视觉和听觉的结合,提高学生对知识点的理解和记忆。
-使用PowerPoint或交互式白板,展示二次函数的动态图像,帮助学生直观理解图像的变换。
-播放教学视频,介绍二次函数在实际中的应用,激发学生的学习兴趣。
2.教学软件:运用数学教学软件,如GeoGebra、Desmos等,让学生在课堂上实时绘制和修改二次函数图像,增强学生对函数性质的理解。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax^2+bx+c的函数,其中a、b、c是常数,且a不等于0。它在数学、物理和工程等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了二次函数在抛物线运动中的应用,以及它如何帮助我们解决问题。
3.学生可能遇到的困难和挑战:在学习二次函数时,学生可能遇到的困难包括对二次函数图像的理解,特别是对开口方向、顶点、对称轴等概念的理解;对二次函数一般形式的转换和顶点式的应用可能感到困惑;在运用描点法绘制图像时,可能会因为坐标点选择不当而导致图像失真。此外,对于二次函数在实际问题中的应用,学生可能缺乏将问题转化为数学模型的能力,这些都是学生可能面临的挑战。
学习者分析
1.学生已经掌握了相关知识:在进入二次函数学习之前,学生已经学习了一次函数的性质、图像和方程的解法,了解函数的基本概念,具备了一定的方程求解和图像分析能力。此外,学生还掌握了平面直角坐标系的基本知识,能够通过坐标点来描述图像。
2.学生的学习兴趣、能力和学习风格:九年级学生正处于青春期,对新鲜事物充满好奇,对数学学习兴趣有所分化。部分学生对数学有较强的逻辑思维能力,喜欢探究和解决问题;部分学生则可能对数学感到困难和畏惧。学生在小组合作学习中表现出较强的互助和交流能力,喜欢通过实际操作和视觉辅助来加深理解。

最新北师大版九年级数学下册2.0第二章二次函数公开课优质教案 (4)

最新北师大版九年级数学下册2.0第二章二次函数公开课优质教案 (4)
(2)、当x为何值时 ,y<0。
( 3)、求它地解析式和顶点坐标
三、练习
四、小结
作业
教学札记
二、典型题型
1.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内地图象大致是()
2.已知二次函数y=ax2+bx+c地最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6 )。求a、b、c。
4、已知二次函数y=ax2-5x+c地图象如图。
(1)、当x为何值时,y随x地 增大而增大;
二次函 数




知识与技能目标
过程与方法目标
情感与态度目标
1.通过对 本章知识地梳理,使学生深刻理解二次函数 地概念、 图象与性质。
2.能灵活运用二次函数地概念与 性质解决有关数学问题。
通过练习掌握基本知识和基本技能,体会不 同地数学思想方法解决实际问题
积极参与交流,并积极发表意见,体验与他人交流合作地重要性。
教学重点
二次函数地概念、图象与性质
教学点
二次函数图象与性质地运用
教学 过程
教学内容设计
个性补充
一、知识回顾
1.归纳:知识 结构
2.二次函数地性质
教学内容设计
个性补充
3.二次函数关系式地三种表示方式:
一 般式、
顶点式、
两根式、y=a(x-m)(x-n)
4.抛物线y=ax2+bx+c(a≠0)地特征与系数a,b,c,地关系:

九年级数学下册 第二章《二次函数》教案 北师大版

九年级数学下册 第二章《二次函数》教案 北师大版

山东省枣庄市第四十二中学九年级数学第二章《二次函数》教案北师大版教学过程:一、回顾、梳理本章内容师:今天这节课我们对《二次函数》这一章进行复习,首先我们来看一下以下问题:(课件出示:)你在哪些情况下见到过抛物线的“身影”?你能用二次函数的值是解决哪些实际问题?小结一下做二次函数图像的方法.二次函数的图象有哪些性质?如何确定它的开口方向、对称轴和顶点坐标?用具体例子说明如何恰当或有效地利用二次函数的表达式,表格和图像刻画变量之间的关系.用自己的语言描述二次函数2y axbx c =++的图像与方程20ax bx c ++=的根之间的关系.师:这是课本上的“回顾与思考”给我们提出的问题,你能回答的出来吗?现在给同学们5分钟的时间同位之间互相考查一下,同时要注意指正同位的错误观点.现在开始. 学生开始活动.师:同学们进行完了吗? 生:说完了.师:下面我们对二次函数每一部分的内容进行具体的复习.设计意图:使复习内容条理性地出现在学生面前,发挥老师的引导作用. 二、师生互动,深入复习 1、二次函数的定义师:谁来说一下二次函数的定义? 生:一般地,形如2y axbx c =++0a b c a (、、为常数,且≠)的函数叫做x 的二次函数.师:说的非常完整,其中特别强调以下几点:①a ≠ 0②最高次数为2 ③代数式一定是整式同学们在判断一个函数是不是二次函数是一定要抓住这几点,下面请同学们快速的完成下面两道题目,一会我找同学来回答. 多媒体出示: 练习:1.2y x =-,222y x x=-,21005y x =- ,23325y x x =-+,其中是二次函数的有____个. 2.当m _______时,函数2(1)21m my m x x -=+-+是二次函数?学生完成练习.师:第一题,谁来回答一下?生:第一个和第3个是二次函数.第二个的代数式不是整式,第四个x 的最高次数不是2次. 师:同学们赞同他的意见吗? 生:赞同.师:谁再来说一下第二题怎么做? 生:∵该函数是二次函数 ∴m +1≠0且 =2 解得:m 1=2,m 2=-1(舍去)师:这位同学考虑的非常全面,就要这样去解.下面我们再来一起复习一下二次函数的图像及性质. 2、二次函数的图像及性质 多媒体出示下面的内容:2m m -师:下面我找几位同学来填一下空格里的内容.多媒体出示:例2:已知二次函数21322y x x =+-, (1)求抛物线开口方向,对称轴和顶点M 的坐标.(2)设抛物线与y 轴交于C 点,与X 轴交于A 、B 两点,求C ,A ,B 的坐标.(3)x 为何值时,y 随的增大而减少,x 为何值时,y 有最大(小)值,这个最大(小)值是多少? (4)x 为何值时,y <0?x 为何值时,y >0?师安排学生独立在练习本上完成该题目,并安排三位学生分别板书第(1)问,第(2)问,以及第(3)和第(4)问. 学生板书:生1板书:解:(1)∵12>0 ∴该抛物线的开口向上 ∵1112 2 2b a -=-=-×22134?×××××()?×14222144?××2ac b a ---==-生2 板书:解:(2)当y =0时,021322x x =+-,解得x 1=-3,x 2=1 当x =0时,y =32-所以,C (0,32-),A (-3,0),B (1,0)生3板书:解:该抛物线的大致图像是:所以,(3)x <-1时,y 随的增大而减少,x =-1时,y 有最小值,这个最小是-2.(4)-3<x <1时,y <0;x >1或x <-3时,y >0. 师组织学生对三位同学的板书进行讲评.师:这道题目是给出抛物线的解析式来分析其他的性质,下面我们来总结一下确定抛物线的解析式的几种方法. 3、求抛物线解析式的三种方法 课件出示:1.一般式:已知抛物线上的三点,通常设解析式为 :2y ax bx c =++(0a ≠).2.顶点式:已知抛物线顶点坐标(h , k ),通常设抛物线解析式为:2()y a x h k =-+(0a ≠),求出表达式后化为一般形式.3.交点式:已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为:12()()y a x x x x =--(0a ≠)求出表达式后化为一般形式.师一边提问、一边解释、一边课件出示答案.师:正所谓“学以致用”,我们也不能只是纸上谈兵,同学们在练习本上做一做以下题目,实践一下. 课件出示:练习:根据下列条件,求二次函数的解析式. (1)图象经过(0,0), (1,-2) , (2,3) 三点; (2)图象的顶点(2,3), 且经过点(3,1) ;(3)图象经过(0,0), (12,0) ,且最高点的纵坐标是3 . 师安排三位学生到黑板上板书.生1板书:解:设该抛物线的解析式为2y ax bx c =++(0a ≠),由题意可知:0=c-2=a +b +c 3=4a +2b +c a =72× × 1× (1,0)解得: b =-112c =0 ∴y =72x 2-112x 生2板书:解:设该抛物线的解析式为2(2)3y a x =-+,由题意可知: 1=a (3-2)2+3解得 a =-2∴ y =-2(x -2)2+3生3板书:解:设该抛物线的解析式为(12)y ax x =-,即212y ax ax =-,由题意可知:2(12)4a a-=3解得a =-112∴设该抛物线的解析式为y =-112x 2+x 师:现在我们一起来看看这几位同学做的对不对. 生:都正确.师:特别是第三题,这一题和其他两道题目的解法有所不同,为了利用“最高点的纵坐标是3”这个条件,这位同学是先设出解析式,然后用公式表示出最大值并令其等于3,从而解出a 的值.这种方法用的非常灵活,同学们还有没有其他的做法?生:我是看题目说“图象经过(0,0), (12,0) ,”那么该抛物线的对称轴就是直线x =6,那么它的顶点坐标是(6,3),我再设定点式进行求解.师:这种做法更直接,同学们也已根据条件进行灵活的选用. 4、a ,b ,c 符号的确定师:下面我们来看一下抛物线2y ax bx c =++(0a ≠)的a ,b ,c 符号有关的问题.以提问后课件出示答案的形式引导学生复习一下内容: (1)a 的符号:由抛物线的开口方向确定 开口向上←→a >0 开口向下←→a <0(2)c 的符号:由抛物线与y 轴的交点位置确定. 交点在x 轴上方←→c >0 交点在x 轴下方←→c <0 经过坐标原点←→c =0(3)b 的符号:由对称轴的位置确定 对称轴在y 轴左侧←→a 、b 同号 对称轴在y 轴右侧←→a 、b 异号 对称轴是y 轴 ←→b =0(4)24b ac -的符号:由抛物线与x 轴的交点个数确定 与x 轴有两个交点←→24b ac ->0与x 轴有一个交点←→24b ac -=0 与x 轴无交点←→24b ac -<0师:特别要注意的是这些关系的推导都是相互的.下面我们再来实战一下. 课件出示题目:1、二次函数2y ax bx c =++ (a ≠0)的图象如图所示,则a 、b 、c 的符号为( ) A 、a <0,b >0,c >0 B 、a <0,b >0,c <0 C 、a <0,b <0,c >0 D 、a <0,b <0,c <0 2、二次函数2y ax bx c =++ (a ≠0)的图象如图所示,则a 、b 、c 的符号为( ) A 、a >0,b >0,c =0 B 、a <0,b >0,c =0 C 、a <0,b <0,c <0 D 、a >0,b <0,c =03、二次函数2y ax bx c =++ (a ≠0)的图象如图 所示,则a 、b 、c 、 △的符号为( ) A 、a >0,b=0,c >0,△>0 B 、a <0,b >0,c <0,△=0 C 、a >0,b =0,c <0,△>0 D 、a <0,b =0,c <0,△<04.二次函数2y ax bx c =++中,如果a >0,b <0,c <0,那么这个二次函数图象的顶点必在第 象限.师:同学们做完了吗?谁来说一下你的答案和想法.生1:第一题选B .因为该抛物线开口向下,所以a <0;其对称轴在y 轴的右侧,所以a 、b 异号,即b >0;又因为它与y 轴交与负半轴上,所以c <0.生2:第二题选A .因为该抛物线开口向上,所以a >0;其对称轴在y 轴的左侧,所以a 、b 同号,即b >0;又因为它与坐标轴轴交原点上,所以c =0.生3:第三题选C .因为该抛物线开口向上,所以a >0;其对称轴是y 轴, b =0;又因为它与坐标轴轴交负半轴上,所以c <0;它与x 轴有两个交点,所以△<0.生4:根据已知条件画出它的大致图像可以看出,这个二次函数图象的顶点必在第四象限. 师:这一位同学的解题思路体现的正是数形结合思想. 5、抛物线的平移师:接下来我们再来复习一下有关“抛物线的平移”的问题.谁来说一下该类题目的解题思路.生:有关抛物线的平移问题,必须将抛物线的解析式写成顶点式,然后遵循“左加右减,上加下减”的原则,而且左右平移变化的是二次项,上下平移变化的是常数项. 师:概括的非常好.下面我们就来实践一下: 课件出示:(1)二次函数22y x =的图象向 平移 个单位可得到22y x =-3的图象; 二次函数22y x =的图象向 平移 个单位可得到22(3)y x =-的图象.(2)二次函数22y x =的图象先向 平移 个单位,再向 平移 个单位可得到函数22(1)2y x =++的图象.(3)由二次函数2y x =的图象经过如何平移可以得到函数256y x x =-+的图象. 师:同学们做完了没有?谁来说一下?生1:二次函数22y x =的图象向下平移3个单位可得到22y x =-3的图象;二次函数22y x =的图象向右平移3个单位可得到22(3)y x =-的图象.生2:二次函数22y x =的图象先向左平移1个单位,再向上平移2个单位可得到函数22(1)2y x =++的图象.生3:256y x x =-+化成顶点式是251()24y x =--,可以看出它是由2y x =先向右平移52个单位,再向下平移14个单位得到的. 师:这一类的题目还有两种变式考查,其一是给出平移后的解析式,求原来的解析式;其二是图像不变,移动坐标系,同学们思考一下这两类题目应该怎样解决? 生:我认为这两类题目的解法是一样的,就是“倒过来”.师:精辟!就是这样的,比如“二次函数的图象先向左平移1个单位,再向上平移2个单位可得到函数22(1)2y x =++的图象,求原来的解析式”,那就将22(1)2y x =++的图象先向右平移1个单位,再向下平移2个单位就行了,得到的答案是…… 生:22y x =6、二次函数与一元二次方程的关系师:最后还有一个重头戏,那就是二次函数与一元二次方程的关系.同学们来看这个表格大家能把他填写完整吗?判别式(师:二次函数20ax bx c ++=的图象和x 轴交点的横坐标,便是对应的一元二次方程20ax bx c ++=的解.我们再来看一下下面各题,同学们现在练习本上作答,一会儿找同学来说. 课件出示:(1)如果关于x 的一元二次方程220x x m -+=有两个相等的实数根,则m = ,此时抛物线22y x x m =-+与x 轴有 个交点.(2)已知抛物线28y x x c =-+的顶点在 x 轴上,则c = .(3)一元二次方程 23100x x +-=的两个根是1252,3x x =-=,那么二次函数2310y x x =+-与x 轴的交点坐标是 . 学生独立练习. 师:谁来回答一下?生1:因为关于x 的一元二次方程220x x m -+=有两个相等的实数根,所以2(2)4=0m --,解得=1m ,此时抛物线22y x x m =-+与x 轴有1个交点.生2:已知抛物线28y x x c =-+的顶点在 x 轴上,就说明改抛物线与x 轴只有一个交点,所以2(8)4=0c --,解得c =16.生3:一元二次方程23100x x +-=的解,就是对应的二次函数2310y x x =+-的图象和x 轴交点的横坐标,所以二次函数2310y x x =+-与x 轴的交点坐标是 (-2,0),(53,0). 师:二次函数有关的知识点特别的多,但没想到的是同学们掌握的这么扎实,下面我们来做一道综合性的题目,同学们有没有信心? 生:有.7、二次函数的综合运用师:好,那同学们来尝试一下吧!课件出示:已知抛物线2y ax bx c =++与抛物线237y x x =--+的形状相同,顶点在直线x =1上,且顶点到x 轴的距离为5,请写出满足此条件的抛物线的解析式. 学生在练习本上尝试解答.师:同学们做完了没有?都得到了几个答案? 生1:1个. 生2:2个. 生3:4个.师:那我们请得到4个答案的同学到黑板前来讲一下.同学们欢迎!生:我是这样想的已知抛物线2y ax bx c =++与抛物线237y x x =--+的形状相同,说明这两个抛物线的a 值得绝对值是一样的,所以1a =±.又因为顶点在直线x =1上,且顶点到x 轴的距离为5,所以顶点为(1,5)或(1,-5),组合起来,抛物线的解析式有以下四种情况:2(1)5y x =-+,2(1)5y x =--,2(1)5y x =--+,2(1)5y x =---.师:考虑的已经非常全面了,其他同学还有什么需要补充的吗? 生:最后得到的解析式是不是需要化成一般形式?师:这个问题提的非常有必要,在一般情况下我们不管是用什么形式求解的抛物线的解析式,最后都要化成一般形式.设计意图:结合具体的例子回顾本章的内容,使学生对所学内容在思想方法上有一定的提升. 三、课堂小结.师:复习到这儿,同学们能不能把本章的知识网络结构简单的呈现一下. 小组讨论并拿出自己的作品.师利用实物投影仪投出学生的作品: 其中的两份作品: (1)(2)二次函数最值问题 与一元二次方程的关系 2x- 2ax c+师:同学们对本章的知识点概括的很全面,下面我们再来实践一下吧.设计意图:通过规范的语言,归纳新知识的框架,回顾本章学习的主要内容. 四、巩固练习(一)课件演示题组一:1.在同一个直角坐标系中作出二次函数212y x =-,21(1)2y x =-+,21(1)32y x =-+-的图象,并简要说明它们之间的关系.设计意图:概念题组;这组题目是在学习概念、性质的基础上,知识的重现及知识的应用,通过学习讨论得以充分巩固.2.如图,一位篮球运动员跳起投篮,球沿抛物线运行,然后准确落在篮框内,已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少? 设计意图:考查学生用二次函数解决简单的实际问题,并能灵活应用题中自变量和因变量各自的不同含义有效地解决实际问。

九年级数学下册 2.1 二次函数教案 (新版)北师大版

九年级数学下册 2.1 二次函数教案 (新版)北师大版

课题:2.1 二次函数教学目标:1.探索并归纳二次函数的定义.2.能够用二次函数表示简单的变量之间的关系.3. 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,获得用二次函数表示变量之间关系的体验,并通过合作交流体验学习的乐趣.教学重、难点:重点:理解二次函数的概念.难点:经历探索,分析和建立两个变量之间的二次函数关系的过程.课前准备:多媒体课件.教学过程:一、复习回顾,创景导入1、温故知新(多媒体出示复习回顾问题)①回顾我们学过的知识,想一想我们用什么来描述两个变量之间的关系?②到目前为止我们学过了哪些函数?它们的关系式分别是怎样的?处理方式:先由学生独立思考,然后找学生口答上述问题,师生共同补充.2、情境引入问题①现有一根12m长的绳子,用它围成一个矩形,如何围法,才能使矩行的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗?问题②很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”.【教师板书课题:2.1 二次函数】设计意图:复习旧知识,为学习新知识奠定基础,设问质疑引出新知识,使学生产生强烈的求知欲望,充分调动了学生的学习积极性和主动性.二、合作探究,获取新知活动内容1:(多媒体出示)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.问题1:问题中有哪些变量?其中哪些是自变量?哪些是因变量?问题2:假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?问题3:如果果园橙子树的总产量为y个,那么请你写出y与x之间的关系式.处理方式:分步按顺序依次完成上述三个问题:找学生口答,然后师生共同补充;处理完这三个问题后,教师可继续提问:在上述问题中,增种多少棵橙子树,可以使果园的总产量最多?并引导学生合作探究.教师要鼓励学生大胆猜想,用自己的方法去解决问题,对学生的做法给予指导和肯定.再出基础上出示下表让学生填写,进而验证自己的猜想.设计意图:让学生数学活动过程中初步感受到这种“新”的函数在表现形式和函数值的增减性上与以前所学函数的差异,以及在解决最大值问题中的作用.活动内容2:(多媒体出示)设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税).处理方式:先让学生自主独立探求,尝试写出y与x之间的函数表达式.在独立自主探求的基础上,小组进行合作交流,共同探讨.然后展示答案,教师对于解决问题有困难的学生从以下两个方面进行指导:⑴银行的储蓄利率是随时间的变化而变化的,利率是一个变量;⑵利息=本金×利率×期数(时间).设计意图:让学生通过解决实际生活中的数学问题,进一步了解掌握用函数表达式反应变量的变化过程.三、归纳总结,生成新知活动内容1:二次函数定义一般地,若两个变量x ,y 之间的对应关系可以表示成2y ax bx c =++(其中a ,b , c 是常数,0a ≠)的形式,则称y 是x 的二次函数(quadratic funcion) .其中x 是自变量,a 为二次项系数,2ax 叫做二次项,b 为一次项系数,bx 叫做一次项,c 为常数项.活动内容2:概念理解1、函数2y ax bx c =++ (其中a ,b ,c 是常数)当a ,b ,c 满足什么条件时 (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?2、下列函数中,哪些是二次函数? 2(1)y x =; 21(2)y x= ; 2(3)21y x x =-- ; (4)(1)y x x =- ; 2(5)(1)(1)(1)y x x x =--+- 2(6)y ax bx c =++3、分别说出下列二次函数的二次项系数、一次项系数和常数项:2(1)1y x =+ ; 2(2)3712y x x =+-; (3)2(1)y x x =-4.用总长为60m 的篱笆围成矩形场地,场地面积S(m ²)与矩形一边长a(m)之间的关系是什么?是函数关系吗?是哪一种函数?处理方式:先让学生自主独立思考,尝试解答,然后找学生口答;师生共同纠错.设计意图:进一步加深对二次函数概念的理解与认识,学会运用概念解决一些简单的数学问题.同时对二次函数的特征及注意事项进行强调:(1)等号左边是变量y ,右边是关于自 变量x 的整式;(2)a ,b ,c 为常数,且0a ≠;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项;(4)自变量x 的取值范围是任意实数.活动内容3:应用提升例 已知函数22(2)21m y m x x -=++-是二次函数,求m 的值.处理方式:先给学生两分钟时间独立思考尝试解答,然后找学生板演,学生评析,老师纠正并对二次项系数20m +≠重点做强调.四、回顾反思,提炼升华活动内容:通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家.处理方式:学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.五、达标检测,反馈提高(多媒体出示)活动内容:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.1.函数2()y m n x mx n =-++是二次函数的条件是( )A .m 、n 为常数,且m ≠0B .m 、n 为常数,且m ≠nC .m 、n 为常数,且n ≠0D .m 、n 可以为任何常数 2.半径为3的圆,如果半径增加2x ,则面积S 与x 之间的函数表达式为( )A .22(3)S x π=+B .9S x π=+C .22(3)S x π=+ D .24129S x x π=++ 3.下列函数关系中,可以看作二次函数y=ax 2+bx +c (a ≠0)模型的是( )A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.4.下列函数中,二次函数是( )A .261y x =+B .61y x =+C .61y x =+D .261y x=+ 5.若函数m m x m y --=2)1(2为二次函数,则m 的值为 .6.在生活中,我们知道,当导线有电流通过时,就会发热,它们满足这样一个表达式:若导线电阻为R ,通过的电流强度为I ,则导线在单位时间所产生的热量Q=RI 2.若某段导线电阻为0.5欧姆,通过的电流为5安培,则我们可以算出这段导线单位时间产生的热量Q= .7.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售出价定为x元,每天所赚利润为y元,请你写出y与x之间的函数表达式?处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.六、布置作业,课堂延伸(多媒体出示)基础作业:课本 P30 习题2.1 第1题,第3题,第4题.拓展作业:助学P210 自主评价第1——6题.板书设计:百度文库是百度发布的供网友在线分享文档的平台。

九年级数学下册 第2章 二次函数教案 北师大版

九年级数学下册 第2章 二次函数教案 北师大版

九年级数学下册 第2章 二次函数教案 北师大版§2.1二次函数所描述的关系教学目标1、 经历探索和表示二次函数关系过程,获得用二次函数表示变量之间关系体验2、 能够表示简单变量之间的二次函数关系3、 能够利用尝试求值的方法解决实际问题,如猜测增种多少棵橙子树可以使橙子的总产量最多的问题 教学重点和难点重点:表示简单变量之间的二次函数关系 难点:利用尝试求值的方法解决实际问题 教学过程设计一、从学生原有的认知结构提出问题在初中阶段,我们已经学习了一次函数、正比例函数、反比例函数、三角函数。

这一章,我们将学习另外一种重要的函数——二次函数。

二、师生共同研究形成概念1、 橙树的产量)100)(5600(x x y +-= 6000010052++-=x x y2、 银行储蓄(课本P38 做一做)做一做是为了降低列式的复杂程度,根据学生的具体情况,教学时可以要求学生考虑利息税。

3、 二次函数定义及一般形式一般地,形如c bx ax y ++=2(a 、b 、c 是常数,0≠a )的函数叫做x 的二次函数。

注意:1)x 的最高次数为2;2)0≠a ,但b 、c 可以为零。

巩固练习 1)课本 P 39 随堂练习 14、 讲解例题 例1、 函数y=(m +2)x22-m +2x -1是二次函数,则m= .例2、 下列函数中是二次函数的有( )①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=21x+x .A .1个B .2个C .3个D .4个例3、①正方形的边长是5,若边长增加x ,面积增加y ,求y 与x 之间函数表达式.② 已知正方形的周长为20,若其边长增加x ,面积增加y ,求y 与x 之间的表达式. ③ 已知正方形的周长是x ,面积为y ,求y 与x 之间的函数表达式. ④已知正方形的边长为x ,若边长增加5,求面积y 与x 的函数表达式.例4、如果人民币一年定期储蓄的年利率是x ,一年到期后,银行将本金和利息自动按一年定期储蓄转存,到期支取时,银行将扣除利息的20%作为利息税.请你写出两年后支付时的本息和y (元)与年利率x 的函数表达式.三、随堂练习 四、小结二次函数定义及一般形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章二次函数1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.通过对实际问题的分析,体会二次函数的意义,形成模型思想.2.能用描点法画出二次函数的图象,并能根据图象对二次函数的性质进行分析,进一步积累研究函数性质的经验,发展几何直观.3.能用配方法将一般的二次函数的表达式化为y=a(x-h)2+k的形式,由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴.4.能利用二次函数的图象求一元二次方程的近似解,理解一元二次方程与二次函数的关系.5.能利用二次函数解决实际问题,对变量的变化情况进行初步讨论,提高应用意识.6.会用待定系数法确定二次函数的表达式.1.通过探索,使学生经历“观察发现——归纳猜想——灵活应用”的过程,体会由一般到特殊的探究方法.进一步体会数形结合思想、函数思想、数学建模等思想方法的运用.2.在具体的情境中去发现问题和提出问题,在合作交流中解决问题.1.要使学生体验数学的文化价值,使学生感受数学美,培养学生利用运动变化的观点观察事物.2.进一步树立科学的人生观、价值观和辩证唯物主义世界观.二次函数是描述现实世界变量之间关系的重要数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章中所提及的求最大利润、最大面积等实际问题.二次函数的图象是抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线形拱桥,抛物线形隧道等.和一次函数、反比例函数一样,二次函数还是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验,为高中阶段继续学习函数做好铺垫.【重点】1.二次函数的概念.2.二次函数的图象与性质及其应用.3.二次函数与一元二次方程的关系.【难点】1.利用二次函数的图象与性质解决相关的实际问题.2.利用二次函数的图象确定一元二次方程的近似根.1.注重实际问题情境的创设,帮助学生形成模型思想.九年级的数学学习抽象性逐渐增强,本章更体现了这一特点.由此,在数学中要创设丰富的实际问题情境,使学生理解二次函数的意义,能够用二次函数表示实际问题,从而建立二次函数模型.2.鼓励学生采用多种方法和方式体会二次函数的性质.讨论二次函数的性质时要尽可能结合图象进行,建议运用多种教学形式,如小组活动、学生讲解等,使学生养成从多个角度认识问题的习惯,进而比较全面准确地理解二次函数的性质.二次函数图象的平移问题是教学中的难点,可以让学生将自己的思路表达出来,互相启发和借鉴,从而在多种理解方式中体会图象平移的核心.3.注重知识之间的联系.教学中要注意数学思想方法的挖掘,关注知识之间的联系.在讨论二次函数图象的对称轴和顶点坐标时,要尽量引导学生进行图象和图象之间、表达式和表达式之间的比较,进而建立图象和表达式之间的联系,以实现对二次函数图象的对称轴和顶点坐标的理解.4.引导学生积极思考.本章内容是初中数学较难的一部分,学生在学习过程中难免会遇到困难,教师要设置适当的问题,引导学生进行探索.在探索二次函数性质的几节课中,教学的速度要放慢,不必急于给出结论甚至应用,而是让学生经历探索新知识的过程,从而真正将知识内化.在本章的学习中,都不要一味地加大计算的难度,部分实际问题可鼓励学生使用计算器进行运算.5.注重信息技术的应用.在本章教学中,要尽可能利用信息技术手段,注重信息技术与本章内容的结合,以便有效地改变教与学的方式,提高课堂教学的效益.例如,在研究二次函数的图象与性质、二次函数与一元二次方程的关系时,可以在学生亲身画图、观察、想象等动手动脑活动的基础上,借助计算机、多媒体向学生展示更加丰富的函数图象,这样不仅为学生理解和掌握相关内容提供更多的形象支持,同时也可以让学生获得视觉上的愉悦,增强好奇心,激发学习兴趣.但不能用计算机、多媒体的演示完全取代学生的亲身实践活动.1二次函数1.经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.1.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.【重点】1.经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.2.能够表示简单变量之间的二次函数关系.【难点】列二次函数关系式表示简单变量之间的关系,并能利用尝试求值的方法解决实际问题.【教师准备】多媒体课件.【学生准备】复习正比例函数、一次函数、反比例函数等函数的相关概念.导入一:课件出示:观察下面的函数关系式:(1)y=2x+5;(2)y=x2+5.这两个函数关系式有什么相同点和不同点?【师生活动】复习正比例函数、一次函数、反比例函数等函数的相关概念.【学生活动】学生独立思考后小组交流,观察新函数的特征,尝试给新函数下定义.[设计意图]通过与一次函数的对比,让学生初步感知二次函数的特征,让学生类比一次函数的概念构建出二次函数的概念.导入二:课件出示:赵州桥,又称大石桥、安济桥,是位于河北省赵县城南五里洨河上的一座石拱桥,是我国古代石拱桥的杰出代表,其设计者是隋代杰出的工匠李春,建造于公元605年.赵州桥的设计构思和工艺的精巧,在我国古桥中是首屈一指的,据世界桥梁的考证,像这样的敞肩拱桥,欧洲到19世纪中期才出现,比我国晚了一千二百多年,赵州桥的雕刻艺术,包括栏板、望柱和锁口石等,其上狮象龙兽形态逼真,琢工的精致秀丽,不愧为文物宝库中的艺术珍品.问题请同学们观察赵州桥的桥拱的形状,它的形状可以近似地看成一种函数图象,这和我们之前所学的函数图象一样吗?[设计意图]通过视频,让学生再次了解赵州桥,在对学生进行爱国主义教育的同时,引出本节课的课题,激发了学生的好奇心和探求新知的欲望.一、体会函数的模型思想结合课本给出的引例、做一做和想一想中的问题,设出未知数,列出关于x的函数关系式.课件出示:【引例】某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.师要求同学们认真分析题目,回答以下问题:(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.【学生活动】独立思考,代表回答:(1)自变量:橙子树的棵数、橙子树之间的距离、橙子树接受阳光的多少等;因变量:橙子的个数、橙子的质量等.(2)如果设果园增种x棵橙子树,那么果园共有(100+x)棵树,平均每棵树结(600-5x)个橙子.(3)果园橙子的总产量y与x之间的关系式为y=(x+100)(600-5x)=-5x2+100x+60000.【师生活动】观察关系式y=-5x2+100x+60000中的y是不是x的函数,并对比所学的函数,感受它们的相同点和不同点:根据函数的定义,y是x的函数,自变量x的最高次数是2,所以通过类比,猜想此函数为二次函数.[设计意图]利用学生熟悉的身边情境,小梯度地设计问题,逐步引导学生分析题目,设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存.如果存款额是100元,那么请你写出两年后的本息和y(元)的表达式.【师生活动】师生共同回忆与存款有关的知识:1.银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量.2.利息=本金×利率×期数(时间).3.本息和=本金+利息.【学生活动】根据上面的提示,独立完成后,小组交流,得出关系式,代表展示.解:y=100(x+1)2=100x2+200x+100.观察y=100x2+200x+100与y=-5x2+100x+60000的相同点.【学生活动】通过观察,寻找它们的相同点,并与同伴相互交流,统一答案.【教师点评】自变量的最高次数都是2.[设计意图]通过对生活中熟悉情境的分析,让学生初步感知函数的模型思想,尝试归问题1已知矩形的周长为40 cm,它的面积可能是100 cm2吗?可能是75 cm2吗?还可能是多少?你能表示这个矩形的面积与其一边长的关系吗?【师生活动】师生先复习一元二次方程及其解法,然后由学生先独立解决,再小组交流,最后代表展示.解:(1)设其中一边长为x cm,则x=-x2+20x=100,解得x1=x2=10.x=-x2+20x=75,解得x1=5,x2=15.这个矩形的面积与其一边长的关系为S=x=-x2+20x.【教师点评】只要和为20的两数都可以作为该矩形的长和宽,所以其面积还可以为问题2两数的和是20,设其中一个数是x,你能写出这两数之积y的表达式吗?【学生活动】学生独立解答,同伴交流.解:y=x(20-x)=-x2+20x.[设计意图]在几何和代数的背景中再次体会函数的模型,为下一步归纳总结二次函数的定义奠定良好的基础.二、二次函数的定义【对比观察】让学生再一次观察三个式子的共同点:(1)y=-5x2+100x+60000;(2)y=100x2+200x+100;(3)y=-x2+20x.【学生活动】观察思考后,小组交流想法,组长发言:共同特点是:①这些式子都是最高次数为2的函数;②表达式右边都是关于x的整式.【教师引导】类比一次函数与反比例函数的表达式,归纳出二次函数的定义及一般形式.【师生总结】二次函数的定义.一般地,若两个变量x,y之间的对应关系可以表示成y=ax2+bx+c(a,b,c是常数,a≠0)的形式,则称y是x的二次函数.【师生活动】探讨a≠0的原因.[设计意图]让学生通过观察、思考、分析等数学活动,从不同实际背景的实例中抽象出二次函数的概念,使之经历概念的形成过程,培养其抽象思维和归纳概括的能力,感受从特殊到一般的数学思想方法,从而突破本节课的难点.[知识拓展]理解二次函数概念的注意事项:①常数a≠0;②自变量x的最高次数为2;③等号的右边是整式;④要确定二次函数的关系式,只要确定a,b,c的值就可以了.【思考】二次函数的表达式y=ax2+bx+c中的a≠0, 系数b,c可以等于0吗?【学生活动】学生思考并交流,得出结论:系数b,c可以等于0.【教师点评】1.二次函数的一般形式:y=ax2+bx+c (a≠0,b≠0,c≠0).2.系数a≠0,但是b,c都可以为0.3.二次函数的几种不同表示形式:(1)y=ax2(a≠0,b=0,c=0).(2) y=ax2+c (a≠0,b=0,c ≠0).(3) y=ax2+bx (a≠0,b≠0,c=0).(4)一般形式:y=ax2+bx+c (a≠0,b≠0,c≠0).(二)二次函数自变量的取值范围【议一议】本节课的上述问题中,自变量能取哪些值?学生讨论各题的取值范围.【教师点评】自变量的取值范围是函数的一个有机组成部分,今后除了解决最值问题外,一般不刻意讨论自变量的取值范围.[设计意图]通过对二次函数一般形式的了解,进一步加深了学生对二次函数概念的理解,是对数学符号语言应用能力的提升,同时强调了易错点.1.二次函数的概念:形如y=ax2+bx+c(其中a,b,c都是常数,a≠0)的函数.2.理解二次函数概念的注意事项:(1)常数a≠0;(2)自变量x的最高次数为2;(3)等号的右边是整式;(4)要确定二次函数的关系式,只要确定a,b,c的值就可以了.1.(2014·兰州中考)下列函数解析式中,一定为二次函数的是()A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+解析:A,y=3x-1是一次函数,故A错误;B,y=ax2+bx+c(a≠0)是二次函数,故B错误;C,s=2t2-2t+1是二次函数,故C正确;D,y=x2+不是二次函数,故D错误.故选C.2.已知二次函数y=1-3x+5x2,则其二次项系数a,一次项系数b,常数项c分别是()A.a=1,b=-3,c=5B.a=1,b=3,c=5C.a=5,b=3,c=1D.a=5,b=-3,c=1解析:∵函数y=1-3x+5x2是二次函数,∴a=5,b=-3,c=1.故选D.3.已知二次函数y=x2+3x-5,当x=2时,y=.解析:当x=2时,y=22+3×2-5=4+6-5=10-5=5.故填5.4.(2014·安徽中考)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.解析:∵一月份新产品的研发资金为a元,二月份起,每月新产品的研发资金与上月相比增长率都是x,∴二月份研发资金为a×(1+x),∴三月份的研发资金y=a×(1+x)×(1+x)=a(1+x)2.故填a(1+x)2.1二次函数二次函数的定义:一般地,若两个变量x,y之间的对应关系可以表示成y=ax2+bx+c(a,b,c是常数,a≠0)的形式,则称y是x的二次函数.一、教材作业【必做题】1.教材第30页随堂练习第1,2题.2.教材第30页习题2.1第1,2题.【选做题】教材第31页习题2.1第3,4题.二、课后作业【基础巩固】1.已知函数:①y=3x-1;②y=3x2-1;③y=3x3+2x2;④y=2x2-2x+1.其中二次函数的个数为()A.1B.2C.3D.42.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是()A.3B.5C.-3或5D.3或-53.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.4.一个边长为2 cm的正方形,将它的边长增加x cm后,增加的面积为y cm2,写出y与x的函数关系式:.5.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,增加赢利,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利y元,每件衬衫降价x元,请你写出y与x之间的关系式.【能力提升】6.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x倍,两年后产品的年产量y与x的函数关系是()A.y=20(1-x)2B.y=20+2xC.y=20(1+x)2D.y=20+20x2+20x7.已知y=(m-1)是关于x的二次函数,则m的值是.8.已知函数y=(m2-m)x2+(m-1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?【拓展探究】9.在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子.镜子的长与宽的比是2∶1.已知镜面玻璃的价格是每平方米120元,边框的价格是每米30元,另外制作这面镜子还需加工费45元.设制作这面镜子的总费用是y元,镜子的宽度是x m.(边框厚度忽略不计)(1)求y与x之间的关系式;(2)如果制作这面镜子共花了195元,求这面镜子的长和宽.【答案与解析】1.B(解析:①y=3x-1为一次函数;②y=3x2-1为二次函数;③y=3x3+2x2自变量最高次数为3,不是二次函数;④y=2x2-2x+1为二次函数.故是二次函数的有2个.)2.D(解析:根据题意,得x2+2x-7=8,即x2+2x-15=0,解得x=3或x=-5.)3.a≠-1(解析:根据二次函数的定义可得a+1≠0,即a≠-1.)4.y=x2+4x(解析:原边长为2 cm的正方形面积为2×2=4(cm2),边长增加x cm后边长变为(x+2)cm,则面积变为(x+2)2 cm2,故y=(x+2)2-4=x2+4x.)5.解:降价x元后的销量为(20+2x)件,单件的利润为(40-x)元,故可得利润y=(40-x)(20+2x)=2(40-x)(10+x)=-2x2+60x+800(0<x<40).6.C(解析:∵某工厂一种产品的年产量是20件,每一年都比上一年的产品增加x倍,∴一年后产品的年产量是20(1+x),∴两年后产品的年产量y与x的函数关系是y=20(1+x)2.)7.-3(解析:∵y=(m-1)是关于x的二次函数,∴m2+2m-1=2,解得m=1或m=-3.∵m-1≠0,∴m ≠1,∴m=-3.故填-3.)8.解:(1)根据一次函数的定义,得m2-m=0,解得m=0或m=1.又∵m-1≠0,即m≠1,∴当m=0时,这个函数是一次函数. (2)根据二次函数的定义,得m2-m≠0,解得m1≠0,m2≠1,∴当m ≠0且m≠1时,这个函数是二次函数.9.解:(1)y=(2x+2x+x+x)×30+45+2x2×120=240x2+180x+45,所以y与x之间的关系式为y=240x2+180x+45. (2)由题意可列方程为240x2+180x+45=195,整理得8x2+6x-5=0,即(2x-1)(4x+5)=0,解得x1=0.5,x2=-1.25(舍去).∴x=0.5,2x=1.答:镜子的长和宽分别是1 m和0.5 m.本节课是二次函数概念的基本认识,知识比较简单,所以学生接受起来比较容易,学生通过自主探究基本上可以掌握本节课的重点知识.本节课的难点是通过实际应用问题认识二次函数的概念,所以在教学时,始终坚持以应用意识为主线,强调观察与思考,分析与归纳.在课堂上,从实际出发提出问题,引导学生从不同的角度分析问题,提出解决方案,并且互相交流,在学习数学的同时培养合作交流的意识.对于少部分基础不太好的学生,进行分层教学,多多引导他们运用类比的思想方法探究二次函数的概念,收到了非常好的效果.对于少部分基础不太好的学生估计不足,对他们的学习状况过于乐观,他们对于函数概念的理解比原来想象的要差,所以在复习回顾这个环节上还应加大力度.要在课前布置复习作业,要求学生复习函数的概念以及正比例函数、一次函数和反比例函数的相关内容,为新课学习做好知识储备.随堂练习(教材第30页)1.解:y=-+3x2与s=1+t+5t2是二次函数.2.解:(1)y=π(1+x)2-π·12=πx2+2πx. (2)当x=1时,y=π·12+2π·1=3π(cm2).当x=时,y=π·()2+2π·=2π(1+)(cm2).当x=2时,y=π·22+2π·2=8π(cm2).习题2.1(教材第30页)1.从左到右依次填:4.9,19.6,44.1,78.4,122.5.2.答案不唯一,如:篮球运动员投篮时,篮球出手后的高度与运行的时间之间是二次函数关系.3.解:(1)根据题意列式为S=2x2+4x(x+0.5)=6x2+2x. (2)y=5(6x2+2x)=30x2+10x.4.解:y=(x-20)t=(x-20)(-3x+70)=-3x2+130x-1400.1.对于本节课知识的学习,学生可以采用自主探究加合作交流的方法,利用“由一般到特殊”的方法去探究新知.2.利用类比一次函数、反比例函数概念的方法得出二次函数的概念及关系式,要重点把握二次函数概念的几个注意事项.在运用二次函数关系式表示数量关系时,要找出题目中的等量关系,这是解决问题的关键.已知函数y=(m2+m).(1)当函数是二次函数时,求m的值;(2)当函数是一次函数时,求m的值.〔解析〕(1)这个函数是二次函数的条件是m2-2m+2=2并且m2+m≠0.(2)这个函数是一次函数的条件是m2-2m+2=1并且m2+m≠0.解:(1)依题意,得m2-2m+2=2,解得m=2或m=0.又m2+m≠0,解得m≠0且m≠-1,因此m=2.(2)依题意,得m2-2m+2=1,解得m1=m2=1.又m2+m≠0,解得m≠0且m≠-1.因此m=1.[解题策略]本题主要考查一次函数与二次函数的定义与一般形式.2二次函数的图象与性质1.经历探索二次函数的图象的画法和性质的过程,获得利用图象研究函数性质的经验.2.能根据描点法画出二次函数的图象,并能根据图象认识和理解二次函数的性质.3.建立二次函数表达式与图象之间的联系,理解表达式中的系数对图象的影响.4.能利用二次函数图象的对称轴和顶点坐标公式解决问题.1.渗透解析几何、数形结合、函数等数学思想,培养学生发现问题、解决问题及逻辑思维的能力.2.通过学生合作交流解决问题,培养学生合作交流的能力及观察、分析、归纳、总结的能力.1.通过数形结合理解二次函数的性质,体验函数具体解决现实问题的功能.2.充分理解并认识到二次函数图象可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求.【重点】1.画出二次函数的图象,并根据图象探究二次函数的性质.2.能利用二次函数图象的对称轴和顶点坐标公式解决问题.【难点】掌握并运用二次函数的图象与性质解决实际问题.第课时1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.3.能够作出二次函数y=-x2的图象,并能够比较它与y=x2图象的异同,初步建立二次函数表达式与图象之间的联系.1.在讨论函数图象的过程中,进一步提高学生运用描点法画函数图象的能力.2.充分运用函数图象认识和理解二次函数的性质,提高发现问题、分析问题和解决问题的能力.1.激发学生学习数学的兴趣,体会学习数学的快乐.2.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养学生的合作交流意识.【重点】作出函数y=±x2的图象,并根据图象认识和理解二次函数y=±x2的性质.【难点】类比函数y=x2的图象及性质学习y=-x2的图象及性质,并能比较出它们的异同点.【教师准备】多媒体课件.【学生准备】复习利用描点法画函数图象的方法及一次函数和反比例函数的图象与性质.导入一:课件出示:【引入】在你打篮球或观看篮球比赛时,你是否注意投篮时篮球的运行路线是什么样的?【学生分析】运行路线先高后低,有一定的弧度,整体是弧形.【引入】这种运行路线所形成的图形在我们日常生活中无处不在,比如喷泉流经过的路线、一些拱形桥的桥拱的形状、导弹运行的路线等.问题这和我们以前所学的函数图象一样吗?[设计意图]通过学生生活中常见的一些物体的运动轨迹引出二次函数的图象,激发学生学习兴趣,提出本节课学习的内容,课堂效果非常好.导入二:思考下面的问题:在二次函数y=x2中,y随x的变化而变化的规律是什么?你想直观地了解它的性质吗?【师生活动】复习一次函数与反比例函数中y随x的变化而变化的规律及其性质.【学生活动】猜想二次函数的图象及其性质,并与其他同学进行交流.[设计意图]开门见山,直入正题,既揭示了本节课的主题,又通过对旧知识的复习,明确了本节课的探究任务.一、画二次函数y=x的图象老师引导学生回忆:画函数图象的一般步骤是什么?【学生活动】1.回忆画函数图象的步骤:列表,描点,连线.2.按上面的步骤画出y=x2的图象.代表展示:(3)用光滑的曲线连接各点.【师生活动】共同订正学生画图过程中所出现的错误.二、二次函数y=x2的性质课件出示:【议一议】对于二次函数y=x2的图象:(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?(3)当x<0时,随着x值的增大,y的值如何变化?当x>0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.思路一【师生活动】要求学生认真观察图象,分组完成5个问题.【学生活动】先独立解决问题后与同伴交流,然后小组内统一答案.代表依次发言.【教师点评】二次函数y=x2的图象是一条抛物线,它的开口方向向上,且关于y轴对称.对称轴与抛物线的交点是抛物线的顶点,它是图象的最低点.思路二【教师明确】二次函数的性质基本上从:开口方向、对称轴、顶点坐标、增减性、最值这五个方面研究.【师生活动】根据对5个问题的探究,完成下面的表格.2y=x数形结合思想.此外,通过小组交流解决问题,进一步培养了团结协作能力.三、再探新知。

相关文档
最新文档