【数学】七年级上册直线、射线、线段、角(同步练习题三套含答案)
人教版数学七年级 上册 4.2直线、射线、 线段 同步练习(带答案)

直线、射线、线段同步练习一、选择题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是A. 线段可以比较大小B. 线段有两个端点C. 两点之间线段最短D. 过两点有且只有一条直线【答案】C【解析】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,2.平面内四条直线最少有a个交点,最多有b个交点,则等于A. 6B. 4C. 2D. 0【答案】A【解答】解:交点个数最多时,,最少有0个.所以,,所以.故选A.3.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离【答案】B【解析】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.4.线段,C为直线AB上的点,且,M、N分别是AC、BC的中点,则MN的长度是A. 6cmB. 5cm或7cmC. 5cmD. 5cm或6cm【答案】C【解析】解:是线段AC的中点,,是线段BC的中点,.以下分2种情况讨论,如图1,当C在线段AB上时,;;如图2,当C在线段AB的延长线上时,;;综上所述,MN的长为5cm.5.如图,从A到B有,,三条路线,最短的路线是,其理由是A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】D【解析】解:从A到B有,,三条路线,最短的路线是,其理由是:两点之间,线段最短,6.如图,已知线段,M是AB中点,点N在AB上,,那么线段MN的长为A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【解析】解:因为,M是AB中点,所以,又因为,所以.7.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 两点确定一条线段【答案】A【解析】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.8.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点C,其中正确的语句的个数有.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】解:线段AB与射线MN不相交,根据图象可得出此选项正确;根据图象点C不在线段AB上,故此选项错误;根据图象可得出直线a和直线b会相交,故此选项错误;根据图象可得出应为延长线段AB,到点C,故此选项错误,故正确的语句的个数是1个.9.数轴上A,B,C三点所表示的数分别为a,b,c,且C在AB上.若,,则下列b,c的关系式,正确的是A. B. C. D.【答案】A解:如图:在AB上,,,又,,.故选A.10.已知线段,C为AB的中点,D是AB上一点,,则线段BD的长为A. 1cmB. 5cmC. 1cm或5cmD. 4cm 【答案】C详解解:线段,C为AB的中点,.当点D在C点左侧,如图1所示时,;当点D在C点右侧,如图2所示时,.线段BD的长为1cm或5cm.故选C.11.如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC::2,则线段AC的长为A. 2cmB. 4cmC. 6cmD. 8cm 【答案】D【解析】解:线段AB的中点为M,设,则,,解得即..12.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种【答案】D解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.13.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm【答案】C【解答】解:如图,当点C在线段AB上时,由线段的和差,得,点M是AC的中点,;点C在线段BC的延长线上,由线段的和差,得,点M是AC的中点,;综上可得:AM长为2cm或6cm.故选C.14.如图,图中的线段共有条.A. 5B. 6C. 7D. 8【答案】B【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.二、填空题(本大题共4小题,共12.0分)15.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,16.火车往返于AB两个城市,中途经过4各站点共6个站点,不同的车站来往需要不同的车票,共有不同的车票______种.【答案】30【解析】解:如图:,车票:AC、CD、DE、EF、FB、AD、AE、AF、AB、CE、CF、CB、DF、DB、EB,BE、BD、FD、BC、FC、EC、BA、FA、EA、DA、BF、FE、ED、DC、CA.火车往返于A、B两个城市,中途经过4个站点共6个站点,不同的车站来往需要不同的车票,共有30种不同的车票.17.已知点O在直线AB上,且线段OA的长度为4 cm,线段OB的长度为6 cm,E、F分别为线段OA、OB的中点,则线段EF的长度为____cm.【答案】1或5【解答】解:当A,B在点O两侧时,如图,;当A,B在点O同侧时,如图,.故答案为1或5.18.如图所示,图中共有_________条直线,_________条射线,_________条线段.【答案】2,13,6.【解答】解:根据直线的定义及图形可得:图中共有2条直线,射线有13条,有6条线段,故答案为2,13,6.三、解答题19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.若,,求MN的长度;若,求MN的长度.【答案】解:是BC的中点,M是AC的中点,,,;是AC的中点,N是BC的中点,,.20.如图,平面上有四个点A、B、C、D,根据下列语句画图:画直线AB;作射线BC;画线段CD连接AD,并将线段AD反向延长至E,使;找到一点F,使点F到A、B、C、D四点的距离之和最短.【答案】解:直线AB、射线BC、线段CD如图所示;点E如图所示;连接AC、BD交于点F,点F即为所求.21.如图,已知三点A、B、C,请用尺规作图完成保留作图痕迹画直线AB;画射线AC;连接BC并延长BC到E,使得.【答案】解:画直线AB如图:;画射线AC如图;如图:CE即为所求.。
(新)初中七年级数学《直线,射线与线段》教学复习讲义典型试题汇编

第15讲直线,射线与线段知识导航1.直线,射线,线段的表示法.2.直线,线段的基本性质.3.线段的度量与比较.4.线段的有关计算.【板块一】直线,射线,线段的有关概念与作图方法技巧1.理解直线,射线,线段的区别与联系.2.直线上有n个点时,线段的条数为(n-1)+(n-2)+(n-3)+…+3+2+1=()12n n-.题型一直线,射线,线段的表示法及基本作图【例1】按下列语句画图:(1)直线l1与直线l2相交于点A,点P在直线l2上,但不在直线l1上;(2)直线a经过点A,而不经过点B;(3)直线l和直线a,b分别交于A,B两点;(4)直线a,b,c两两相交.题型二直线,线段的基本性质【例2】如图,已知A,B,C,D四点中任意三点不在一条直线上.(1)过A,B两点可以画几条直线,为什么?并画出直线AB;(2)作线段AD,射线BC,E在线段AD上,F是线段CD的延长线上一点,画出图形并比较BE+CE与BC的大小,说明理由.DBCA题型三计数问题及其应用【例3】两条直线相交,最多有个交点;三条直线相交,最多有个交点;四条直线相交,最多有个交点;n(n≥2)条直线相交,最多有个交点.【例4】往返于A,B两地的客车,中途停靠三个站(每两站之间的距离都不相等).(1)问有多少种不同的票价?(2)要准备多少种车票?A C D E B针对练习11.下列说法中正确的是( )A .画一条长3cm 的射线B .直线,线段,射线中直线最长C .延长线段到C ,使AC =BAD .延长射线OA 到点C2.如图所示四幅图中,符合“射线P A 与射线PB 是同一条射线”的图为( )PPA BCD3.如图,下列叙述不正确的是( ) A .点O 不在直线AC 上 B .图中共有5条线段C .射线与射线BC 是指同一条射线D .直线AB 与直线CA 是指同一条直线 4.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定28条直线,则n 的值是( )A .6B .7C .8D .95.由上饶到南昌的某一次列车,运行途中停靠的车站依次是:上饶—横峰—弋阳—贵溪—鹰潭—余江—东乡—莲塘—南昌,那么要为这次列车制作的火车票有( )A .9种B .18种C .36种D .72种6.A ,B ,C 三个车站在东西笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )CA .在A 的左侧B .在AB 之间C .在BC 之间D .B 处7.观察下图,并阅读图形下面的相关文字,像这样,20条直线相交,交点最多的个数是()① ② ③ 两条直线相交最多1个交点 三条直线相交最多3个交点 四条直线相交最多6个交点A .100个B .135个C .190个D .200个8.下列三个现象:①用两个钉子就可以把一根木条固定在墙上;②从A 地到B 地架设电线,只要尽可能沿着线段AB 架设,就能节省材料; ③植树时,只要定出两棵树的位置,就能使同一行树在一条直线上. 其中可用“两点确定一条直线”来解释的现象有 (填序号) 9如图,已知四点A ,B ,C ,D ,请按要求画图 (1)画直线AB 与射线CD 交于点M ; (2)连接AC ,BD 交于点N ;(3)连接MN ,并延长至点E ,使NF =NM .A BCD10.如图,平面上有四个点A ,B ,C ,D ,根据下列语句画图; (1)作射线BC ;(2)取一点P ,使点P 即在直线AB 上又在直线CD 上.(3)若A ,C 两点之间距离为4,B ,D 两点之间距离为3,点M 到A ,B ,C ,D 四点距离之和最短,画出点M 的位置,并写出该最小值为 .ACBD【板块二】线段的比较与运算方法技巧1.线段大小比较方法,叠合法,度量法,圆规法及计算推理法. 2.看线段图:用线段的和差表示有关线段. 3.善于用字母表示有关线段,解决复杂计算题. 题型一 线段的大小比较【例5】如图,按下面语句继续画图.(1)分别延长线段AD 和BC ,使它们相交于点M ;(2)延长AB 点N ,使BN =CD ,再连接DN 交线段BC 于点P ; (3)用刻度尺比较线段DP 和PN 的大小.ABCD题型 二 线段的和差运算【例6】如图,点C ,D ,E 都在线段AB 上,已知AD =B C .点E 是线段AB 的中点 (1)比较AC 与DB 的大小; (2)求证:CE =EDE AB C D模型三 线段的等分点【例7】如图,AB =1,廷长AB 至点C ,使AC =2AB ,反向延长AB 至点E ,使AE =13CE(1)线段AC 是线段CE 的几分之几?(2)求段CE 的长。
北师大版七年级数学上册章节同步练习题(全册-共57页)

北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
第四章第06讲难点探究专题:几何图形中动态问题七年级数学上册同步学与练(北师大版2024)[含答案]
![第四章第06讲难点探究专题:几何图形中动态问题七年级数学上册同步学与练(北师大版2024)[含答案]](https://img.taocdn.com/s3/m/e8114f77a31614791711cc7931b765ce05087ac5.png)
第06讲 难点探究专题:几何图形中的动态问题(5类热点题型讲练)目录【考点一 利用分类讨论思想解决几何图形中旋转多解问题】【考点二 几何图形中动角求定值问题】【考点三 几何图形中动角探究数量关系问题】【考点四 几何图形中动角求运动时间问题】【考点五 几何图形中动角之新定义型问题】【考点一 利用分类讨论思想解决几何图形中旋转多解问题】例题:(24-25七年级上·全国·期末)1.如图①,点O 在直线AB 上,过O 作射线,120OC BOC Ð=°,三角板的顶点与点O 重合,边OM 与OB 重合,边ON 在直线AB 的下方.若三角板绕点O 按10/s °的速度沿逆时针方向旋转一周,在旋转的过程中,第 s 时,直线ON 恰好平分锐角AOC Ð(图②).【变式训练】(23-24七年级下·广东广州·期末)2.在同一平面内,将两副直角三角板的两个直角顶点重合,并摆成如图所示的形状.已知30D Ð=°,60E Ð=°,45B C Ð==°∠,若保持三角板ADE 不动,将三角板ABC 绕点A 在平面内旋转.当AB DE ^时,EAC Ð的度数为 .(23-24七年级下·天津和平·期中)3.在数学研究中,观察、猜想、实验验证、得出结论,是我们常用的几何探究方式.请你利用一副含有45°角的直角三角板ABC 和含有30°角的直角三角板BDE 尝试完成探究.试探索;保持三角板ABC 不动,将45°角的顶点与三角板BDE 的60°角的顶点重合,然后摆动三角板BDE ,使得ABD Ð与ABE Ð中其中一个角是另一个角的两倍,请写出所有满足题意的ABE Ð的度数 .【考点二 几何图形中动角求定值问题】例题:(23-24七年级下·辽宁鞍山·开学考试)4.在一次数学实践探究活动中,小明和他的同伴们将一个直角三角尺按如图所示方式放置,发现了其中的奥秘.(1)如图①,三角尺ABP 的直角顶点P 在直线CD 上,点A ,B 在直线CD 的同侧.若40APC Ð=°,求BPD Ð度数.(2)绕点P 旋转三角尺ABP ,使点A ,B 在直线CD 的同侧,如图②,若PM 平分APC Ð,PN 平分BPD Ð,他们发现MPN Ð的度数为定值,请你求出这个定值.(3)绕点P 旋转三角尺ABP ,使点A ,B 在直线CD 的异侧,PM 平分APC Ð,PN 平分BPD Ð,设BPD a Ð=,如图③,探究MPN Ð的度数.【变式训练】(23-24七年级上·江苏徐州·期末)5.已知110AOB Ð=°,40COD Ð=°.OE 平分AOC Ð,OF 平分BOD Ð.(1)如图①,当OB OC ,重合时,求AOE BOF Ð-Ð的值;(2)当COD Ð从图①所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(010t <<);在旋转过程中AOE BOF Ð-Ð的值是否会因t 的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.(23-24七年级下·陕西榆林·开学考试)6.【问题情境】已知,120AOB Ð=°,40COD Ð=°,OE 平分AOC Ð,OF 平分BOD Ð.【特例分析】(1)如图1,当OB 、OC 重合时,求AOE BOF Ð-Ð的值;【深入探究】(2)如图2,当OB 、OC 不重合,OC 在OB 的下方时,设BOC x Ð=,AOE BOF Ð-Ð 的值是否会因为x 的变化而变化? 若不发生变化,请求出该定值;若发生变化,请说明理由;【问题解决】(3)在(2)的条件下,当12COF Ð=°时,求ÐBOE 的度数.(23-24七年级上·广东汕头·期末)7.如图,90AOB Ð=°,40DOE =°∠角的顶点O 互相重合,将AOB Ð绕点O 旋转.(1)当射线OB ,OD 重合时,AOE Ð=______°,(2)在AOB Ð绕点O 旋转的过程中,若射线OB ,OD 与OE 中的某一条射线是另两条射线所夹角的角平分线,则BOD Ð的度数为______;(3)在AOB Ð绕点O 旋转的过程中,若射线OB 始终在DOE Ð的内部.①普于思考的小明发现,在旋转过程中,AOE BOD Ð-Ð的值为定值,请你求出这个定值;②作BOD Ð和AOE Ð的平分线OM ,ON ,在旋转过程中MON Ð的值是否发生变化?若不变,请求出这个定值,若变化,请求出变化的范围.【考点三 几何图形中动角探究数量关系问题】例题:(23-24七年级上·吉林·期末)8.已知90AOB COD Ð=Ð=°,OE 平分BOC Ð.(1)如图,若30AOC Ð=°,则DOE Ð的度数是______°;(直接写出答案)(2)将(1)中的条件“30AOC Ð=°”改为“AOC Ð是锐角”,猜想DOE Ð与AOC Ð的关系,并说明理由.【变式训练】(23-24六年级下·山东烟台·期中)9.如图,90EOC Ð=°,请你根据图形,求解下列问题:(1)在,,,EOA AOC EOB EOD ÐÐÐÐ中,哪些角是锐角?哪些角是直角?哪些角是钝角?哪些角是平角?并用“<”把它们连接起来;(2)BOD Ð是哪两个角的和?(3)写出,,,EOD EOC DOC EOA ÐÐÐÐ中某些角之间的两个等量关系;(4)如果EOD COB Ð=Ð,则BOD Ð的度数为_________°.(2024七年级上·河北·专题练习)10.已知O 为直线AB 上一点,射线OD OC OE 、、位于直线AB 上方,OD 在OE 的左侧,120AOC Ð=°,80DOE Ð=°.(1)如图1,当OD 平分AOC Ð时,求EOB Ð的度数;(2)点F 在射线OB 上,若射线OF 绕点O 逆时针旋转n °(0180n <<且60n ¹),3FOA AOD Ð=Ð.当DOE Ð在AOC Ð内部(图2)和DOE Ð的两边在射线OC 的两侧(图3)时,FOE Ð和EOC Ð的数量关系是否改变,若改变,说明理由,若不变,求出其关系.(23-24七年级上·福建福州·期末)11.如图1,将一副三角板的直角顶点C 叠放在一起.(1)观察分析∶若30DCE Ð=°,则ACB =∠ ,若145ACB Ð=°,则DCE Ð= ;(2)猜想探究∶如图2,若将两个同样的三角尺,60°锐角的顶点A 重合在一起,请你猜想DAB Ð与CAE Ð有何关系,请说明理由;(3)拓展应用∶如图3,如果把任意两个锐角AOB COD ÐÐ、的顶点O 重合在一起,已知AOB a Ð=,COD b Ð=(a 、b 都是锐角),请你直接写出AOD Ð与BOC Ð的关系.(23-24七年级上·江苏苏州·期末)12.数学实践课上,小明同学将直角三角板AOB 的直角顶点O 放在直尺EF 的边缘,将直角三角板绕着顶点O 旋转.(1)若三角板AOB 在EF 的上方,如图1所示.在旋转过程中,小明发现AOE Ð、BOF Ð的大小发生了变化,但它们的和不变,即AOE BOF Ð+Ð=______°.(2)若OA 、OB 分别位于EF 的上方和下方,如图2所示,则AOE Ð、BOF Ð之间的上述关系还成立吗?若不成立,则它们之间有怎样的数量关系?请说明你的理由;(3)射线OM 、ON 分别是AOE Ð、ÐBOE 的角平分线,若三角板AOB 始终在EF 的上方,则旋转过程中,MON Ð的度数是一个定值吗?若是,请求出这个定值;若不是,请说明理由.【考点四 几何图形中动角求运动时间问题】例题:(23-24六年级下·黑龙江哈尔滨·期末)13.在数学实验课中,学生进行操作探究,用一副三角板(其中45ABC ACB Ð=Ð=°,90BAC EDF Ð=Ð=°,30DFE Ð=°,60DEF Ð=°)按如图1所示摆放,边BC 与EF 在同一条直线MN 上(点C 与点E 重合).如图2,将三角板ABC 从图1的位置开始绕点C 以每秒5°的速度顺时针旋转,当边BC 与边EF 重合时停止运动,设三角板ABC 的运动时间为t 秒.(1)当t 为何值时,CA 平分DCF Ð?(2)当t 为何值时,3ACF BCD Ð=Ð?【变式训练】(23-24七年级上·安徽合肥·期末)14.如图,O 为线段AB 上一点,90COD Ð=°,OE 为COD Ð的角平分线,定义OC 与OA 重合时为初始位置,将COD Ð绕着点O 从初始位置开始,以10/°秒的速度顺时针旋转,至OD 与OA 重合时终止.(1)当COD Ð从初始位置旋转6秒,求此时EOB Ð的度数;(2)当COD Ð从初始位置旋转至120EOB Ð=°时,求此时t 的值;(3)当COD Ð从初始位置旋转至EOB m Ð=°时,t =__________秒(用含有m 的代数式直接表示).(23-24七年级上·福建厦门·期末)15.【实践操作】三角尺中的数学(1)如图1,将两块三角尺的直角顶点C 叠放在一起,90ACD ECB Ð=Ð=°.①若38ECD Ð=°,则ACB =∠ ;若150ACB Ð=°,则ECD Ð= ;②猜想ACB Ð与ECD Ð的大小有何数量关系,并说明理由.(2)如图2,若是将两个同样的含60°锐角的直角三角尺叠放在一起,其中60°锐角的顶点A 重合在一起,90ACD AFG Ð=Ð=°.①探究GAC Ð与DAF Ð的大小有何数量关系,并说明理由;②若一开始就将ADC △与AFG V 完全重合(AF 与AC 重合),保持ADC △不动,将AFG V 绕点A 以每秒10°的速度逆时针旋转一周,旋转时间为t .在旋转的过程中,t 为何值时AG AC ^.(24-25七年级上·全国·单元测试)16.如图①,把一副三角板拼在一起,边OA OC ,与直线EF 重合,其中45AOB Ð=°,60COD Ð=°.此时易得75BOD Ð=°.(1)如图②,三角板COD 固定不动,将三角板AOB 绕点O 以每秒5°的速度顺时针开始旋转,在转动过程中,三角板AOB 一直在EOD Ð的内部,设三角板AOB 运动时间为t 秒.①当2t =时,BOD Ð= °;②当t 为何值时,2AOE BOD Ð=Ð?(2)如图③,在(1)的条件下,若OM 平分BOE ON Ð,平分AOD Ð.①当20AOE Ð=°时,MON Ð= °;②请问在三角板AOB 的旋转过程中,MON Ð的度数是否会发生变化?如果发生变化,请说明理由;如果不发生变化,请求出MON Ð的度数.【考点五 几何图形中动角之新定义型问题】例题:(23-24七年级上·陕西汉中·期末)17.【问题背景】如图1,已知射线OC 在AOB Ð的内部,若AOB Ð,AOC Ð和BOC Ð三个角中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB Ð的“量尺金线”.【问题感知】(1)一个角的平分线________这个角的“量尺金线”;(填“是”或“不是”)【问题初探】(2)如图2,60MPN Ð=°.若射线PQ 是MPN Ð的“量尺金线”,则QPN Ð的度数为________;【问题推广】(3)在(2)中,若MPN x Ð=°,060x °<£°,射线PF 从PN 位置开始,以每秒旋转3°的速度绕点P 按逆时针方向旋转,当FPN Ð首次等于180°时停止旋转,设旋转的时间为()s t .当t 为何值时,射线PM 是FPN Ð的“量尺金线”?(用含x 的式子表示出t 即可)【变式训练】(23-24七年级上·辽宁葫芦岛·期末)18.【问题初探】在一个角的内部,从顶点画一条射线,得到三个角,若其中有一个角是另一个角的2倍,则称这条射线是已知角的“奇妙线”.例如:图1中2AOC BOC Ð=Ð,则射线OC 是AOB Ð的“奇妙线”.(1)一个角的角平分线______这个角的“奇妙线”;(填“是”或“不是”)【类比分析】(2)如图2,若60MPN Ð=°,在MPN Ð内部画一条射线PQ ,使PQ 是MPN Ð的“奇妙线”,求MPQ Ð的度数;【变式拓展】(3)如图3,若60MPN Ð=°,且射线PQ 绕点P 从PN 位置开始以每秒10°的速度逆时针旋转,同时射线PM 以每秒6°的速度也绕点P 逆时针旋转,当射线PQ 与射线PM 重合时全部停止运动.设旋转时间为t 秒,请直接写出t 为何值时,射线PQ 是MPN Ð的“奇妙线”.(2023七年级上·全国·专题练习)19.[阅读理解]定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”,如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分RPT Ð,则有2RPT RPS Ð=Ð,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.[迁移运用](1)如图1,射线PT _____(选填“是”或“不是”)射线PS ,PR 的“双倍和谐线”;射线PS _____(选填“是”或“不是”)射线PR ,PT 的“双倍和谐线”;(2)如图2,点O 在直线MN 上,OA MN ^,40AOB Ð=°,射线OC 从ON 出发,绕点O 以每秒4°的速度逆时针旋转,运动时间为t 秒,当射线OC 与射线OA 重合时,运动停止.①当射线OA 是射线OB ,OC 的“双倍和谐线”时,求t 的值;②若在射线OC 旋转的同时,AOB Ð绕点O 以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD 平分AOB Ð,当射线OC 位于射线OD 左侧且射线OC 是射线OM ,OD 的“双倍和谐线”时,求CON Ð的度数.1.6或24##24或6【分析】本题考查了角平分线的定义,解题的关键是分两种情况进行讨论,分别依据直线ON 恰好平分锐角AOC Ð,得到三角板旋转的度数,进而得到t 的值.【详解】解:120BOC Ð=°Q ,60AOC \Ð=°,当直线ON 恰好平分锐角AOC Ð时,如图:1302BON AOC Ð=Ð=°,此时,三角板旋转的角度为903060°-°=°,60106t \=°¸°=;当ON 在AOC Ð的内部时,如图:三角板旋转的角度为3609030240°-°-°=°,2401024t \=°¸°=;t \的值为:6或24.故答案为:6或24.2.60°或120°【分析】本题考查了三角板中角度计算问题及三角形内角和,根据题意画出图形,再根据角之间的关系结合三角形内角和即可得出答案.【详解】解:当∥D E A C 时,AB DE ^,分以下两种情况:如图1所示,DE AC Q P ,60E Ð=°60EAC E \Ð=Ð=°;如图2所示,DE AC Q P ,90CAB Ð=°190CAB \Ð=Ð=°60E Ð=°Q 9030EAB E \Ð=°-Ð=°3090120EAC EAB CAB \Ð=Ð+Ð=°+°=°综上所述,EAC Ð的度数为60°或120°根据答案为:60°或120°.3.20°或40°或60°或120°【分析】本题考查的是角的和差运算.分四种情况分别画出图形,再结合角的和差运算可得答案.【详解】解:如图,∵2ABD ABE Ð=Ð,60EBD Ð=°,∴602ABE ABE Ð+°=Ð,∴60ABE Ð=°;如图,∵2ABD ABE Ð=Ð,60EBD Ð=°,∴360EBD ABE ABD ABE Ð=Ð+Ð=Ð=°,∴20ABE Ð=°,如图,∵2ABE ABD Ð=Ð,60EBD Ð=°,∴1602EBD ABE ABD ABE ABE Ð=Ð+Ð=Ð+Ð=°,∴40ABE Ð=°,如图,∵2ABE ABD Ð=Ð,60EBD Ð=°,∴1602EBD ABE ABD ABE Ð=Ð-Ð=Ð=°,∴120ABE Ð=°,综上:ABE Ð为20°或40°或60°或120°.故答案为:20°或40°或60°或120°.4.(1)50BPD Ð=°(2)135MPN Ð=°(3)135MPN Ð=°【分析】本题考查角的和差,角平分线的定义.(1)根据180BPD APB APC Ð=°-Ð-Ð即可求解;(2)由90APB Ð=°可得到90APC BPD Ð+Ð=°,根据角平分线的定义,可得45APM BPN Ð+Ð=°,进而根据角的和差即可求解;(3)由BPD a Ð=,90APB Ð=°求得=90APD a а-,90APC a Ð=°+,根据角平分线的定义可得1452APM a Ð=°+,12DPN a Ð=,最后根据MPN APM APD DPN Ð=Ð+Ð+Ð即可求解.【详解】(1)解:90APB Ð=°Q ,40APC Ð=°180180904050BPD APB APC \Ð=°-Ð-Ð=°-°-°=°;(2)解:∵90APB Ð=°,∴18090APC BPD APB +=°-Ð=°∠∠,PM Q 平分APC Ð,PN 平分BPD Ð,12APM CPM APC \Ð=Ð=Ð,12BPN DPN BPD Ð=Ð=Ð()111190452222APM BPN APC BPD APC BPD \Ð+Ð=Ð+Ð=Ð+Ð=´°=°,4590135MPN APM APB BPN \Ð=Ð+Ð+Ð=°+°=°;(3)解:∵BPD a Ð=,90APB Ð=°,∴90APD APB BPD a Ð=Ð-Ð=°-,∴()1801809090APC APD a a Ð=°-Ð=°-°-=°+,∵PM 平分APC Ð,∴()1119045222APM APC a a Ð=Ð=°+=°+,∵PN 平分BPD Ð,∴1122DPN BPD a Ð=Ð=,11459013522MPN APM APD DPN a a a Ð=Ð+Ð+Ð=°++°-+=°.5.(1)35°;(2)不变,35AOE BOF Ð-Ð=°是定值,见解析.【分析】本题考查了角度的计算以及角的平分线的定义,理解角度之间的和差关系是解题的关键.∠AOE -∠BOF 的值是定值,(1)首先根据角平分线的定义求得111105522AOE AOB а´°=Ð==,11402022BOF COD Ð=Ð=´°=°,然后求解即可;(2)首先由题意可得3BOC t Ð=°,再根据角平分线的定义得出31103AOC AOB t t Ð=Ð+°=°+°,3403BOD COD t t Ð=Ð+°=°+°,然后由角平分的定义解答即可.【详解】(1)解:∵OE 平分AOC Ð,OF 平分BOD Ð,∴111105522AOE AOB а´°=Ð==,11402022BOF COD Ð=Ð=´°=°,∴552035AOE BOF Ð-Ð=°-°=°;(2)解:35AOE BOF Ð-Ð=°是定值.理由如下:由题意:3BOC t Ð=°,则31103AOC AOB t t Ð=Ð+°=°+°,3403BOD COD t t Ð=Ð+°=°+°,∵OE 平分AOC Ð,OF 平分BOD Ð,∴()113110355222AOE AOC t t Ð=Ð=°+°=°+°,()11340320222BOF BOD t t Ð=Ð=°+°=°+°,3355203522AOE BOF t t æöæöÐ-Ð=°+°-°+°=°ç÷ç÷èøèø.∴AOE BOF Ð-Ð的值是定值,定值为35°.6.(1)40°;(2)不会变化,定值为40°;(3)52°【分析】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.(1)首先根据角平分线的定义求得AOE Ð和BOF Ð的度数,然后根据AOE BOF Ð-Ð求解;(2)根据角平分线的定义得出:()11112060222AOE AOC x x Ð=Ð=´°+=°+,1160204022AOE BOF x x æöÐ-Ð=°+-°+=°ç÷èø,然后代入求值即可;(3)根据12COF Ð=°,40COD Ð=°,求出401228DOF Ð=°-°=°,根据角平分线的定义求出28BOD BOF Ð=Ð=°,1682EOC AOC Ð=Ð=°,根据角度间的关系,求出结果即可.【详解】解:(1)∵OE 平分AOC Ð,OF 平分BOD Ð,120AOB Ð=°,40COD Ð=°,∴111206022AOE AOC Ð=Ð=´°=°,11402022BOF BOD Ð=Ð==°´°,∴602040AOE BOF Ð-Ð-°=°=°;(2)AOE BOF Ð-Ð的值是定值;理由如下:∵BOC x Ð=,∴120AOC AOB BOC x Ð=Ð+Ð=°+,40BOD x Ð=°+,∵OE 平分AOC Ð,OF 平分BOD Ð,∴()11112060222AOE AOC x x Ð=Ð=´°+=°+,()1114020222BOF BOD x x Ð=Ð=´°+=°+,∴1160204022AOE BOF x x æöÐ-Ð=°+-°+=°ç÷èø.∴AOE BOF Ð-Ð的值是定值,定值为40°;(3)∵12COF Ð=°,40COD Ð=°,∴401228DOF Ð=°-°=°,∵OF 平分BOD Ð,∴28BOD BOF Ð=Ð=°,∴281216BOC BOD COF Ð=Ð-Ð=°-°=°,∴12016136AOC AOB BOC Ð=Ð+Ð=°+°=°,∵OE 平分AOC Ð,∴1682EOC AOC Ð=Ð=°,∴681652BOE EOC BOC Ð=Ð-Ð=°-°=°.7.(1)50(2)20°或40°或80°(3)①50°;②MON Ð度数不发生变化,为定值65°,理由见解析【分析】本题主要考查了几何图形中角度的计算,角平分线的定义:(1)直接根据角之间的关系进行求解即可;(2)分当OB 是DOE Ð的角平分线时,当OD 是ÐBOE 的角平分线时,当OE 是BOD Ð的角平分线时,三种情况讨论求解即可;(3)①9040AOE BOE BOD BOE =°-=°-∠∠,∠∠,则904050AOE BOD BOE BOE -=°--°+=°∠∠∠∠;②先由角平分线的定义得到11452022EON BOE BOM BOE =°-=°-∠∠,∠,再由MON EON BOE BOM =++∠∠∠∠即可得到结论.【详解】(1)解:∵90AOB Ð=°,40DOE =°∠,∴当射线OB ,OD 重合时,50AOE AOB DOE Ð=-=°∠∠,故答案为:50;(2)解:如图2-1所示,当OB 是DOE Ð的角平分线时,则1202BOD DOE ==°∠;如图2-2所示,当OD 是ÐBOE 的角平分线时,则40BOD DOE ==°∠∠;如图2-3所示,当OE 是BOD Ð的角平分线时,则280BOD DOE Ð=Ð=°;综上所述,BOD Ð的度数为20°或40°或80°;(3)解:①如图所示,∵90AOB Ð=°,40DOE =°∠,∴9040AOE BOE BOD BOE =°-=°-∠∠,∠∠,∴904050AOE BOD BOE BOE -=°--°+=°∠∠∠∠;②MON Ð度数不发生变化,为定值65°,理由如下:∵90AOB Ð=°,40DOE =°∠,∴9040AOE BOE BOD BOE =°-=°-∠∠,∠∠,∵OM ,ON 分别是BOD Ð和AOE Ð的平分线,∴111145202222EON AOE BOE BOM BOD BOE ==°-==°-∠,∠,∴1145206522MON EON BOE BOM BOE BOE BOE =++=°-++°-=°∠∠∠∠∠∠∠.8.(1)60(2)1452DOE AOC Ð=°+Ð,理由见解析【分析】本题主要考查了几何图形中角度的计算,角平分线的定义:(1)先根据角之间的关系得到60BOC Ð=°,再由角平分线的定义得到30COE Ð=°,则60DOE COD COE =Ð-=°∠∠;(2)仿照(1)求解即可.【详解】(1)解:∵30AOC Ð=°,90AOB Ð=°,∴60BOC AOB AOC Ð=Ð-Ð=°,∵OE 平分BOC Ð,∴1302COE BOC Ð=Ð=°,∵90COD Ð=°,∴60DOE COD COE =Ð-=°∠∠,(2)解:1452DOE AOC Ð=°+Ð,理由如下:∵90AOB Ð=°,∴90BOC AOB AOC AOC Ð=Ð-Ð=°-Ð,∵OE 平分BOC Ð,∴114522COE BOC AOC ==°-∠,∵90COD Ð=°,∴1190454522DOE COD COE AOC AOC =Ð-=°-°+=°+∠∠∠∠.9.(1)EOD Ð是锐角,AOC Ð是直角,EOB Ð是钝角,EOA Ð是平角,EOD AOC EOB EOA Ð<Ð<Ð<Ð(2)BOD BOC CODÐ=Ð+Ð(3)EOC EOD DOC Ð=Ð+Ð,2EOA EOC Ð=Ð(答案不唯一)(4)90【分析】本题考查锐角、直角、钝角、平角的定义,角度之间的和差关系,利用数形结合的数学思想是解决问题的关键.(1)根据锐角、直角、钝角、平角的定义,结合图形即可求解;(2)根据图形即可求解;(3)根据图形即可求解;(4)由题意可知90EOD COD Ð+Ð=°,结合EOD COB Ð=Ð,即可得90COB COD BOD Ð+Ð=Ð=°.【详解】(1)解:由图可知,EOD Ð是锐角,AOC Ð是直角,EOB Ð是钝角,EOA Ð是平角,则EOD AOC EOB EOA Ð<Ð<Ð<Ð;(2)由图可知,BOD BOC COD Ð=Ð+Ð;(3)由图可知,EOC EOD DOC Ð=Ð+Ð,2EOA EOC Ð=Ð(答案不唯一)(4)∵90EOC Ð=°,∴90EOD COD Ð+Ð=°,又∵EOD COB Ð=Ð,∴90COB COD BOD Ð+Ð=Ð=°,10.(1)40°(2)不改变,2EOF EOC Ð=Ð,理由见解析【分析】此题主要考查了角平分线的性质以及角的有关计算,解决问题的关键是根据角的和差关系进行计算.(1)利用角平分线和图形寻找出角之间的关系即可得到结论;(2)分两种情况,找出角之间的关系即可求出结论.【详解】(1)解:∵OD 平分AOC Ð,∴1602COD AOC Ð=Ð=°,∵80DOE Ð=°.∴20COE DOE COD Ð=Ð-Ð=°,∴12020140AOE AOC COE Ð=Ð+Ð=°+°=°,∴18040BOE AOE Ð=°-Ð=°;(2)解:①DOE Ð在AOC Ð内部时.令AOD x Ð=°,则2DOF x Ð=°,802EOF x Ð=°-°,∴()120280240EOC x x x x Ð=°-°+°+°-°=°-°,∴2EOF EOC Ð=Ð;②DOE Ð的两边在射线OC 的两侧时.令AOD x Ð=°,则2DOF x Ð=°,120DOC x Ð=°-°,280EOF x Ð=°-°,∴()8012040EOC x x Ð=°-°-°=°-°,∴2EOF EOC Ð=Ð.综上可得,FOE Ð和EOC Ð的数量关系不改变,2EOF EOC Ð=Ð.11.(1) 150°; 35°;(2)180DAB CAE ÐÐ+=°,理由见解析.(3)AOD BOC a b Ð+Ð=+,理由见解析.【分析】(1)根据三角板的特点及角度和差求解即可;(2)根据三角板的特点及角度和差求解即可;(3)根据角度和差求解即可;本题考查了角的运算,熟练掌握角度和差运算是解题的关键.【详解】(1)由题意可得:90ACD BCE Ð=Ð=°,∵30DCE Ð=°,∴60ACE BCD Ð=Ð=°,∴9060150ACB BCE ACE Ð=Ð+Ð=°+°=°,同理:145ACB BCE ACE Ð=Ð+Ð=°,∴55ACE Ð=°,∴35DCE Ð=°故答案为:150°,35°;(2)180DAB CAE ÐÐ+=°,理由:由题意可知:90BAE DAC Ð=Ð=°,∴90DAE EAC EAC CAB Ð+Ð=Ð+Ð=°,∴180DAE EAC EAC CAB Ð+Ð+Ð+Ð=°,∵DAB DAE EAC EAC Ð=Ð+Ð+Ð,∴180DAB CAE ÐÐ+=°;(3)AOD BOC a b Ð+Ð=+,理由:∵AOB AOC COB a Ð=Ð+Ð=,COD COB BOD b Ð=Ð+Ð=,∴COD AOB COB BOD AOC COB a b Ð+Ð=Ð+Ð+Ð+Ð=+,∵AOD BOD AOC COB Ð=Ð+Ð+Ð,∴AOD BOC a b Ð+Ð=+.12.(1)90(2)90AOE BOF Ð-Ð=°,理由见解析(3)MON Ð的度数是一个定值,理由见解析【分析】本题考查了三角板中角度计算,与角平分线的有关的角的计算,掌握角平分线的定义是解答本题的关键.(1)由平角的性质可求解;(2)由补角和余角的性质可求解;(3)由角平分线的定义和平角的性质可求解.【详解】(1)解: 180AOE AOB BOF ÐÐÐ++=°Q ,90AOE BOF \Ð+Ð=°;故答案为90;(2)解:90AOE BOF Ð-Ð=°,理由如下:180AOE AOF Ð+Ð=°Q ,90AOF BOF Ð+Ð=°,90AOE BOF \Ð-Ð=°;(3)解:MON Ð的度数是一个定值,理由如下:Q 射线OM 、ON 分别是AOE Ð、ÐBOE 的角平分线,12EOM AOE \Ð=Ð,111()45222EON BOE AOE AOB AOE Ð=Ð=Ð+Ð=Ð+°,45MON EON EOM \Ð=Ð-Ð=°.13.(1)t 为21(2)t 为22.5秒或24.75秒【分析】本题考查了三角板有关的角度计算,角平分线的定义,(1)根据角平分线的定义可得12ACF DCF Ð=Ð,从而得到三角板ABC 旋转的角度,再结合三角板ABC 运动的速度即可解题;(2)根据3ACF BCD Ð=Ð出现的情况分类讨论,再根据3ACF BCD Ð=Ð将BCD Ð与DCF ACB Ð-Ð的结果关联即可求解.【详解】(1)解:如图1,CA Q 平分DCF Ð,11603022ACF DCF \Ð=Ð=´°=°,\旋转的角度为1804530105°-°-°=°,105521t \=¸=(秒),答:当t 为21时,CA 平分DCF Ð.(2)解:由题可知:当3ACF BCD Ð=Ð时会出现以下两种情况:①如图2,由图可得:()()604515ACF BCD DCF ACD ACB ACD DCF ACB Ð-Ð=Ð-Ð-Ð-Ð=Ð-Ð=°-°=°,又3ACF BCD Ð=ÐQ ,315BCD BCD \Ð-Ð=°,7.5BCD Ð=°,\旋转的角度为180607.5112.5--=°°°°,\112.5522.5t ==¸(秒),②如图3,由图可得:()()604515ACF BCD DCF ACD ACD ACB DCF ACB Ð+Ð=Ð-Ð+Ð-Ð=Ð-Ð=°-°=°,又3ACF BCD Ð=ÐQ ,315BCD BCD \Ð+Ð=°, 3.75BCD Ð=°,\旋转的角度为18060 3.75123.75°°°°-+=,123.75524.75t \=¸=(秒),答:当t 为22.5秒或24.75秒时,3ACF BCD Ð=Ð.14.(1)75°(2)1.5(3)27102m t =-+【分析】本题考查了解一元一次方程,角平分线的定义,几何图形中的角度计算;(1)根据角平分线的定义可得1452DOE COD Ð=Ð=°,根据题意得61060AOC Ð=´°=°,进而根据补角的定义求得BOD Ð,根据EOB EOD DOB Ð=Ð+Ð,即可求解;(2)根据(1)的方法得出()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,将120EOB Ð=°代入,解一元一次方程,即可求解;(3)根据(2)可得()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,将EOB m Ð=°代入,解关于t 的一元一次方程,即可求解.【详解】(1)解:∵90COD Ð=°,OE 为COD Ð的角平分线,∴1452DOE COD Ð=Ð=°,∵COD Ð从初始位置旋转6秒,∴61060AOC Ð=´°=°,∴6090150AOD AOC COD Ð=Ð+=°+°=°,∴18030DOB AOD Ð=°-Ð=°,∴453075EOB EOD DOB Ð=Ð+Ð=°+°=°,(2)解:∵90COD Ð=°,OE 为COD Ð的角平分线,∴1452DOE COD Ð=Ð=°,∵COD Ð从初始位置旋转t 秒,∴1010AOC t t Ð=´°=°,∴1090AOD AOC COD t Ð=Ð+=°+°,∴()1809010DOB AOD t Ð=°-Ð=-°,∴()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,∵120EOB Ð=°,∴459010120t +-=,解得: 1.5t =;(3)解:由(2)可得()459010EOB EOD DOB t Ð=Ð+Ð=°+-°,∵EOB m Ð=°,∴459010t m +-=,解得:27102m t =-+.故答案为:27102m -+.15.(1)①142°;30°;②猜想180ACB ECD Ð+а=,理由见解析(2)①120GAC DAF Ð+Ð=°,理由见解析;②3或21【分析】此题考查了三角板中角度的技术,解答本题的关键是仔细观察图形,根据图形得出各角之间的关系.(1)①本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出ACB Ð,DCE Ð的度数;②根据前两个小问题的结论猜想ACB Ð与ECD Ð的大小关系,结合前两问的解决思路得出证明;(2)①根据(1)解决思路确定GAC Ð与DAF Ð的大小并证明即可;②分点G 在AC 上方和下方两种情况讨论求解即可.【详解】(1)解:①∵=90ACD а,38ECD Ð=°,∴52ACE ACD ECD =-=°∠∠∠,∵90ECB Ð=°,∴142ACB ECB ACE =+=°∠∠∠;∵150ACB Ð=°,90ECB Ð=°,∴60ACE ACB ECB =-=°∠∠∠,∵=90ACD а,∴30ECD ACD ACE Ð=-=°∠∠故答案为:142°;30°;②猜想180ACB ECD Ð+а=,理由如下:∵90ECB Ð=°,=90ACD а,∴90ACB ACD DCB DCB Ð=Ð+Ð=°+Ð,90DCE ECB DCB DCB Ð=Ð-Ð=°-Ð,∴180ACB ECD Ð+а=;(2)解:①120GAC DAF Ð+Ð=°,理由如下:∵GAC GAD DAF FAC Ð=Ð+Ð+Ð,60DAC GAF ÐÐ==°,∴GAC DAF GAD DAF FAC DAFÐÐÐÐÐÐ+=+++GAF DAC=Ð+Ð6060=°+°120=°;②如图所示,当点G 在AC 上方时,∵AG AC ^,∴90CAG Ð=°,∴由(3)①的结论可知,12030DAF CAG =°-=°∠∠,∴30CAF CAD DAF =-=°∠∠∠,∴30310t ==;如图所示,当点G 在AC 下方时,则在3t =的基础上再旋转180度时,AG AC ^,∴18032110t =+=;综上所述,t 的值为3或21.16.(1)①65;②10;(2)①37.5;②MON Ð的度数不发生变化,理由见解析.【分析】本题考查了几何图形中的角度计算,角平分线的定义,读懂题意,能准确得出相应角的数量关系是解本题的关键.(1)①根据题意和角的和差进行求解即可;②由2,AOE BOD Ð=Ð结合题意可得75,AOE BOD Ð+Ð=°从而得出25,50,BOD AOE Ð=°Ð=°进而求出时间t ;(2)①根据OM 平分,BOE ÐON 平分,AO D Ð可得1,2EOM BOM EOB Ð=Ð=Ð 12AON DON AOD Ð=Ð=Ð,则可以MON MOB BON Ð=Ð+Ð整理为()1,2MON EOA BOD Ð=Ð+Ð进而得出答案;②根据OM 平分,BOE ÐON 平分AOD Ð,可得122.5,2MOE AOE Ð=Ð+° 160,2NOD AOE Ð=°-Ð进而推导出1112022.56022MON AOE AOE Ð=°-Ð-°-°+Ð,继而得出答案.【详解】(1)解:①当2t =时,5210AOE Ð=°´=° ,∴751065BOD Ð=°-°=°,故答案为:65;②∵2AOE BOD Ð=Ð,75AOE BOD Ð+Ð=°,∴25BOD Ð=°,∴50AOE Ð=°,50105t °\==°(秒) ,∴当t 为10秒时,2AOE BOD Ð=Ð;(2)解:①∵OM 平分BOE ON Ð,平分AOD Ð,11,22EOM BOM EOB AON DON AOD \Ð=Ð=ÐÐ=Ð=Ð,12MON MOB BON EOB BOD DON \Ð=Ð+Ð=Ð+Ð-Ð()1122EOA AOB BOD AOD =Ð+Ð+Ð-Ð()111222EOA AOB BOD AOB BOD =Ð+Ð+Ð-Ð+Ð11112222EOA AOB BOD AOB BOD =Ð+Ð+Ð-Ð-Ð()12EOA BOD =Ð+Ð1752=´°37.5,=°故答案为:37.5;°MON Ð②的度数不发生变化,理由如下:∵OM 平分,BOE Ð111()22.5222MOE BOE AOE ACB AOE °\Ð=Ð=Ð+Ð=Ð+∵ON 平分,AO D Ð()1118022NOD AOD DOC AOE \Ð=Ð=°-Ð-Ð()11202AOE =°-Ð160,2AOE =°-Ð180MON DOC MOE NOD Ð=°-Ð-Ð-ÐQ1112022.56022MON AOE AOE æöæö\Ð=°-Ð+°-°-Ðç÷ç÷èøèø1112022.56022AOE AOE =°-Ð-°-°+Ð37.5=°.17.(1)是;(2)20或30或40;(3)12x ,23x ,x ;【分析】本题主要考查新定义下的角的计算,几何图形中的角度计算,理解题意,列出相应的式子求解,是解题关键.(1)根据“量尺金线”的定义进行判断即可;(2)根据“量尺金线”的定义分三种情况讨论计算即可;(3)射线PM 是FPN Ð的“量尺金线”,PM 在FPN Ð的内部,PF 在NPM Ð的外部,然后分三种情况求解即可.【详解】解:(1)一个角的平分线中,大角是小角的2倍,满足“量尺金线”的定义,故答案为:是;(2)60MPN Ð=°,射线PQ 是MPN Ð的“量尺金线”,根据“量尺金线”的定义分三种情况讨论:当2QPN MPQ Ð=Ð时,如图,∵260QPN MPQ Ð+Ð=°,∴260403QPN Ð=°´=°;当2MPQ QPN Ð=Ð时,如图,∵260QPN MPQ Ð+Ð=°∴160203QPN Ð=´°=°;当2NPM QPN Ð=Ð时,如图,∵60MPN Ð=°,∴160302QPN Ð=´°=°;综上:当QPN Ð为20°,30°,40°时,射线PQ 是MPN Ð的“量尺金线”.(3)∵射线PM 是FPN Ð的“量尺金线”,∴PM 在FPN Ð的内部,∴PF 在NPM Ð的外部;分三种情况:①如图,当2NPM FPM Ð=Ð时,如图所示:1122FPM NPM x Ð=Ð=°∴1322FPN NPM FPM x x x Ð=Ð+Ð=°+°=°,∴()313s 22t x x =¸=;②如图,当2FPN MPN Ð=Ð时,如图所示:∴2FPN x Ð=°,∴()2s 3t x =;③当2FPM NPM Ð=Ð时,如图所示:∵2FPM x Ð=°,∴3FPN NPM FPM x Ð=Ð+Ð=°,∴()33s t x x =¸=;综上:当t 为x 或12x 或23x 时,射线PM 是FPN Ð的“量尺金线”.18.(1)是;(2)20°或30°或40°;(3)307t =或52或203.【分析】(1)根据奇妙线定义即可求解;(2)分三种情况,根据奇妙线定义即可求解;(3)分三种情况,根据奇妙线定义得到方程求解即可;本题考查了角平分线定义,角度和差,奇妙线的定义,理解“奇妙线”的定义是解题的关键.【详解】(1)解:根据角平分线的定义可知:由OC 平分AOB Ð,得:22AOB AOC BOC Ð=Ð=Ð,则一个角的角平分线是这个角的“奇妙线”,故答案为:是;(2)①当PQ 平分MPN Ð时,∴30MPQ Ð=°,②当13MPQ MPN Ð=Ð时,∴20MPQ Ð=°,③23MPQ MPN Ð=Ð,∴40MPQ Ð=°,则综上可知:MPQ Ð的度数为20°或30°或40°;(3)由题意得:如图,则10NPQ t Ð=°,16MPM t Ð=°,则11606M PN MPN MPM t Ð=Ð+Ð=°+°,∵射线PQ 是1M PN Ð的“奇妙线”,∴112NPQ M PN Ð=Ð①,即()1106062t t °=°+°,解得:307t =,113NPQ M PN Ð=Ð②,即()1106063t t °=°+°,解得:52=t ,123NPQ M PN Ð=Ð③,即()2106063t t °=°+°,解得:203t =,综上可知:307t =或52或203.19.(1)是;不是(2)①t 的值为52或352;②CON Ð的度数为160°或172°【分析】本题主要考查了角的计算、角平分线的定义等知识点,理解并熟练应用新定义是解题的关键.(1)利用“双倍和谐线”的定义结合图形进行判断即可;(2)①由题意得:904AOC t Ð=°-,40AOB Ð=°,利用分类讨论的思想方法分2AOC AOB Ð=Ð或2AOB AOC Ð=Ð两种情况讨论解答,依据上述等式列出方程即可;②由题意得:4CON t Ð=,902AON t Ð=°+,20AOD Ð=°,702DON AON AOD t Ð=Ð-Ð=°+,利用分类讨论的思想方法分2COM COD Ð=Ð或2COD COM Ð=Ð两种情况讨论解答,依据上述等式列出方程,解方程即可求得结论.【详解】(1)解:∵PS 平分RPT Ð,∴2TPR TPS Ð=Ð,∴射线PT 是射线PS ,PR 的“双倍和谐线”;∵PS 平分RPT Ð,∴RPS TPS Ð=Ð,∴射线PS 不是射线PR ,PT 的“双倍和谐线”.故答案为:是;不是.(2)解:①由题意得:904AOC t Ð=°-,40AOB Ð=°.∵射线OA 是射线OB ,OC 的“双倍和谐线”,∴2AOC AOB Ð=Ð或2AOB AOC Ð=Ð,如图所示:当2AOC AOB Ð=Ð时,则:904240t -=´,解得:52=t ;如图所示:当2AOB AOC Ð=Ð时,则:()402904t =-,解得:352t =;综上,当射线OA 是射线OB 、OC 的“双倍和谐线”时,t 的值为52或352;②由题意得:4CON t Ð=,902AON t Ð=°+,20AOD Ð=°,702DON AON AOD t Ð=Ð-Ð=°+,∵当射线OC 与射线OA 重合时,运动停止,∴此时AON CON Ð=Ð,∴9024t t +=,解得:45t =.∴当45t =秒时,运动停止,此时180AON Ð=°,。
浙教版初中数学七年级上册《6.2 线段、射线和直线》同步练习卷

浙教新版七年级上学期《6.2 线段、射线和直线》同步练习卷一.选择题(共15小题)1.下列语句中准确规范的是()A.直线a,b相交于一点mB.反向延长直线ABC.反向延长射线AO(O是端点)D.延长线段AB到C,使BC=AB2.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n 等于()A.36B.37C.38D.393.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A.B.C.D.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段5.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个6.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种7.下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线8.如图,共有线段()A.3条B.4条C.5条D.6条9.下列图形中,能够相交的是()A.B.C.D.10.如图,下列语句错误的是()A.直线AC和BD是不同的直线B.AD=AB+BC+CDC.射线DC和DB是同一条射线D.射线BA和BD不是同一条射线11.手电筒射出去的光线,给我们的形象是()A.直线B.射线C.线段D.折线12.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.13.下列说法正确的是()A.画射线OA=3cmB.线段AB和线段BA不是同一条线段C.点A和直线l的位置关系有两种D.三条直线相交有3个交点14.下列说法错误的是()A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点15.下列说法正确的是()A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短二.填空题(共10小题)16.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC 上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有(只填写序号).18.如图,能用图中字母表示的射线有条.19.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是:.20.下列说法①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点,其中正确说法的序号为.21.木工师傅用两颗水泥钉就能将一根木条固定在墙壁上,这样做的数学依据是.22.画一条直线,可将平面分成2个部分,画2条直线,最多可将平面分成4个部分,那么,画6条直线最多可将平面分成个部分.23.在一个平面内,画1条直线,能把平面分成1+1=2部分;画2条直线,最多能把平面分成1+1+2=4部分;画3条直线,最多能把平面分成1+1+2+3=7部分;画4条直线,最多能把平面分成1+1+2+3+4=11部分;…照此规律计算下去,画2003条直线,最多能把平面分成部分.24.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.25.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是.浙教新版七年级上学期《6.2 线段、射线和直线》同步练习卷参考答案与试题解析一.选择题(共15小题)1.下列语句中准确规范的是()A.直线a,b相交于一点mB.反向延长直线ABC.反向延长射线AO(O是端点)D.延长线段AB到C,使BC=AB【分析】依据点的表示方法、直线的概念、射线的概念以及线段的概念进行判断即可.【解答】解:A.直线a,b相交于一点M,故本选项错误;B.反向延长射线AB,故本选项错误C.反向延长射线AO(A是端点),故本选项错误D.延长线段AB到C,使BC=AB,本选项正确;故选:D.【点评】本题主要考查了直线、射线以及线段的概念的运用,解题时注意:射线是直线的一部分,用两个字母表示时,端点的字母放在前边.2.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n 等于()A.36B.37C.38D.39【分析】求出平面内的9条直线任两条都相交,交点数最多的个数,再求得最少的个数;则即可求得m+n的值.【解答】解:三条最多交点数的情况.就是第三条与前面两条都相交:1+2四条最多交点数的情况.就是第四条与前面三条都相交:1+2+3五条最多交点数的情况.就是第五条与前面四条都相交:1+2+3+4六条最多交点数的情况.就是第六条与前面五条都相交:1+2+3+4+5七条最多交点数的情况.就是第七条与前面六条都相交:1+2+3+5+6八条最多交点数的情况.就是第八条与前面七条都相交:1+2+3+5+6+7九条最多交点数的情况.就是第九条与前面八条都相交:1+2+3+4+5+6+7+8=36则m+n=1+36=37故选:B.【点评】此题考查了平面图形,主要培养学生的观察能力和几何想象能力.3.对于直线AB,线段CD,射线EF,在下列各图中能相交的是()A.B.C.D.【分析】根据直线能向两方无限延伸,射线能向一方无限延伸,线段不能延伸,据此进行选择.【解答】解:B中这条直线与这条射线能相交;A、C、D中直线和射线不能相交.故选B.【点评】本题考查了直线、射线和线段的性质.4.如图,下列不正确的几何语句是()A.直线AB与直线BA是同一条直线B.射线OA与射线OB是同一条射线C.射线OA与射线AB是同一条射线D.线段AB与线段BA是同一条线段【分析】根据射线的概念:直线上的一点和它一旁的部分所组成的图形称为射线;所以,射线的端点不同,则射线不同.【解答】解:A正确,因为直线向两方无限延伸;B正确,射线的端点和方向都相同;C错误,因为射线的端点不相同;D正确.故选:C.【点评】解答本题必须结合图形,否则易误选B.5.观察图形,下列说法正确的个数是()(1)直线BA和直线AB是同一条直线(2)射线AC和射线AD是同一条射线(3)AB+BD>AD(4)三条直线两两相交时,一定有三个交点.A.1个B.2个C.3个D.4个【分析】结合图形,区别各概念之间的联系.【解答】解:(1)直线BA和直线AB是同一条直线,直线没有端点,此说法正确;(2)射线AC和射线AD是同一条射线,都是以A为端点,同一方向的射线,正确;(3)AB+BD>AD,三角形两边之和大于第三边,所以此说法正确;(4)三条直线两两相交时,一定有三个交点,错误,可能有1个交点的情况.所以共有3个正确.故选:C.【点评】在图形中,找出正确的说法,一定要注意对几何问题各种情况的讨论.6.由唐山开往石家庄的G6738次列车,途中有5个停车站,这次列车的不同票价最多有()A.21种B.10种C.42种D.20种【分析】根据票价由线段的长短决定,再得出线段的数量可得.【解答】解:根据题意知这次列车的不同票价最多有6+5+4+3+2+1=21(种),故选:A.【点评】本题主要考查直线、射线、线段,解题的关键是掌握线段的定义.7.下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不能是同一条直线【分析】此题较简单要熟知直线、线段、射线的概念及直线、线段、射线的表示方法.【解答】解:A、直线AB和直线BA是同一条直线;B、正确;C、线段AB和线段BA是一条线段;D、直线AB和直线a能是同一条直线.故选:B.【点评】直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点.8.如图,共有线段()A.3条B.4条C.5条D.6条【分析】根据在一直线上有n点,一共能组成线段的条数的公式:,代入可直接选出答案.【解答】解:线段AB、AC、AD、BC、BD、CD共六条,也可以根据公式计算,=6,故选D.【点评】在线段的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.9.下列图形中,能够相交的是()A.B.C.D.【分析】根据线段不能延伸,射线只能沿延伸方向延伸,直线可沿两个方向延伸可判断出答案.【解答】解:A、射线只能沿延伸方向延伸可得不能相交,故本选项错误;B、射线只能沿延伸方向延伸而线段不能延伸,两者不可能相交,故本选项错误;C、射线只能沿延伸方向延伸可得两者不能相交,故本选项错误;D、射线在延伸方向上延伸两者可相交,故本选项正确;故选:D.【点评】本题考查直线、射线及线段的知识,属于基础题,掌握线段不能延伸,射线只能沿延伸方向延伸,直线可沿两个方向延伸是关键.10.如图,下列语句错误的是()A.直线AC和BD是不同的直线B.AD=AB+BC+CDC.射线DC和DB是同一条射线D.射线BA和BD不是同一条射线【分析】根据直线、射线和线段的定义进行选择.【解答】解:A、因为直线是可以向两端无限延伸的,它可以用这条直线上的两个点来表示,所以在A中,直线AC和BD是相同的直线,故A错.B、∵AD是三条线段的和,∴AD=AB+BC+CD,故B正确;C、端点相同的两条射线是同一条射线,则射线DC和DB是同一条射线,故C正确;D、端点相同的两条射线是同一条射线,所以在D中,射线BA和BD不是同一条射线,方向相反,故D正确;故选:A.【点评】本题考查了直线、射线、线段的区别和联系,注:线段有长度,而直线和射线无长度.11.手电筒射出去的光线,给我们的形象是()A.直线B.射线C.线段D.折线【分析】根据直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸即可解答.【解答】解:手电筒发射出来的光线,给我们的感觉是手电筒是射线的端点,光的传播方向是射线的方向,故给我们的感觉是射线.故选:B.【点评】本题考查射线的定义,属于基础题,注意掌握射线的概念是关键.12.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选:B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.13.下列说法正确的是()A.画射线OA=3cmB.线段AB和线段BA不是同一条线段C.点A和直线l的位置关系有两种D.三条直线相交有3个交点【分析】根据直线、射线及线段的定义及三条直线相交可分三种情况可判断出各选项.【解答】解:A、射线没有长度,故本选项错误;B、线段AB和线段BA是同一条线段,故本选项错误;C、点A和直线l的位置关系有两种,在直线上或在直线外,故本选项正确;D、三条直线相交可能有1个或2个或3个交点,故本选项错误.故选:C.【点评】本题考查直线、射线及线段的知识,属于基础题,注意掌握基本定义是解决本题的关键.14.下列说法错误的是()A.图①中直线l经过点AB.图②中直线a、b相交于点AC.图③中点C在线段AB上D.图④中射线CD与线段AB有公共点【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【解答】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.【点评】此题考查了直线、射线、线段,用到的知识点是点和直线的位置关系,射线和线段的延伸性,直线与直线相交的表示方法等,是一道基础题.15.下列说法正确的是()A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短【分析】过一点可以做无数条直线,根据直线的表示方法,AB和BA是表示同一条直线.而射线AB和射线BA表示不同的射线,射线与直线不能进行长短的比较.【解答】解:A、过一点P可以作无数条直线;故A错误.B、直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故B正确.C、射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故C错误.D、射线和直线不能进行长短的比较;故D错误.故选:B.【点评】本题考查了直线,射线的表示方法,要能够区分直线与射线的不同点.二.填空题(共10小题)16.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同n个点最多可确定15条直线,则n的值为6.【分析】根据平面内不同的两点确定一条直线,不同的三点最多确定三条直线找出规律,再把15代入所得关系式进行解答即可.【解答】解:∵平面内不同的两点确定1条直线,;平面内不同的三点最多确定3条直线,即=3;平面内不同的四点确定6条直线,即=6,∴平面内不同的n点确定(n≥2)条直线,∴平面内的不同n个点最多可确定15条直线时,=15,解得n=﹣5(舍去)或n=6.故答案为:6.【点评】本题考查的是直线、射线、线段,是个规律性题目,关键知道当不在同一平面上的n个点时,可确定多少条直线,代入15即可求出n的值.17.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC 上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有③(只填写序号).【分析】根据直线与点的位置关系即可求解.【解答】解:①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为:③.【点评】考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义,是基础题型.18.如图,能用图中字母表示的射线有5条.【分析】结合图形,根据射线的概念和表示方法进行分析.【解答】解:图中可以表示的射线有AC、CB、CD,DB,BD5条.【点评】此题考查了射线的概念和射线的表示方法.19.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是:两点确定一条直线.【分析】由直线公理可直接得出答案.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点评】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.20.下列说法①两条不同的直线可能有无数个公共点;②两条不同的射线可能有无数个公共点;③两条不同的线段可能有无数个公共点;④一条直线和一条线段可能有无数个公共点,其中正确说法的序号为②③④.【分析】直接利用直线、射线、线段的定义进而判断得出答案.【解答】解:①两条不同的直线可能有无数个公共点,错误,直线不能重合;②两条不同的射线可能有无数个公共点,正确;③两条不同的线段可能有无数个公共点,正确;④一条直线和一条线段可能有无数个公共点,正确.故答案为:②③④.【点评】此题主要考查了直线、射线、线段的定义,正确把握相关定义是解题关键.21.木工师傅用两颗水泥钉就能将一根木条固定在墙壁上,这样做的数学依据是两点确定一条直线.【分析】根据两点确定一条直线进行解答.【解答】解:∵要两颗水泥钉,∴符合两点确定一条直线.故答案为:两点确定一条直线.【点评】本题主要考查了两点确定一条直线的性质,熟练掌握直线的性质是解题关键.22.画一条直线,可将平面分成2个部分,画2条直线,最多可将平面分成4个部分,那么,画6条直线最多可将平面分成22个部分.【分析】根据一条直线、两条直线、三条直线的情况可总结出规律,从而可得出答案.【解答】解:由图可知,(1)有一条直线时,最多分成2部分;(2)有两条直线时,最多分成2+2=4部分;(3)有三条直线时,最多分成1+1+2+3=7部分;(4)设直线条数有n条,分成的平面最多有m个.有以下规律:m=1+1+…+(n﹣1)+n=+1.∴画6条直线最多可将平面分成+1=22.故答案为:22.【点评】本题考查直线与平面的关系,有一定难度,注意培养由特殊到一般再到特殊的探究意识.23.在一个平面内,画1条直线,能把平面分成1+1=2部分;画2条直线,最多能把平面分成1+1+2=4部分;画3条直线,最多能把平面分成1+1+2+3=7部分;画4条直线,最多能把平面分成1+1+2+3+4=11部分;…照此规律计算下去,画2003条直线,最多能把平面分成2007007部分.【分析】根据题意可得出规律,画n条直线,最多能把平面分成(1+1+2+…+n)个部分,由此可得出答案.【解答】解:由题意得:画2003条直线,最多能把平面分成1+1+2+ (2003)20072007个部分.故答案为:20072007.【点评】本题考查直线射线及线段的知识,难度不大,关键是根据题意得出规律.24.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是两点确定一条直线.【分析】根据直线的性质:两点确定一条直线即可得.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.【点评】本题主要考查直线的性质,掌握直线的性质:两点确定一条直线是解题的关键.25.植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是两点确定一条直线.【分析】直接利用直线的性质分析得出答案.【解答】解:植树时,只要定出两个树坑的位置,就能确定同一行的树坑所在的直线,用到的数学道理是两点确定一条直线.故答案为:两点确定一条直线.【点评】此题主要考查了直线的性质,正确把握直线的性质是解题关键.。
人教版数学七年级上册 第4章 4.1---4.2测试题含答案

4.1几何图形同步测试题一.选择题1.用一个平面去截一个圆柱体,截面图形不可能是()A.长方形B.梯形C.圆形D.椭圆形2.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是()A.8B.7C.6D.43.如图,是一个五棱柱形的几何体,下列关于该几何体的叙述正确的是()A.有4条侧棱B.有5个面C.有10条棱D.有10个顶点4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图的正方体纸巾盒,它的平面展开图是()A.B.C.D.6.下列叙述,其中正确的个数有()①最小的正整数是0;②若x+2是一个负数,则x一定是负数;③用一个平面去裁正方体,截面不可能是六边形;④三角形是多边形;⑤绝对值等于本身的数是正整数.A.1B.2C.3D.47.如图所示的纸片折成一个长方体纸盒,折得的纸盒是()A.B.C.D.8.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a的值是()A.1B.﹣2C.3D.﹣b9.如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.10.下列图形中,可能是右面正方体的展开图的是()A.B.C.D.二.填空题11.如果一个棱柱共有15条棱,那么它一定是棱柱.12.设三棱柱有a个面,b条棱,c个顶点,则a﹣b﹣c=.13.国际奥委会会旗上的图案是由代表五大洲的五个圆环组成,现在在某体育馆前的草坪上要修剪出此图案.已知,每个圆环的内、外半径分别为4米和5米,图中重叠部分的每个小曲边四边形的面积都为1平方米,若修剪每平方米的人工费用为10元,则修剪此图案所花费的人工费为元(π取3).14.如图,阴影部分的面积为cm2.(π取3.14)15.如图,两个长方形重叠部分的面积相当于大长方形面积的,相当于小长方形面积的,则大长方形和小长方形的面积的比值是.三.解答题16.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)17.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.18.随着城市的发展,住宅小区的建设也越来越人性化.为响应国家“加强全民健身设施建设,发展全民体育”的号召.哈市某小区在一片足够大的空地中,改建出一个休闲广场,规划设计如图所示.求塑胶地面休闲区的面积;(2)求广场中种植花卉的面积与种植草坪的面积的比值.19.如图①所示,从大正方体中截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为a,图②中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图①中大正方体的棱长之和为m,图②中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图③是图②几何体的表面展开图吗?如有错误,请予修正.参考答案与试题解析一.选择题1.【解答】解:用一个平面去截一个圆柱体,截面图形可能是:长方形、正方形,圆形,椭圆形,但不可能是梯形.故选:B.2.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,所以原正方体相对两个面上的数字和最小的是6,故选:C.3.【解答】解:图中几何体是正五棱柱,五棱柱有7个面,10个顶点,5条侧棱,15条棱.故选:D.4.【解答】解:A、不能折叠成正方体,故选项错误;B、不能折成圆锥,故选项错误;C、能折成圆柱,故选项正确;D、不能折成三棱柱,故选项错误.故选:C.5.【解答】解:观察图形可知,正方体纸巾盒的平面展开图是:故选:C.6.【解答】解:①最小的正整数是1,此结论错误;②若x+2是一个负数,则x一定是负数是正确的;③用一个平面去截正方体,截面与六个面均相交即可得六边形,此结论错误;④三角形是多边形是正确的;⑤绝对值等于本身的数是正数和0,此结论错误.故正确的个数有2个.故选:B.7.【解答】解:如图所示:根据题意可知,A的对面是A′,B的对面是B′,C的对面是C′,A的短边阴影与C 的阴影重合.故用形如图所示的纸片折成一个长方体纸盒,折得的纸盒是C.故选:C.8.【解答】解:“a”与“﹣1”相对,∵相对面上的两个数都互为相反数,∴a=1.故选:A.9.【解答】解:因圆柱的展开面为长方形,AC展开应该是两线段,且有公共点C.故选:A.10.【解答】解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符合,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.二.填空题(共5小题)11.【解答】解:15÷3=5,所以是五棱柱,故答案为:五.12.【解答】解:三棱柱有5个面,9条棱,6个顶点,因此a=5,b=9,c=6,所以a﹣b﹣c=5﹣9﹣6=﹣10,故答案为:﹣10.13.【解答】解:修剪草坪的面积为:(π×52﹣π×42)×5﹣1×8=45π﹣8≈127(平方米),因此所用的人工费为10×127=1270(元),故答案为:1270.14.【解答】解:S 阴影=S 圆形﹣S 正方形=π×()2﹣×2×2=π﹣2≈1.14(cm 2), 故答案为:1.14.15.【解答】解:设阴影部分的面积为k , ∵阴影部分的面积相当于大长方形面积的,相当于小长方形面积的,∴大长方形的面积为6k ,小长方形的面积为4k , ∴大长方形和小长方形的面积的比值为=, 故答案为:.三.解答题(共4小题)16.【解答】解:(1)50×4+20×4+18=298(cm ),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm 2), (3)π×()2×50=5000π≈15700(cm 3), 答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.17.【解答】解:(1)(1×3+2×3+1×2)×2=22(m 2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm ,2cm ,1cm ,因此体积为:1×2×3=6(m 3),18.【解答】解:(1)S 塑胶地面=S 长方形+S 半圆=10×20+π×()2=200+50π≈350(平方米),答:塑胶地面休闲区的面积为350平方米;(2)S 种花卉=S 长方形﹣S 半圆=200﹣150=50(平方米),S 种草坪=S 半圆=50π≈150(平方米), 所以,广场中种植花卉的面积与种植草坪的面积的比值为=. 19.【解答】解:(1)根据“切去三个小面”但又“新增三个小面”,因此与原来的表面积相等,即a =b ,故答案为:C;(2)如图②红颜色的棱是多出来的,共6条,如果截去的小正方体的棱长为大正方体的棱长的一半时,n比m正好多出大正方体的3条棱的长度,如果截去的小正方体的棱长不是大正方体的棱长的一半,n比m就不是多出大正方体的人教版数学(七上)第4章 4.2 直线、射线、线段同步练习一、选择题1. 下列各说法一定成立的是( )A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2. 如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是( )A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB3. 如图,点C是线段BD之间的点,有下列结论:( )①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4. 工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线5. 如图所示,不同的线段的条数是( )A.4条B.5条C.10条D.12条6. 射线OA与OB是同一条射线,画图正确的是( )A.B.C.D.7. 如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确8. 下列选项中各有一条射线和一条线段,则它们能相交的是()9. 如图的图示中,直线表示方法正确的有()A.①②③④B.①②C.②④D.①④10. 已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③二、填空题11. 经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.12. 如图,该图中不同的线段数共有__________条.13. 如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.14. 如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.15. 如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.16. 如图,只用圆规,比较下列线段的大小(选填“>”“<”或“=”).(1)图①中,AB____CD,AD____AB,AD____BD;(2)图②中,MN____EF,EF____KE,GM____MN.三、解答题17. 如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.18. 如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.19. 如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.20. 如图,已知A,B,C,D四个点:(1)画直线AB,CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD,BC相交于点O;(4)以点C为端点的射线有几条?请列举出来;(5)以点C为一个端点的线段有几条?请列举出来.21. 如图,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.22. 如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.23. 如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.参考答案一、选择题1. 下列各说法一定成立的是( )A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行【答案】 D2. 如图,用圆规比较两条线段A′B′和AB的长短,其中正确的是( )A.A′B′>AB B.A′B′=ABC.A′B′<AB D.A′B′≤AB【答案】 A3. 如图,点C是线段BD之间的点,有下列结论:( )①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③【答案】B【解析】①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确.故选B.4. 工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( )A.过一点有且只有一条直线B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线【答案】 D5. 如图所示,不同的线段的条数是( )A.4条B.5条C.10条D.12条【答案】 C6. 射线OA与OB是同一条射线,画图正确的是( )A.B.C.D.【答案】 B7. 如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确【答案】 C8. 下列选项中各有一条射线和一条线段,则它们能相交的是()【答案】C【解析】射线可以向一方无限延伸.故选C.9. 如图的图示中,直线表示方法正确的有()A.①②③④B.①②C.②④D.①④【答案】D10. 已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC=BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③【答案】【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.二、填空题11. 经过同一平面内的A,B,C三点中的任意两点,可以作出__________条直线.【答案】1或312. 如图,该图中不同的线段数共有__________条.【答案】613. 如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.【答案】【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.14. 如下图,从小华家去学校共有4条路,第__________条路最近,理由是__________.【答案】③;两点之间,线段最短15. 如图,若D是AB中点,E是BC中点,若AC=8,EC=3,AD=__________.【答案】116. 如图,只用圆规,比较下列线段的大小(选填“>”“<”或“=”).(1)图①中,AB____CD,AD____AB,AD____BD;(2)图②中,MN____EF,EF____KE,GM____MN.【答案】(1)>,=,=(2)=,<,<三、解答题17. 如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.【答案】解:如图所示.18. 如图,B、C是线段AD上两点,且AB:BC:CD=3:2:5,E、F分别是AB、CD的中点,且EF=24,求线段AB、BC、CD的长.【答案】【解析】设AB=3x,则BC=2x,CD=5x,因为E、F分别是AB、CD的中点,所以BE=32x,CF=52x,因为BE+BC+CF=EF,且EF=24,所以32x+2x+52x=24,解得x=4,所以AB=12,BC=8,CD=20.19. 如图所示,C是线段AB上的一点,D是AC的中点,E是BC的中点,如果AB=9cm,AC=5cm.求:(1)AD的长;(2)DE的长.【答案】【解析】(1)因为AC=5cm,D是AC中点,所以AD=DC=12AC=52cm,(2)因为AB=9cm,AC=5cm,所以BC=AB−AC=9−5=4(cm),因为E是BC中点,所以CE=12BC=2cm,所以DE=CD+CE=52+2=92(cm).20. 如图,已知A,B,C,D四个点:(1)画直线AB,CD相交于点P;(2)连接AC和BD并延长AC和BD相交于点Q;(3)连接AD,BC相交于点O;(4)以点C为端点的射线有几条?请列举出来;(5)以点C为一个端点的线段有几条?请列举出来.【答案】解:(1),(2),(3)如答图;(4)以点C为端点的射线有3条,分别是射线CP,射线CD,射线CQ;(5)以点C为一个端点的线段有6条,分别是线段CP,线段CD,线段CA,线段CQ,线段CO,线段CB.21. 如图,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问应把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.【答案】解:如答图,应建在AC,BD连线的交点处.理由:根据两点之间线段最短,将A,C,B,D用线段连起来,路程最短,两线段的交点处建超市可使4个居民小区到购物中心的距离之和最小.22. 如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.【答案】【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.23. 如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.【答案】【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.。
61 线段、射线以及直线(解析版)

2021-2022学年七年级数学上册同步课堂专练(苏科版)6.1线段、射线以及直线一、单选题1.轩轩同学带领自己的学习小组成员预习了“线段、射线、直线”一节的内容后,对下图展开了讨论,下列说法不正确的是()A.直线MN与直线NM是同一条直线B.射线PM与射线MN是同一条射线C.射线PM与射线PN是同一条射线D.线段MN与线段NM是同一条线段【答案】B【详解】解:A. 根据直线MN与直线NM表示方法是同一条直线,故选项A正确;B. 射线PM与射线MN是端点不同,不是同一条射线,故选项B说法不正确;C. 射线PM与射线PN是同一条射线,端点相同,方向相同,故选项C正确;D. 根据线段MN与线段NM表示方法是同一条线段,故选项D正确.故选择:B.2.A,B两点间的距离是指()A.过A,B两点间的直线B.连接A,B两点间的线段C.直线AB的长D.连接A,B两点间的线段的长度【答案】D【详解】解:A ,B 两点间的距离是指连接A ,B 两点间的线段的长度,故选:D .3.根据语句“直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M .”画出的图形是( )A .B .C .D .【答案】D【详解】解:A .直线2l 不经过点M ,故本选项不合题意;B .点M 在直线1l 上,不在直线2l 上,故本选项不合题意;C .点M 在直线1l 外,故本选项不合题意;D .直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M ,故本选项符合题意;答案:D .4.以下说法正确的是( )A .钝角的一半一定不会小于45︒B .两点之间直线最短C .延长直线AB 到点E ,使BE AB =D .连接两点间的线段就是这两点的距离【答案】A【详解】解:A 、钝角的一半一定不会小于45︒,说法正确,符合题意;B 、两点之间线段最短,故原来的说法错误,不符合题意;C 、延长线段AB 到点E ,使BE =AB ,故原来的说法错误,不符合题意;D、连接两点间的线段的长度,叫作这两点间的距离,故说法错误,不符合题意.故选:A.5.下列说法正确的是()A.射线比直线短B.两点间的长度叫两点间的距离C.经过三点只能作一条直线D.两点确定一条直线【答案】D【详解】解:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、连接两点的线段的长度叫做两点间的距离,错误;C、经过不在一条直线的三点能作三条直线,错误;D、两点确定一条直线,是公理,正确;故选:D.+++最小,则点P()6.如图,线段AB、CD,在平面内找一点P,若使得PA PB PC PDA.线段AB的中点B.线段AD的中点C.线段AB和线段CD的交点D.线段AD和线段BC的交点【答案】D【详解】解:线段AB和线段CD,在平面内找一点P,使得它到四端点的距离和P A+PB+PC+PD最小,则点P是线段AD和线段BC的交点,故选:D.7.下列说法正确的是()A.延长射线AB到C B.若AM=BM,则M是线段AB的中点C.两点确定一条直线D.过三点能作且只能做一条直线【答案】C【详解】解:A、射线本身是向一端无限延伸的,不能延长,故A不合题意;B、若AM=BM,此时点M可能在线段AB的垂直平分线上,故B不合题意;C、两点确定一条直线,说法正确,故C符合题意;D、只有三点共线时才能做一条直线,故D不合题意,故选:C.8.下列说法正确的个数为()①用一个平面去截一个圆锥,截面的形状可能是一个三角形;①若2AB=AC,则点B是AC的中点;①连接两点的线段叫做这两点之间的距离;①在数轴上,点A、B分别表示有理数a、b,若a>b,则A到原点的距离比B到原点的距离大.A.1个B.2个C.3个D.4个【答案】A【详解】解:①用一个平面去截一个圆锥,截面的形状可能是一个三角形;判断正确,故符合题意;①若2AB=AC,则点B不一定是AC的中点;判断错误,故不合题意;①连接两点的线段的长度叫做这两点之间的距离;判断错误,故不符合题意;①在数轴上,点A 、B 分别表示有理数a 、b ,若a >b ,则A 到原点的距离B 到原点的距离大;判断错误,故不符合题意.故选:A .二、填空题9.已知线段20AB =,14AM BM =,点P 、Q 分别是AM 、AB 的中点.(1)如图,当点M 在线段AB 上时,则PQ 的长为___________.(2)当点M 在直线AB 上时,则PQ 的长为__________.【答案】8 8或403【详解】解:(1)如图,当点M 在线段AB 上时20AB =,14AM BM =, 145AM AB ∴==,4165BM AB ==, 点P 、Q 分别是AM 、AB 的中点,122AP AM ∴==,1102AQ AB ==, 1028PQ AQ AP ∴=-=-=,故答案为:8.(2)由(1)得:当点M 在线段AB 上时,8PQ =;当点M 在线段AB 外时,如图:20AB =,14AM BM =, 132044AB BM AM BM BM BM ∴=-=-==, 803BM ∴=,203AM = 点P 、Q 分别是AM 、AB 的中点,11023AP AM ∴==,1102AQ AB ==, 10401033PQ AQ AP ∴=+=+=, 故答案为:8,403. 10.如图1,AB 是一条拉直的细绳,,C D 两点在AB 上,且:2:3AC BC =,:3:7AD BD =.则(1):CD AD =_________;(2)若将点C 固定,将AC 折向BC ,使得AC 落在BC 上(如图2),再从点D 处剪断,使细绳分成三段,分成的三段细绳的长度由小到大之比为____________.【答案】1①3 2①3①5【详解】解:(1)①:2:3AC BC =,AC CB AB +=,①:2:(23)2:5AC AB =+=, ①25AC AB =; ①:3:7AD BD =,AD DB AB , ①:3:(37)3:10AD AB =+=, ①310AD AB =; ①231=51010CD AC AD AB AB AB =--=, ①13::1:31010CD AD AB AB ==. (2)设对折后点D 关于C 点对称处为D ,被剪断两处分别是点D 和D ,剪开的三段细绳依次是AD 、DD '、D B ',①根据上题,310AD AB =; 11=22105DD DC AB AB '=⨯=;311=5102D B CB CD CB CD AB AB AB ''-=-=-=; ①DD AD D B ''<<. ①131::::2:3:55102DD AD D B AB AB AB ''==. 故答案为:(1)1①3(2)2①3①5.11.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN =7cm ,BC =3cm ,则AD 的长为_____cm .【答案】11【详解】解:①MN =MB +BC +CN ,MN =7cm ,BC =3cm ,①MB +CN =7﹣3=4cm ,①M 是AB 的中点,N 是CD 的中点,①AB =2MB ,CD =2CN ,①AD =AB +BC +CD =2(MB +CN )+BC =2×4+3=11cm .故答案为:11.12.将一条弯曲的公路改成直道,这样就可以缩短路程,其中的道理用我们学过的几何知识解释为:___________.【答案】两点之间,线段最短【详解】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间,线段最短,故答案为:两点之间,线段最短.三、解答题13.如图,90PAQ ∠=︒,点B 、点C 分别在边PA 、QA 上,且12cm BA =,6cm CA =,动点M 沿AP 边从点A 出发,向点B 以2cm /s 的速度运动;动点N 沿QA 边从点C 出发,向点A 以1cm /s 的速度运动;若M 、N 同时运动,用(s)t 表示移动的时间.(1)当AM AN =时,求t 的值;(2)①当t 为何值时,点M 恰好在AB 的13处? ①在①的前提下,AM AN +等于BA CA +的13吗? 【答案】(1)2t =;(2)①2t =或4t =;①不等于.【详解】解:(1)由题意得:2cm,cm AM t CN t ==,6cm CA =,(6)cm AN CA CN t ∴=-=-,当AM AN =时,则26t t =-,解得2t =;(2)①当13AM AB =时,即12123t =⨯,解得2t =, 当23AM AB =时,即22123t =⨯,解得4t =, 综上,当2t =或4t =时,点M 恰好在AB 的13处; ①当2t =时,24(cm)AM t ==,64(cm)AN t =-=, 则8(cm)AM AN +=,12618(cm)BA CA +=+=, 此时181863≠⨯=; 当4t =时,28(cm)AM t ==,62(cm)AN t =-=,则10(cm)AM AN +=, 此时1101863≠⨯=; 综上,在①的前提下,AM AN +不等于BA CA +的13. 14.如图所示,点 A 、B 、C 、D 表示在同一直线上的四个车站的位置.求:(1)A 、D 两站的距离;(2)C 、D 两站的距离;(3)若C 为AD 的中点,求a 与b 之间所满足的相等关系.【答案】(1)4a +3b ;(2)a +3b ;(3)2a =3b .【详解】解:(1)a +b +3a +2b =4a +3b .故A 、D 两站的距离是4a +3b ;(2)3a +2b ﹣(2a ﹣b )=3a +2b ﹣2a +b =a +3b .故C 、D 两站的距离是a +3b ;(3)依题意有a +b +2a ﹣b =a +3b ,则2a =3b ,(或a =32b ). 15.对数轴上的点P 进行如下操作:先把点P 表示的数乘以()0m m ≠,再把所得数对应的点沿数轴向右平移n 个单位长度,得到点P ',我们称P '为点P 的“倍移点”.例如点P 表示的数是1,当2m =,3n =时,那么倍移点P '表示的数是1235⨯+=.数轴上,点A ,B ,C ,D 的“倍移点”分别为'A ,B ′,'C ,D .(1)当12m =,1n =时,若点A 表示的数为-2,则点A '表示的数为____________;若点B '表示的数是3,则点B 表示的数为____________;(2)当4n =时,若点D 表示的数为3,点D 表示的数为-5,则m 的值为_____________;(3)若线段5A B AB ''=,请写出你能由此得到的结论,并说明理由.【答案】(1)0;4;(2)-3;(3)m =±5,见解析【详解】解:(1)①点A 表示的数为-2,①-2×12+1=0, ①它的对应点A '表示的数为0,设点B 表示的数为x ,①点B '表示的数是3,①x ×12+1=3,解得:x=4,故答案为:0,4;(2)由题意得:3m+4=-5,解得:m=-3,故答案为:-3;(3)设点A表示的数为a,点B表示的数为b,则点A′表示的数为am+n,点B′表示的数为bm+n,①|bm+n-am-n|=5|b-a|,①|m(b-a)|=5|b-a|,解得:m=±5,①若线段A'B'=5AB,m=±5.。
人教版 七年级数学上册 第四章同步测试题(含答案)

人教版七年级数学上册第四章同步测试题(含答案)4.1 几何图形一、选择题1. 如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则图中的图形不是从正面、左面、上面看这个几何体得到的平面图形的是()2. 如图所示的几何体,从上面看得到的平面图形是()3. 下列四个图形中,是三棱锥的展开图的是()4. 如图,下列各组图形中全部属于柱体的是()5. 下列几何体是由4个相同的小正方体搭成的,其中从左面看和从上面看得到的平面图形相同的是( )6. 下列几何体中,含有曲面的有()A.1个B.2个C.3个D.4个7. 圆柱是由长方形绕着它的一边所在的直线旋转一周得到的,那么如图所示的几何体是图中的哪一个图形绕着直线旋转一周得到的()8. 将如图所示的长方体的表面展开,则得到的平面图形不可能是图中的 ()9. 如图,给定的是一个纸盒的外表面,图中的几何体能由它折叠而成的是()10. 如果一个棱柱有18条棱,那么它的底面一定是()A.十八边形B.八边形C.六边形D.四边形二、填空题11. 如图,观察生活中的物体,根据它们所呈现的形状,填出与它们类似的立体图形的名称:(1)______;(2)______;(3)__________;(4)________.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图所示的8个立体图形中,是柱体的有,是锥体的有,是球的有.(填序号)15. 如图所示是某几何体的展开图,那么这个几何体是.16. 如图,把下列实物图和与其对应的立体图形连接起来.三、解答题17. 如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造.18. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图19. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).人教版七年级数学上册 4.1 几何图形同步课时训练-答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】A4. 【答案】B5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】C9. 【答案】B10. 【答案】C[解析] 一个棱柱有18条棱,则这个棱柱是六棱柱,六棱柱的底面是六边形.二、填空题11. 【答案】(1)圆柱(2)圆锥(3)圆柱、圆锥的组合体(4)球[解析] 立体图形实际上是由物体抽象得来的.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】①②⑤⑦⑧④⑥③15. 【答案】圆柱16. 【答案】①-C,②-B,③-D,④-E,⑤-A 连线略三、解答题17. 【答案】解:这个物体的内部构造为:圆柱中间有一球形空洞.18. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).19. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.4.2直线、射线、线段同步练习试题(一)一.选择题1.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外2.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直3.有下列生活、生产现象:①从A地到B地架设电线,总是尽可能沿着线段AB架设.②用两个钉子就可以把木条固定在墙上.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①④B.②④C.①②D.③④4.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 5.已知点A,B,C为平面内三点,给出下列条件:①AC=BC;②AB=2BC;③AC =BC=AB.选择其中一个条件就能得到“点C是线段AB中点”的是()A.①B.③C.①或③D.①或②或③6.如图,点C是AB的中点,点D是BC的中点,下列结论:①CD=AC﹣DB,②CD=AB,③CD=AD﹣BC,④BD=2AD﹣AB,正确的有()A.1个B.2个C.3个D.4个7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离8.如图,某工厂有三个住宅区,A、B、C各区分别住有职工15人、20人、45人,且这三个区在一条大道上(A、B、C三点共线),已知AB=1500m,BC=1000m,为了方便职工上下班,该工厂打算从以下四处中选一处设置接送车停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.A住宅区B.B住宅区C.C住宅区D.B、C住宅区中间D处9.老爷爷从家到超市有甲、乙、丙三条路可以选择,在不考虑其它因素的情况下,他选择了乙路前往,则其中蕴含着的数学道理是()A.两点确定一条直线B.两点之间线段最短C.连结直线外一点与直线上各点的所有线段中,垂线段最短D.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线10.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D 是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处二.填空题11.如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.12.点A到原点的距离为4,且位于原点的左侧,若一个点从A处向右移动2个单位长度,再向左移动7个单位长度,此时终点所表示的数为.13.如图,AE⊥AB于A点,DB⊥AB于B点,点P为线段AB上任意一点,若AE =2,DB=4,AB=8,则PE+PD的最小值是.14.曲桥是我国古代经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好的观赏风光,如图,A、B两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是.15.如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.三.解答题16.如图所示,已知C、D是线段AB上的两个点,点M、N分别为AC、BD的中点.(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长.17.如图所示,把一根细线绳对折成两条重合的线段AB,点P在线段AB上,且AP:BP=2:3.(1)若细线绳的长度是100cm,求图中线段AP的长;(2)从点P处把细线绳剪断后展开,细线绳变成三段,若三段中最长的一段为60cm,求原来细线绳的长.18.已知平面上点A,B,C,D(每三点都不在一条直线上).(1)经过这四点最多能确定条直线.(2)如图这四点表示公园四个地方,如果点B,C在公园里湖对岸两处,A,D在湖面上,要从B到C筑桥,从节省材料的角度考虑,应选择图中两条路中的哪一条?如果有人想在桥上较长时间观赏湖面风光,应选择哪一条?为什么?19.已知如图,A,B,C三点在同一直线上,AB=6,BC=2.(1)已知点C在直线AB上,根据条件,请补充完整图形,并求AC的长;(2)已知点C在直线AB上,M,N分别是AB,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AC的长存在的数量关系;(3)已知点C在直线AB上,M,N分别是AC,BC的中点,根据条件,请补充完整图形,并求MN的长,直接写出MN与AB的长存在的数量关系.参考答案与试题解析一.选择题1.【解答】解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.2.【解答】解:A、根据两点确定一条直线,故本选项不符合题意;B、确定树之间的距离,即得到相互的坐标关系,故本选项不符合题意;C、根据两点确定一条直线,故本选项不符合题意;D、根据两点之间,线段最短,故本选项符合题意.故选:D.3.【解答】解:根据两点之间,线段最短,得到的是:①④;②③的依据是两点确定一条直线.故选:A.4.【解答】解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.5.【解答】解:①点C在线段AB上,且AC=BC,则C是线段AB中点故①不符合题意;②AB=2BC,C不一定是线段AB中点故②不符合题意;③AC=BC=AB,则C是线段AB中点,故③符合题意.故选:B.6.【解答】解:∵点C是AB的中点,点D是BC的中点,∴AC=BC=AB,CD=BD=BC=AC,∴①CD=BC﹣DB=AC﹣DB,正确;②CD=BC=AB,正确;③CD=AD﹣AC=AD﹣BC,正确;④BD=AB﹣AD≠2AD﹣AB,错误.所以正确的有①②③3个.故选:C.7.【解答】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因是两点之间,线段最短,故选:A.8.【解答】解:当停靠点在A区时,所有员工步行到停靠点路程和是:20×1500+45×2500=142500m;当停靠点在B区时,所有员工步行到停靠点路程和是:15×1500+45×1000=67500m;当停靠点在C区时,所有员工步行到停靠点路程和是:15×2500+20×1000=57500m;当停靠点在D区时,设距离B区x米,所有员工步行到停靠点路程和是:15×(1500+x)+20x+45(1000﹣x)=﹣10x+67500,由于k=﹣10,所以,x越大,路程之和越小,∴当停靠点在C区时,所有员工步行到停靠点路程和最小.故选:C.9.【解答】解:图中三条路线,甲和丙是曲线,乙是线段,由两点间线段最短,∴乙最短,故选:B.10.【解答】解:BD=(150+300)÷2﹣150=75(m),以点A为停靠点,则所有人的路程的和=7×150+12×(150+300)=6450m,以点B为停靠点,则所有人的路程的和=2×150+12×300=3900m,以点C为停靠点,则所有人的路程的和=2×(150+300)+7×300=3000m,以点D为停靠点,则所有人的路程的和=2×(150+300)÷2+7×75+12×(150+300)÷2=3675m.故停靠点的位置应设在点C.故选:C.二.填空题11.【解答】解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE 共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.12.【解答】解:∵点A到原点的距离为4,且位于原点的左侧,∴点A表示的数为﹣4,∵一个点从A处向右移动2个单位长度,再向左移动7个单位长度,∴﹣4+2﹣7=﹣9,故答案为:﹣9.13.【解答】解:过点D作DT⊥EA交EA的延长线于T,连接DE.∵AE⊥AB,DB⊥AB,DT⊥ET,∴∠B=∠T=∠BAT=90°,∴四边形ABDT是矩形,∴BD=AT=4,AB=DT=8,∴ET=AE+AT=2+4=6,∴DE===10,∵PE+PD≥DE,∴PE+PD≥10,∴PE+PD的最小值为10.故答案为10.14.【解答】解:其中蕴含的数学道理是两点之间线段最短,故答案为:两点之间线段最短.15.【解答】解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.三.解答题16.【解答】解:(1)∵AB=16cm,CD=6cm,∴AC+BD=AB﹣CD=10cm,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=16﹣5=11(cm);(2)∵AB=m,CD=n,∴AC+BD=AB﹣CD=m﹣n,∴MN=AB﹣(AM+BN)=AB﹣(AC+BD)=m﹣(m﹣n)=.17.【解答】解:(1)∵AB=100=50,AP:BP=2:3,∴AP=20;(2)∵AP:BP=2:3,∴设AP=2x,BP=3x,若一根绳子沿B点对折成线段AB,则剪断后的三段绳子中分别为2x,2x,6x,∴6x=60,解得x=10,∴绳子的原长=2x+2x+6x=10x=100(cm);若一根绳子沿A点对折成线段AB,则剪断后的三段绳子中分别为4x,3x,3x,∴4x=60,解得x=15,∴绳子的原长=4x+3x+3x=10x=150(cm);综上所述,绳子的原长为100cm或150cm.故答案为100cm或150cm.18.【解答】解:(1)经过这四点最多能确定6条直线:直线AB,直线AD,直线BC,直线CD,直线AC,直线BD,故答案为:6;(2)从节省材料的角度考虑,应选择图中路线2;如果有人想在桥上较长时间观赏湖面风光,应选择路线1,因为两点之间,线段最短,路线2比路线1短,可以节省材料;而路线1较长,可以在桥上较长时间观赏湖面风光.19.【解答】解:(1)如图,如图1,∵AB=6,BC=2.∴AC=AB+BC=8;如备用图1,AC=AB﹣BC=4.答:AC的长为8或4;(2)如图,∵M,N分别是AB,BC的中点,∴BM=AB=3,BN=BC=1,∴MN=BM+BN=3+1=4,或MN=BM﹣BN=3﹣1=2.答:MN的长为4或2;(3)如图,∵M,N分别是AC,BC的中点,∴MC=AC=4,NC=BC=1,∴MN=MC﹣NC=4﹣1=34.3角同步练习试题(一)一.选择题1.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°2.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′3.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离4.下列语句错误的个数是()①一个角的补角不是锐角就是钝角;②角是由两条射线组成的图形;③如果点C是线段AB的中点,那么AB=2AC=2BC;④连接两点之间的线段叫做两点的距离.A.4个B.3个C.2个D.1个5.按图1~图4的步骤作图,下列结论错误的是()A.∠AOB=∠AOP B.∠AOP=∠BOPC.2∠BOP=∠AOB D.∠BOP=2∠AOP6.如图,用量角器度量∠AOB,可以读出∠AOB的度数为()A.30°B.60°C.120°D.150°7.如图,小王从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东60°方向行走至C处,则∠ABC等于()A.90°B.100°C.110°D.120°8.如图,将一副三角板按不同位置摆放,其中α和β互为余角的是()A.B.C.D.9.如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是()A.∠1=90°+∠3 B.∠3=90°+∠1 C.∠1=∠3 D.∠1=180°﹣∠310.为防止森林火灾的发生,会在森林中设置多个观测点,如图,若起火点M 在观测台B的南偏东46°的方向上,点A表示另一处观测台,若AM⊥BM,那么起火点M在观测台A的()A.南偏东44°B.南偏西44°C.北偏东46°D.北偏西46°二.填空题11.若两个角互补,且度数之比为3:2,求较大角度数为.12.若∠A=59.6°,则它的余角为°′.13.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.14.如图,点C在点B的北偏西60°的方向上,点C在点A的北偏西30°的方向上,则∠C等于度.15.如图,点A在点O的北偏西60°的方向上,点B在点O的南偏东20°的方向上,那么∠AOB的大小为°.三.解答题16.如图所示,O为直线上的一点,且∠COD为直角,OE平分∠BOD,OF平分∠AOE,∠BOC+∠FOD=117°,求∠BOE的度数.17.如图,已知∠AOB=128°,OC平分∠AOB,请你在∠COB内部画射线OD,使∠COD和∠AOC互余,并求∠COD的度数.18.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,OD,OE始终是∠AOC与∠BOC的平分线.则∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,OD,OE仍始终是∠AOC与∠BOC的平分线,直接写出∠DOE的度数(不必写过程).19.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).(1)若∠BOC=35°,求∠MOC的大小.(2)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由.(3)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=50°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.参考答案与试题解析一.选择题1.【解答】解:射线OA表示的方向是南偏东65°,故选:C.2.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.3.【解答】解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.4.【解答】解:①直角的补角是直角,故原说法错误;②角是由有公共的端点的两条射线组成的图形,故原说法错误;③如果点C是线段AB的中点,那么AB=2AC=2BC,说法正确;④连接两点之间的线段的长度叫做两点的距离,故原说法错误.故错误的个数有①②④共3个.故选:B.5.【解答】解:∵OP是∠AOB的平分线,∴∠AOB=2∠AOP=2∠BOP,∠AOP=∠BOP=∠AOB,∴选项A、B、C均正确,选项D错误.故选:D.6.【解答】解:看内圈的数字可得:∠AOB=120°,故选:C.7.【解答】解:如图:∵小王从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东60°方向行走至点C处,∴∠DAB=40°,∠CBE=60°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+60°=100°.故选:B.8.【解答】解:A、α和β互余,故本选项正确;B、α和β不互余,故本选项错误;C、α和β不互余,故本选项错误;D、α和β不互余,故本选项错误.故选:A.9.【解答】解:∵∠1+∠2=180°∴∠1=180°﹣∠2又∵∠2+∠3=90°∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3.故选:A.10.【解答】解:如图:因为AM⊥BM,所以∠2+∠3=90°,因为南北方向的直线平行,所以∠2=46°,∠1=∠3,所以∠3=90°﹣∠2=90°﹣46°=44°,所以∠1=44°,所以起火点M在观测台A的南偏西44°,故选:B.二.填空题11.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.12.【解答】解:∵∠A=59.6°,∴∠A的余角为90°﹣59.6°=30.4°=30°24',故答案为30;24.13.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.14.【解答】解:如图:根据题意可得:∠1=60°,∠2=30°,∵AE∥DB∥CF,∴∠BCF=∠1=60°,∠ACF=∠2=30°,∴∠ACB=30°.故答案为:30.15.【解答】解:如图,∵点A在点O北偏西60°的方向上,∴OA与西方的夹角为90°﹣60°=30°,又∵点B在点O的南偏东20°的方向上,∴∠AOB=30°+90°+20°=140°.故答案为:140.三.解答题16.【解答】解:设∠BOE=α°,∵OE平分∠BOD,∴∠BOD=2α°,∠EOD=α°.∵∠COD=∠BOD+∠BOC=90°,∴∠BOC=90°﹣2α°.∵OF平分∠AOE,∠AOE+∠BOE=180°,∴∠FOE=∠AOE=(180°﹣α°)=90°﹣α°,∴∠FOD=∠FOE﹣∠EOD=90°﹣α°﹣α°=90°﹣α°,∵∠BOC+∠FOD=117°,∴90°﹣2α°+90°﹣α°=117°,∴α=18,∴∠BOE=18°.17.【解答】解:作OD⊥OA,则∠COD和∠AOC互余,如图所示.∵∠AOB=128°,OC平分∠AOB,∴∠AOC=∠AOB=64°,∵∠COD和∠AOC互余,∴∠COD=90°﹣∠AOC=26°.18.【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠BOC=(∠AOC+∠BOC)∠AOB =45°;(3)∠DOE的大小分别为45°和135°,如图3,则∠DOE为45°;如图4,则∠DOE为135°.分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.19.【解答】解:(1)∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC=90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线、射线、线段、角(同步练习题三套)直线、射线、线段同步练习题(一)一.选择题1.两根木条,一根长18cm,一根长22cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.2cm或20cm 2.延长线AB到C,使得BC=AB,若线段AC=8,点D为线段AC的中点,则线段BD 的长为()A.2B.3C.4D.53.如图,点C是线段BD之间的点,有下列结论①图中共有5条线段;②射线BD和射线DB是同一条射线;③直线BC和直线BD是同一条直线;④射线AB,AC,AD的端点相同,其中正确的结论是()A.②④B.③④C.②③D.①③4.下列说法中,正确的是()A.若线段AC=BC,则点C是线段AB的中点B.任何有理数的绝对值都不是负数C.角的大小与角两边的长度有关,边越长角越大D.两点之间,直线最短5.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,若在平面内的不同的n个点最多可确定36条直线,则n的值为()A.6B.7C.8D.96.如图,工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖.用数学知识解释其中道理,正确的是()A.两点之间,线段最短B.射线只有一个端点C.两直线相交只有一个交点D.两点确定一条直线7.下列说法中正确的个数为()(1)如果AC=CB,则点C是线段AB的中点;(2)连结两点的线段叫做这两点间的距离;(3)两点之间所有连线中,线段最短;(4)射线比直线小一半;(5)平面内3条直线至少有一个交点.A.1个B.2个C.3个D.4个8.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.经过两点有一条直线,并且只有一条直线B.两条直线相交只有一个交点C.两点之间所有连线中,线段最短D.两点之间线段的长度,叫做这两点之间的距离9.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个10.如图是北京地铁的路线图,小明家住复兴门,打算趁着放假去建国门游玩,看了路线图后,小明打算乘坐①号线地铁去,认为可以节省时间,他这样做的依据是()A.垂线段最短B.两点之间,直线最短C.两点确定一条直线D.两点之间,线段最短二.填空题11.若两条直线相交,有个交点,三条直线两两相交有个交点.12.在直线上任取一点A,截取AB=16cm,再截取AC=40cm,则AB的中点D与AC的中点E之间的距离为cm.13.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.14.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.15.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是.三.解答题16.已知线段AB,在AB的延长线上取一点C,使BC=3AB,在BA的延长线上取一点D,使DA=2AB,E为DB的中点,且EB=30cm,请画出示意图,并求DC的长.17.课间休息时小明拿着两根木棒玩,小华看到后要小明给他玩,小明说:“较短木棒AB 长40cm,较长木棒CD长60cm,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E和点F,则点E和点F间的距离是多少?你说对了我就给你玩”聪明的你请帮小华求出此时两根木棒的中点E和F间的距离是多少?18.已知直线l依次三点A、B、C,AB=6,BC=m,点M是AC点中点(1)如图,当m=4,求线段BM的长度(写清线段关系)(2)在直线l上一点D,CD=n<m,用m、n表示线段DM的长度.19.已知点C,D在线段AB上(点C,D不与线段AB的端点重合),AC+DB=AB.(1)若AB=6,请画出示意图并求线段CD的长;(2)试问线段CD上是否存在点E,使得CE=AB,请说明理由.参考答案与试题解析一.选择题1.【解答】解:如图,设较长的木条为AB=22cm,较短的木条为BC=18cm,∵M、N分别为AB、BC的中点,∴BM=11cm,BN=9cm,∴①如图1,BC不在AB上时,MN=BM+BN=11+9=20cm,②如图2,BC在AB上时,MN=BM﹣BN=11﹣9=2cm,综上所述,两根木条的中点间的距离是2cm或20cm;故选:D.2.【解答】解:∵BC=AB,AC=8,∴BC=2,∵D为线段AC的中点,∴DC=4,∴BD=DC﹣BC=4﹣2=2;故选:A.3.【解答】解:①图中共有6条线段,错误;②射线BD和射线DB不是同一条射线,错误;③直线BC和直线BD是同一条直线,正确;④射线AB,AC,AD的端点相同,正确,故选:B.4.【解答】解:A、若线段AC=BC,则点C是线段AB的中点,错误,A、B、C三点不一定共线,故本选项错误;B、任何有理数的绝对值都不是负数,正确,故本选项正确;C、应为:角的大小与角两边的长度无关,故本选项错误;D、应为:两点之间,线段最短,故本选项错误.故选:B.5.【解答】解:∵平面内不同的两点确定1条直线,可表示为:=1;平面内不同的三点最多确定3条直线,可表示为:=3;平面内不同的四点确定6条直线,可表示为:=6;以此类推,可得:平面内不同的n点可确定(n≥2)条直线.由已知可得:=36,解得n=﹣8(舍去)或n=9.故选:D.6.【解答】解:工人砌墙时在墙的两端各固定一根木桩,再拉一条线,然后沿线砌砖,则其中的道理是:两点确定一条直线.故选:D.7.【解答】解:(1)如果AC=CB,则点C是线段AB垂直平分线上的点,原来的说法错误;(2)连结两点的线段的长度叫做这两点间的距离,原来的说法错误;(3)两点之间所有连线中,线段最短是正确的;(4)射线与直线都是无限长的,原来的说法错误;(5)平面内互相平行的3条直线没有交点,原来的说法错误.故选:A.8.【解答】解:某同学用剪刀沿直线将一片平整的荷叶剪掉一部分(如图),发现剩下的荷叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是:两点之间所有连线中,线段最短,故选:C.9.【解答】解:①不带“﹣”号的数不一定是正数,错误;②如果a是正数,那么﹣a一定是负数,正确;③射线AB和射线BA不是同一条射线,错误;④直线MN和直线NM是同一条直线,正确;故选:B.10.【解答】解:由图可知,乘坐①号地铁走的是直线,所以节省时间的依据是两点之间线段最短.故选:D.二.填空题(共5小题)11.【解答】解:两条直线相交,有1个交点,三条直线两两相交有1或3个交点.故答案为:1,1或3.12.【解答】解:①如图1,当B在线段AC上时,∵AB=16cm,AC=40cm,D为AB中点,E为AC中点,∴AD=AB=8cm,AE=AC=20cm,∴DE=AE﹣AD=20cm﹣8cm=12cm;②如图2,当B不在线段AC上时,此时DE=AE+AD=28cm;故答案为:12或28.13.【解答】解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.14.【解答】解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.15.【解答】解:根据线段的性质:两点之间线段最短可得,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是两点之间线段最短.故答案为:两点之间线段最短.三.解答题(共4小题)16.【解答】解:如图:∵E为DB的中点,EB=30cm,∴BD=2EB=60cm,又∵DA=2AB,∴AB=BD=20cm,AD=BD=40cm,∴BC=3AB=60cm,∴DC=BD+BC=120cm.17.【解答】解:如图1,当AB在CD的左侧且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点)∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=BE+CF=20+30=50cm(或EF=BE+BF=20+30=50cm);如图2.当AB在CD上且点B和点C重合时,∵点E是AB的中点,∴BE=AB=×40=20cm,∵点F是CD的中点(或点F是BD的中点),∴CF=CD=×60=30cm(或BF=CD=×60=30cm),∴EF=CF﹣BE=30﹣20=10cm(或EF=BF﹣BE=30﹣20=10cm).∴此时两根木棒的中点E和F间的距离是50cm或10cm.18.【解答】解:(1)当m=4时,BC=4,又∵AB=6,∴AC=4+6=10,又M为AC中点,∴AM=MC=5,∴BM=AB﹣AM,=6﹣5=1;(2)∵AB=6,BC=m,∴AC=6+m,∵M为AC中点,∴,①当D在线段BC上,M在D的左边时,CD=n,MD=MC﹣CD==;②当D在线段BC上,M在D的右边边时,CD=n,MD=DC﹣MC=n﹣=;③当D在l上且在点C的右侧时,CD=n,MD=MC+CD=+n=.19.【解答】解:(1)如图所示:∵AC+DB=AB,AB=6,∴AC+DB=2,∴CD=AB﹣(AC+DB)=6﹣2=4;(2)线段CD上存在点E,使得CE=AB,理由是:∵AC+DB=AB角同步练习试题一、选择题(本大题共12小题,共36分)1.如图,下面四种表示角的方法,其中正确的是()。
A. ∠AB. ∠BC. ∠CD. ∠D2.下列时刻中,时针与分针所成的角(小于平角)最大的是()。
A. 9:00B. 3:30C. 6:40D. 5:453.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示-1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④2.692475精确到千分位是2.6924;⑤若AC=BC,则点C是线段AB的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线.其中错误的有()。
A. 2个B. 3个C. 4个D. 5个4.如图,若∠BOD=2∠AOB,OC是∠AOD的平分线,则①∠BOC=;②∠DOC=2∠BOC;③;④∠COD=3∠BOC.正确的是()。