不等式中恒成立问题的解法研究(完)(3)
专题05 应用导数研究不等式恒成立问题(解析版)

专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。
恒成立能成立3种常见题型(学生版+解析版)

恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,则不等式f x >a 在区间D 上恒成立⇔f x min >a ;不等式f x ≥a 在区间D 上恒成立⇔f x min ≥a ;不等式f x <b 在区间D 上恒成立⇔f x max <b ;不等式f x ≤b 在区间D 上恒成立⇔f x max ≤b ;考点二:存在性问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,即f x ∈m ,n ,则对不等式有解问题有以下结论:不等式a <f x 在区间D 上有解⇔a <f x max ;不等式a ≤f x 在区间D 上有解⇔a ≤f x max ;不等式a >f x 在区间D 上有解⇔a >f x min ;不等式a ≥f x 在区间D 上有解⇔a ≥f x min ;考点三:双变量问题①对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 max ;②对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 min ;③若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 min ;④若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 max ;⑤对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 min ;⑥对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 max ;⑦若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 max⑧若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 min .【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式x -ln x +1>a 恒成立,则a 的取值范围是( )A.a <1B.a <2C.a >1D.a >2【例2】【2022年全国甲卷】已知函数f x =e xx−ln x+x−a.(1)若f x ≥0,求a的取值范围;【例3】已知函数f(x)=12x2-(a+1)ln x-12(a∈R,a≠0).(1)讨论函数的单调性;(2)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.【例4】已知函数f x =ln x-ax(a是正常数).(1)当a=2时,求f x 的单调区间与极值;(2)若∀x>0,f x <0,求a的取值范围;【例5】已知函数f x =xe x(1)求f x 的极值点;(2)若f x ≥ax2对任意x>0恒成立,求a的取值范围.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln x -kx ≤0恒成立,则实数k 的取值范围是( )A.0,eB.-∞,eC.0,1eD.1e ,+∞2.(2022·北京·景山学校模拟预测)已知函数f x =x ln x +ax +2.(1)当a =0时,求f x 的极值;(2)若对任意的x ∈1,e 2 ,f x ≤0恒成立,求实数a 的取值范围.3.(2022·新疆克拉玛依·三模(文))已知函数f x =x ln x ,g x =-x 2+ax -3a ∈R .(1)求函数f (x )的单调递增区间;(2)若对任意x ∈0,+∞ ,不等式f x ≥12g x 恒成立,求a 的取值范围.4.(2022·内蒙古赤峰·三模(文))已知函数f x =x ln x+1.(1)求f x 的最小值;(2)若f x ≥−x2+m+1x−2恒成立,求实数m的取值范围.5.【2020年新高考1卷(山东卷)】已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f x 在点1,f1处的切线与两坐标轴围成的三角形的面积;(2)若不等式f x ≥1恒成立,求a的取值范围.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数f x =x3-3x2+3-a,若存在x0∈-1,1,使得f x0>0,则实数a的取值范围为( )A.-∞,-1B.-∞,1C.-1,3D.-∞,3【例2】已知函数f x =ax3+bx2+6x+c,当x=-1时,f x 的极小值为-5,当x=2时,f x 有极大值.(1)求函数f x ;(2)存在x0∈1,3,使得f x0≤t2-2t成立,求实数t的取值范围.【例3】(2022·辽宁·高二阶段练习)已知a>0,若在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,则a的最小值为______.【题型专练】1.已知函数f x =x2+2a+2ln x.(1)当a=-5时,求f x 的单调区间;(2)若存在x∈2,e,使得f x -x2>2x+2a+4x成立,求实数a的取值范围.2.(2022·河北深州市中学高三阶段练习)已知函数f x =ln x-2ax+1.(1)若x=1是f x 的极值点,确定a的值;(2)若存在x>0,使得f x ≥0,求实数a的取值范围.3.已知函数f x =ln x x,设f x 在点1,0处的切线为m(1)求直线m的方程;(2)求证:除切点1,0之外,函数f x 的图像在直线m的下方;(3)若存在x∈1,+∞成立,求实数a的取值范围 ,使得不等式f x >a x-14.已知函数f x =x ln x-ax+1.(1)若f x 在点A(1,f(1))处的切线斜率为-2.①求实数a的值;②求f x 的单调区间和极值.(2)若存在x0∈(0,+∞),使得f x0<0成立,求a的取值范围.5.已知函数f(x)=ln x+ax(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间;(3)若存在x0,使得f x0>0,求a的取值范围.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数f x =x -1 e x -e ,g x =e x -ax -1,其中a ∈R .若对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,则a 的最大值为( )A.0B.1eC.1D.e【例2】已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.【例3】已知函数f (x )=x sin x +cos x .(1)当x ∈0,π 时,求函数f (x )的单调区间;(2)设函数g (x )=-x 2+2ax .若对任意x 1∈-π,π ,存在x 2∈[0,1],使得12πf x 1 ≤g x 2 成立,求实数a 的取值范围.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数f x =ln x x,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2 ,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,则实数a 的取值范围是( )A.-∞,-ln22 B.-∞,-ln22 C.-∞,-1e D.-∞,e -ln22 【例5】(2023·全国·高三专题练习)已知函数f x =x 3-34x +32,0≤x ≤122x +12,12<x ≤1,g x =e x -ax a ∈R ,若存在x 1,x 2∈0,1 ,使得f x 1 =g x 2 成立,则实数a 的取值范围是( )A.-∞,1B.-∞,e -2C.-∞,e -54D.-∞,e 【题型专练】1.(2022·河南·南阳中学高三阶段练习(理))已知函数f x =x 3-3x +a ,g x =2x +1x -1.若对任意x 1∈-2,2 ,总存在x 2∈2,3 ,使得f x 1 ≤g x 2 成立,则实数a 的最大值为( )A.7B.5C.72D.32.(2022·福建宁德·高二期末)已知f x =1-x e x -1,g x =x +1 2+a ,若存在x 1,x 2∈R ,使得f x 2 ≥g x 1 成立,则实数a 的取值范围为( )A.1e ,+∞B.-∞,1eC.0,eD.-1e ,03.(2022·河南安阳·高二阶段练习(理))已知函数f (x )=ln x x,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2 ,∃x 2∈(0,1]使得f x 1 >g x 2 成立,则实数a 的取值范围是( )A.-∞,-ln22 B.-∞,-ln22 C.-∞,-1e D.-∞,e -ln22 4.已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R )(1)若曲线y =f (x )在x =1和x =3处的切线互相平行,求a 的值与函数f (x )的单调区间;(2)设g (x )=(x 2-2x )e x ,若对任意x 1∈0,2 ,均存在x 2∈0,2 ,使得f (x 1)<g (x 2),求a 的取值范围.5.已知函数f x =-ax +xln xa ∈R ,f x 为f x 的导函数.(1)求f x 的定义域和导函数;(2)当a =2时,求函数f x 的单调区间;(3)若对∀x 1∈e ,e 2 ,都有f x 1 ≥1成立,且存在x 2∈e ,e 3 ,使f x 2 +12a =0成立,求实数a 的取值范围.恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,则不等式f x >a 在区间D 上恒成立⇔f x min >a ;不等式f x ≥a 在区间D 上恒成立⇔f x min ≥a ;不等式f x <b 在区间D 上恒成立⇔f x max <b ;不等式f x ≤b 在区间D 上恒成立⇔f x max ≤b ;考点二:存在性问题若函数f x 在区间D 上存在最小值f x min 和最大值f x max ,即f x ∈m ,n ,则对不等式有解问题有以下结论:不等式a <f x 在区间D 上有解⇔a <f x max ;不等式a ≤f x 在区间D 上有解⇔a ≤f x max ;不等式a >f x 在区间D 上有解⇔a >f x min ;不等式a ≥f x 在区间D 上有解⇔a ≥f x min ;考点三:双变量问题①对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 max ;②对于任意的x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 min ;③若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 min ;④若存在x 1∈a ,b ,对于任意的x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 max ;⑤对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≤g x 2 ⇔f x 1 max ≤g x 2 min ;⑥对于任意的x 1∈a ,b ,x 2∈m ,n 使得f x 1 ≥g x 2 ⇔f x 1 min ≥g x 2 max ;⑦若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≤g x 2 ⇔f x 1 min ≤g x 2 max ⑧若存在x 1∈a ,b ,总存在x 2∈m ,n ,使得f x 1 ≥g x 2 ⇔f x 1 max ≥g x 2 min .【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式x -ln x +1>a 恒成立,则a 的取值范围是( )A.a <1B.a <2C.a >1D.a >2【答案】B【详解】令f x =x -ln x +1,其中x >0,则a <f x min ,f x =1-1x =x -1x,当0<x <1时,f x <0,此时函数f x 单调递减,当x >1时,f x >0,此时函数f x 单调递增,所以,f x min =f 1 =2,∴a <2.故选:B .【例2】【2022年全国甲卷】已知函数f x =e xx−ln x +x −a .(1)若f x ≥0,求a 的取值范围;【答案】(1)(-∞,e +1]【解析】(1)f (x )的定义域为(0,+∞),f(x )=1x -1x2 e x -1x +1=1x 1-1x e x +1-1x =x -1x e x x +1 令f (x )=0,得x =1当x ∈(0,1),f (x )<0,f (x )单调递减,当x ∈(1,+∞),f (x )>0,f (x )单调递增f (x )≥f (1)=e +1-a ,若f (x )≥0,则e +1-a ≥0,即a ≤e +1,所以a 的取值范围为(-∞,e +1]【例3】已知函数f (x )=12x 2-(a +1)ln x -12(a ∈R ,a ≠0).(1)讨论函数的单调性;(2)若对任意的x ∈[1,+∞),都有f (x )≥0成立,求a 的取值范围.【答案】(1)答案见解析;(2)a ≤0.【解析】(1)求f 'x ,分别讨论a 不同范围下f 'x 的正负,分别求单调性;(2)由(1)所求的单调性,结合f 1 =0,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为0,+∞ ,f '(x )=x -a +1x =x 2-a +1 x 当a +1≤0,即a ≤-1时,f 'x >0恒成立,则f x 在0,+∞ 上单调递增;当a +1>0,即a >-1时,x =-a +1(舍)或x =a +1,所以f x 在0,a +1 上单调递减,在a +1,+∞ 上单调递增.所以a ≤-1时,f x 在0,+∞ 上单调递增;a >-1时,f x 在0,a +1 上单调递减,在a +1,+∞ 上单调递增.(2)由(1)可知,当a ≤-1时,f x 在1,+∞ 上单调递增,若f (x )≥0对任意的x ∈[1,+∞)恒成立,只需f (1)≥0,而f (1)=0恒成立,所以a ≤-1成立;当a >-1时,若a +1≤1,即-1<a ≤0,则f x 在1,+∞ 上单调递增,又f (1)=0,所以-1<a ≤0成立;若a >0,则f x 在1,a +1 上单调递减,在a +1,+∞ 上单调递增,又f (1)=0,所以∃x 0∈1,a +1 ,f (x 0)<f 1 =0,不满足f (x )≥0对任意的x ∈[1,+∞)恒成立.所以综上所述:a ≤0.【例4】已知函数f x =ln x -ax (a 是正常数).(1)当a =2时,求f x 的单调区间与极值;(2)若∀x >0,f x <0,求a 的取值范围;【答案】(1)f x 在0,12上单调递增,在12,+∞ 上单调递减,f x 的极大值是-ln2-1,无极小值;(2)1e,+∞ .【解析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得ln x x max <a ,设g x =ln xx,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当a =2时,f x =ln x -2x ,定义域为0,+∞ ,f x =1x -2=1-2xx,令f x >0,解得0<x <12,令f x <0,解得x >12,所以函数f x 在0,12 上单调递增,在12,+∞ 上单调递减,所以f x 的极大值是f 12=-ln2-1,无极小值.(2)因为∀x >0,f x <0,即ln x -ax <0恒成立,即ln xx max<a .设g x =ln x x ,可得g x =1-ln xx2,当0<x <e 时g x >0,当x >e 时g x <0,所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以g x max =g e =1e ,所以a >1e ,即a ∈1e ,+∞ .【例5】已知函数f x =xe x(1)求f x 的极值点;(2)若f x ≥ax 2对任意x >0恒成立,求a 的取值范围.【答案】(1)x =-1是f x 的极小值点,无极大值点;(2)a ≤e .【解析】(1)利用导数研究函数的极值点.(2)由题设知:a ≤e x x 在x >0上恒成立,构造g (x )=e xx 并应用导数研究单调性求最小值,即可求a的范围.【详解】(1)由题设,f x =e x (x +1),∴x <-1时,f x <0,f x 单调递减;x >-1时,f x >0,f x 单调递增减;∴x =-1是f x 的极小值点,无极大值点.(2)由题设,f x =xe x≥ax 2对∀x >0恒成立,即a ≤e x x在x >0上恒成立,令g (x )=e x x ,则g(x )=e x (x -1)x 2,∴0<x <1时,g (x )<0,g (x )递减;x >1时,g (x )>0,g (x )递增;∴g (x )≥g (1)=e ,故a ≤e .【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln x -kx ≤0恒成立,则实数k 的取值范围是( )A.0,e B.-∞,eC.0,1eD.1e ,+∞【答案】D 【解析】由题可得k ≥ln x x 在区间(0,+∞)上恒成立,然后求函数f x =ln xxx >0 的最大值即得.【详解】由题可得k ≥ln xx 在区间(0,+∞)上恒成立,令f x =ln x x x >0 ,则f x =1-ln xx 2x >0 ,当x ∈0,e 时,f x >0,当x ∈e ,+∞ 时,f x <0,所以f x 的单调增区间为0,e ,单调减区间为e ,+∞ ;所以f x max =f e =1e, 所以k ≥1e.故选:D .2.(2022·北京·景山学校模拟预测)已知函数f x =x ln x +ax +2.(1)当a =0时,求f x 的极值;(2)若对任意的x ∈1,e 2 ,f x ≤0恒成立,求实数a 的取值范围.【答案】(1)极小值是f 1e =-1e+2,无极大值.(2)-2e 2-2,+∞【解析】(1)由题设可得f x =ln x +1,根据f x 的符号研究f x 的单调性,进而确定极值.(2)f x =x ln x +ax +2≤0对任意的x ∈1,e 2 恒成立,转化为:-a ≥2+x ln x x =2x+ln x 对任意的x ∈1,e 2 恒成立,令g x =2x+ln x ,通过求导求g x 的单调性进而求得g x 的最大值,即可求出实数a的取值范围.(1)当a=0时,f x =x ln x+2,f x 的定义域为0,+∞,f x =ln x+1=0,则x=1 e.令f x >0,则x∈1e,+∞,令f x <0,则x∈0,1e,所以f x 在0,1e上单调递减,在1e,+∞上单调递增.当x=1e时,f x 取得极小值且为f1e =1e ln1e+2=-1e+2,无极大值.(2)f x =x ln x+ax+2≤0对任意的x∈1,e2恒成立,则-a≥2+x ln xx=2x+ln x对任意的x∈1,e2恒成立,令g x =2x+ln x,g x =-2x2+1x=-2+xx2=0,所以x=2,则g x 在1,2上单调递减,在2,e2上单调递增,所以g1 =2,g e2 =2e2+2,所以g x max=g e2 =2e2+2,则-a≥2e2+2,则a≤-2e2-2.实数a的取值范围为:-2e2-2,+∞.3.(2022·新疆克拉玛依·三模(文))已知函数f x =x ln x,g x =-x2+ax-3a∈R.(1)求函数f(x)的单调递增区间;(2)若对任意x∈0,+∞,不等式f x ≥12g x 恒成立,求a的取值范围.【答案】(1)1e,+∞,(2)-∞,4【解析】(1)求函数f(x)的单调递增区间,即解不等式f (x)>0;(2)参变分离得a≤2ln x+x+3x,即求h x =2ln x+x+3x x∈0,+∞的最小值.(1)f(x)=x ln x定义域为(0,+∞),f (x)=ln x+1f (x)>0即ln x+1>0解得x>1e,所以f(x)在1e,+∞单调递增(2)对任意x∈0,+∞,不等式f x ≥12g x 恒成立,即x ln x≥12-x2+ax-3恒成立,分离参数得a≤2ln x+x+3x.令h x =2ln x+x+3x x∈0,+∞,则h x =x+3x-1x2.当x∈0,1时,h x <0,h x 在0,1上单调递减;当x∈1,+∞时,h x >0,h x 在1,+∞上单调递增.所以h x min=h1 =4,即a≤4,故a的取值范围是-∞,4.4.(2022·内蒙古赤峰·三模(文))已知函数f x =x ln x+1.(1)求f x 的最小值;(2)若f x ≥−x2+m+1x−2恒成立,求实数m的取值范围.【答案】(1)f(x)min=-1 e2(2)-∞,3【解析】(1)求出函数的导数,利用导数求函数在定义域上的最值即可;(2)由原不等式恒成立分离参数后得m≤ln x+x+2x,构造函数h x =ln x+x+2x,利用导数求最小值即可.(1)由已知得f x =ln x+2,令f x =0,得x=1 e2.当x∈0,1 e2时,f x <0,f x 在0,1e2上单调递减;当x∈1e2,+∞时,f x ≥0,f x 在1e2,+∞上单调递增.故f(x)min=f1e2=-1e2.(2)f x ≥−x2+m+1x−2,即mx≤x ln x+x2+2,因为x>0,所以m≤ln x+x+2x在0,+∞上恒成立.令h x =ln x+x+2x,则m≤h(x)min,h x =1x+1-2x2=x+2x-1x2,令h x =0,得x=1或x=-2(舍去).当x∈0,1时,h x <0,h x 在0,1上单调递减;当x∈1,+∞时,h x >0,h x 在1,+∞上单调递增.故h(x)min=h1 =3,所以m≤3,即实数m的取值范围为-∞,3.5.【2020年新高考1卷(山东卷)】已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e时,求曲线y=f x 在点1,f1处的切线与两坐标轴围成的三角形的面积;(2)若不等式f x ≥1恒成立,求a的取值范围.【答案】(1)2e-1(2)[1,+∞)【解析】(1)利用导数的几何意义求出在点1,f1切线方程,即可得到坐标轴交点坐标,最后根据三角形面积公式得结果;(2)方法一:利用导数研究函数f x 的单调性,当a =1时,由f 1 =0得f x min =f 1 =1,符合题意;当a >1时,可证f 1af (1)<0,从而f x 存在零点x 0>0,使得f (x 0)=ae x 0-1-1x 0=0,得到f (x )min ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得f x ≥1恒成立;当0<a <1时,研究f 1 .即可得到不符合题意.综合可得a 的取值范围.【详解】(1)∵f (x )=e x -ln x +1,∴f (x )=e x -1x,∴k =f (1)=e -1.∵f (1)=e +1,∴切点坐标为(1,1+e ),∴函数f x 在点(1,f (1)处的切线方程为y -e -1=(e -1)(x -1),即y =e -1 x +2,∴切线与坐标轴交点坐标分别为(0,2),-2e -1,0,∴所求三角形面积为12×2×-2e -1 =2e -1.(2)[方法一]:通性通法∵f (x )=ae x -1-ln x +ln a ,∴f (x )=ae x -1-1x,且a >0.设g (x )=f ′(x ),则g ′(x )=ae x -1+1x 2>0,∴g (x )在(0,+∞)上单调递增,即f ′(x )在(0,+∞)上单调递增,当a =1时,f (1)=0,∴f x min =f 1 =1,∴f x ≥1成立.当a >1时,1a <1 ,∴e 1a -1<1,∴f 1af (1)=a e 1a -1-1 (a -1)<0,∴存在唯一x 0>0,使得f (x 0)=ae x 0-1-1x 0=0,且当x ∈(0,x 0)时f (x )<0,当x ∈(x 0,+∞)时f (x )>0,∴ae x 0-1=1x 0,∴ln a +x 0-1=-ln x 0,因此f (x )min =f (x 0)=ae x 0-1-ln x 0+ln a =1x 0+ln a +x 0-1+ln a ≥2ln a -1+21x 0⋅x 0=2ln a +1>1,∴f x >1,∴f x ≥1恒成立;当0<a <1时, f (1)=a +ln a <a <1,∴f (1)<1,f (x )≥1不是恒成立.综上所述,实数a 的取值范围是[1,+∞).[方法二]【最优解】:同构由f (x )≥1得ae x -1-ln x +ln a ≥1,即e ln a +x -1+ln a +x -1≥ln x +x ,而ln x +x =e ln x +ln x ,所以e ln a +x -1+ln a +x -1≥e ln x +ln x .令h (m )=e m +m ,则h (m )=e m +1>0,所以h (m )在R 上单调递增.由e ln a +x -1+ln a +x -1≥e ln x +ln x ,可知h (ln a +x -1)≥h (ln x ),所以ln a +x -1≥ln x ,所以ln a ≥(ln x -x +1)max .令F(x)=ln x-x+1,则F (x)=1x-1=1-xx.所以当x∈(0,1)时,F (x)>0,F(x)单调递增;当x∈(1,+∞)时,F (x)<0,F(x)单调递减.所以[F(x)]max=F(1)=0,则ln a≥0,即a≥1.所以a的取值范围为a≥1.[方法三]:换元同构由题意知a>0,x>0,令ae x-1=t,所以ln a+x-1=ln t,所以ln a=ln t-x+1.于是f(x)=ae x-1-ln x+ln a=t-ln x+ln t-x+1.由于f(x)≥1,t-ln x+ln t-x+1≥1⇔t+ln t≥x+ln x,而y=x+ln x在x∈(0,+∞)时为增函数,故t≥x,即ae x-1≥x,分离参数后有a≥xe x-1.令g(x)=xe x-1,所以g(x)=e x-1-xe x-1e2x-2=e x-1(1-x)e2x-2.当0<x<1时,g (x)>0,g(x)单调递增;当x>1时,g (x)<0,g(x)单调递减.所以当x=1时,g(x)=xe x-1取得最大值为g(1)=1.所以a≥1.[方法四]:因为定义域为(0,+∞),且f(x)≥1,所以f(1)≥1,即a+ln a≥1.令S(a)=a+ln a,则S (a)=1+1a>0,所以S(a)在区间(0,+∞)内单调递增.因为S(1)=1,所以a≥1时,有S(a)≥S(1),即a+ln a≥1.下面证明当a≥1时,f(x)≥1恒成立.令T(a)=ae x-1-ln x+ln a,只需证当a≥1时,T(a)≥1恒成立.因为T (a)=e x-1+1a>0,所以T(a)在区间[1,+∞)内单调递增,则[T(a)]min=T(1)=e x-1-ln x.因此要证明a≥1时,T(a)≥1恒成立,只需证明[T(a)]min=e x-1-ln x≥1即可.由e x≥x+1,ln x≤x-1,得e x-1≥x,-ln x≥1-x.上面两个不等式两边相加可得e x-1-ln x≥1,故a≥1时,f(x)≥1恒成立.当0<a<1时,因为f(1)=a+ln a<1,显然不满足f(x)≥1恒成立.所以a的取值范围为a≥1.【整体点评】(2)方法一:利用导数判断函数f x 的单调性,求出其最小值,由f min≥0即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法二:利用同构思想将原不等式化成e ln a+x-1+ln a+x-1≥e ln x+ln x,再根据函数h(m)=e m+m 的单调性以及分离参数法即可求出,是本题的最优解;方法三:通过先换元,令ae x-1=t,再同构,可将原不等式化成t+ln t≥x+ln x,再根据函数y=x+ln x的单调性以及分离参数法求出;方法四:由特殊到一般,利用f(1)≥1可得a的取值范围,再进行充分性证明即可.题型二:利用导数处理存在性问题【例1】(2022·河北秦皇岛·三模)函数f x =x3-3x2+3-a,若存在x0∈-1,1,使得f x0>0,则实数a的取值范围为( )A.-∞,-1B.-∞,1C.-1,3D.-∞,3【答案】D【分析】根据题意,将问题转化为求解函数f x 的最大值问题,先通过导数方法求出函数f x 的最大值,进而求出答案.【详解】因为f x =x3-3x2+3-a,所以f x =3x2-6x=3x x-2,x∈-1,1.由题意,只需f (x)max>0.当x∈[-1,0)时,f x >0,当x∈(0,1]时,f x <0,所以f x 在[-1,0)上单调递增,在(0,1]上单调递减,所以f(x)max=f0 =3-a>0,故实数a的取值范围为-∞,3.故选:D.【例2】已知函数f x =ax3+bx2+6x+c,当x=-1时,f x 的极小值为-5,当x=2时,f x 有极大值.(1)求函数f x ;(2)存在x0∈1,3,使得f x0≤t2-2t成立,求实数t的取值范围.【答案】(1)f x =-x3+32x2+6x-32;(2)(-∞,-1]∪[3,+∞).【解析】(1)求导后,根据f -1=f 2 =0和f-1=-5,解得a,b,c即可得解;(2)转化为f x min≤t2-2t,再利用导数求出函数f(x)在1,3上的最小值,然后解不等式t2-2t≥3可得结果.(1)∵f x =3ax2+2bx+6,由f -1=f 2 =0,得3a-2b+6=0且12a+4b+6=0,解得a=-1,b=3 2,又f-1=-5,∴c=-3 2,经检验a=-1,b=32时,f x =-x3+32x2+6x-32满足题意,∴f x =-x3+32x2+6x-32;(2)存在x0∈1,3,使得f x0≤t2-2t,等价于f x min≤t2-2t,∵f x =-3x2+3x+6=-3x-2x+1,当x∈[1,2)时,f (x)>0,当x∈(2,3]时,f (x)<0,∴f x 在(2,3]上递减,在[1,2)上递增,又f1 =5,f3 =3,∴f x 在1,3上的最小值为f3 =3,∴t2-2t≥3,解得t≤-1或3≤t,所以t的取值范围是(-∞,-1]∪[3,+∞).【例3】(2022·辽宁·高二阶段练习)已知a>0,若在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,则a的最小值为______.【答案】e【分析】将原式化为e x-ln e x≤x a-ln x a,构造函数g(t)=t-ln t(t>1),求导得函数g(t)在(1,+∞)上单调递增,即得e x≤x a,两边取对数分离参数a,构造函数h(x)=xln x(x>1),利用导数求解函数h(x)的最小值即可.【详解】解:不等式e x-x≤x a-a ln x成立,即e x-ln e x≤x a-ln x a成立,因为x∈(1,+∞),a>0,所以e x>1,x a>1,令g(t)=t-ln t(t>1),则e x-ln e x≤x a-ln x a⇒g(e x)≤g(x a),因为g (t)=1-1t>0,所以g(t)在(1,+∞)上单调递增,所以e x≤x a,即x≤a ln x(x>1),因为在(1,+∞)上存在x使得不等式e x-x≤x a-a ln x成立,所以a≥xln xmin,令h(x)=xln x(x>1),则h (x)=ln x-1ln2x,故当x=e时,h(x)取得最小值h(e)=eln e=e.所以a≥e,即a的最小值为e.故答案为:e.【题型专练】1.已知函数f x =x2+2a+2ln x.(1)当a=-5时,求f x 的单调区间;(2)若存在x∈2,e,使得f x -x2>2x+2a+4x成立,求实数a的取值范围.【答案】(1)单调递减区间为0,2,单调递增区间为2,+∞;(2)e2-e+2e-1,+∞ .【解析】(1)当a=-5时,f x =x2-8ln x,得出f x 的定义域并对f x 进行求导,利用导数研究函数的单调性,即可得出f x 的单调区间;(2)将题意等价于2x +2a +4x -2a +2 ln x <0在2,e 内有解,设h x =2x +2a +4x-2a +2 ln x ,即在2,e 上,函数h x min <0,对h x 进行求导,令hx =0,得出x =a +2,分类讨论a +2与区间2,e 的关系,并利用导数研究函数h x 的单调和最小值,结合h x min <0,从而得出实数a 的取值范围.(1)解:当a =-5时,f x =x 2-8ln x ,可知f x 的定义域为0,+∞ ,则fx =2x -8x =2x 2-8x,x >0,可知当x ∈0,2 时,f x <0;当x ∈2,+∞ 时,f x >0;所以f x 的单调递减区间为0,2 ,单调递增区间为2,+∞ .(2)解:由题可知,存在x ∈2,e ,使得f x -x 2>2x +2a +4x成立,等价于2x +2a +4x-2a +2 ln x <0在2,e 内有解,可设h x =2x +2a +4x -2a +2 ln x ,即在2,e 上,函数h x min <0,∴hx =2-2a +4x 2-2a +2x=2x 2-2a +2 x -2a +4 x 2=2x +1 x -a +2 x 2,令h x =0,即x +1 x -a +2 =0,解得:x =a +2或x =-1(舍去),当a +2≥e ,即a ≥e -2时,h x <0,h x 在2,e 上单调递减,∴h x min =h e =2e +2a +4e -2a -2<0,得a >e 2-e +2e -1,又∵e 2-e +2e -1>e -2,所以a >e 2-e +2e -1;当a +2≤2时,即a ≤0时,h x >0,h x 在2,e 上单调递增,∴h x min =h 2 =6+a -2a +2 ln2<0,得a >6-ln4ln4-1>0,不合题意;当2<a +2<e ,即0<a <e -2时,则h x 在2,a +2 上单调递减,在a +2,e 上单调递增,∴h x min =h a +2 =2a +6-2a +2 ln a +2 ,∵ln2<ln a +2 <ln e =1,∴2a +2 ln2<2a +2 ln 2a +2 <2a +2,∴h a +2 =2a +6-2a +2 ln a +2 >2a +6-2a -2=4,即h x min >4,不符合题意;综上得,实数a 的取值范围为e 2-e +2e -1,+∞ .【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题:(1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.2.(2022·河北深州市中学高三阶段练习)已知函数f x =ln x-2ax+1.(1)若x=1是f x 的极值点,确定a的值;(2)若存在x>0,使得f x ≥0,求实数a的取值范围.【答案】(1)a=12,(2)-∞,12【分析】(1)由已知可得出f 1 =0,求出a的值,然后利用导数分析函数f x 的单调性,结合极值点的定义检验即可;(2)由参变量分离法可得出2a≤ln x+1x,利用导数求出函数g x =ln x+1x的最大值,即可得出实数a的取值范围.(1)解:因为f x =ln x-2ax+1,该函数的定义域为0,+∞,则f x =1x-2a,由已知可得f 1 =1-2a=0,可得a=12,此时f x =1x-1=1-xx,列表如下:x0,111,+∞f x +0-f x 增极大值减所以,函数f x 在x=1处取得极大值,合乎题意,故a=1 2.(2)解:存在x>0,使得f x =ln x-2ax+1≥0可得2a≤ln x+1x,构造函数g x =ln x+1x,其中x>0,则g x =-ln xx2,当0<x<1时,g x >0,此时函数g x 单调递增,当x>1时,g x <0,此时函数g x 单调递减,则g x max=g1 =1,所以,2a≤1,解得a≤12,因此,实数a的取值范围是-∞,12.3.已知函数f x =ln x x,设f x 在点1,0处的切线为m(1)求直线m的方程;(2)求证:除切点1,0之外,函数f x 的图像在直线m的下方;(3)若存在x∈1,+∞,使得不等式f x >a x-1成立,求实数a的取值范围【答案】(1)y=x-1;(2)见详解;(3)(-∞,1).【解析】(1)求导得f (x)=1-ln xx2,由导数的几何意义k切=f′(1),进而可得答案.(2)设函数h(x)=f(x)-(x-1)=ln x x-x+1,求导得h′(x),分析h(x)的单调性,最值,进而可得f (x)-(x-1)≤0,则除切点(1,0)之外,函数f(x)的图象在直线的下方.(3)若存在x∈(1,+∞),使得不等式a<ln xx(x-1)成立,令g(x)=ln xx(x-1),x>1,只需a<g(x)max.【详解】(1)f (x)=1x⋅x-ln xx2=1-ln xx2,由导数的几何意义k切=f′(1)=1,所以直线m的方程为y=x-1.(2)证明:设函数h(x)=f(x)-(x-1)=ln x x-x+1,h (x)=1-ln xx2-1=1-ln x-x2x2 ,函数定义域为(0,+∞),令p(x)=1-ln x-x2,x>0,p′(x)=-1x-2x<0,所以p(x)在(0,+∞)上单调递减,又p(1)=0,所以在(0,1)上,p(x)>0,h′(x)>0,h(x)单调递增,在(1,+∞)上,p(x)<0,h′(x)<0,h(x)单调递减,所以h(x)max=h(1)=0,所以h(x)≤h(1)=0,所以f(x)-(x-1)≤0,若除切点(1,0)之外,f(x)-(x-1)<0,所以除切点(1,0)之外,函数f(x)的图象在直线的下方.(3)若存在x∈(1,+∞),使得不等式f(x)>a(x-1)成立,则若存在x∈(1,+∞),使得不等式f(x)x-1>a成立,即若存在x∈(1,+∞),使得不等式a<ln xx(x-1)成立,令g(x)=ln xx(x-1),x>1,g′(x)=1x⋅x(x-1)-(2x-1)ln xx2(x-1)2=x-1-(2x-1)ln xx2(x-1)2 ,令s(x)=x-1-(2x-1)ln x,x>1s′(x)=1-2ln x-(2x-1)•1x=x-2x ln x-2x+1x=-x-2x ln x+1x,令q(x)=-x-2x ln x+1,x>1q′(x)=-1-2ln x-2=-3-2ln x<0,所以在(1,+∞)上,q(x)单调递减,又q(1)=0,所以在(1,+∞)上,q(x)<0,s′(x)<0,s(x)单调递减,所以s(x)≤s(1)=0,即g′(x)≤0,g(x)单调递减,又limx→1ln xx(x-1)=limx→11x2x-1=1,所以a<1,所以a的取值范围为(-∞,1).4.已知函数f x =x ln x-ax+1.(1)若f x 在点A(1,f(1))处的切线斜率为-2.①求实数a的值;②求f x 的单调区间和极值.(2)若存在x0∈(0,+∞),使得f x0<0成立,求a的取值范围.【答案】(1)①a=3;②减区间为(0,e2),增区间为(e2,+∞),极小值为1-e2,无极大值;(2)(1,+∞).【解析】(1)求得函数的导数f x =ln x+1-a,①根据题意得到f x =-2,即可求得a的值;②由①知f x =ln x-2,x>0,结合导数的符号,以及极值的概念与计算,即可求解;(2)设g x =ln x+1x,根据存在x0∈(0,+∞),使得f x0<0成立,得到a>g x min成立,结合导数求得函数g x 的单调性与最小值,即可求解.【详解】(1)由题意,函数f x =x ln x-ax+1的定义域为(0,+∞),且f x =ln x+1-a,①因为f x 在点A(1,f(1))处的切线斜率为-2,可得f x =1-a=-2,解得a=3.②由①得f x =ln x-2,x>0,令f x >0,即ln x-2>0,解得x>e2;令f x <0,即ln x-2<0,解得0<x<e2,所以函数f x 在(0,e2)上单调递减,在(e2,+∞)上单调递增,当x=e2时,函数f x 取得极小值,极小值为f e2=1-e2,无极大值,综上可得,函数f x 的减区间为(0,e2),增区间为(e2,+∞),极小值为1-e2,无极大值.(2)因为f x =x ln x-ax+1,由f x0<0,即x0ln x0-ax0+1<0,即a>x0ln x0+1x0=ln x0+1x0,设g x =ln x+1x,x>0根据题意知存在x0∈(0,+∞),使得f x0<0成立,即a>g x min成立,由g x =ln x+1x,x>0,可得g x =1x-1x2=x-1x2,当0<x<1时,g x <0,g x 单调递减;当x>1时,g x >0,g x 单调递增,所以当x=1时,函数g x 取得最小值,最小值为g1 =1,所以a>1,即实数a的取值范围是(1,+∞).5.已知函数f(x)=ln x+ax(a∈R).(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;(2)求函数f(x)的单调区间;(3)若存在x0,使得f x0>0,求a的取值范围.【答案】(1)2x-y-1=0;(2)a≥0时,f x 在0,+∞单增;a<0,f x 在0,-1 a单增,在-1a,+∞单减;(3)a>-1e.【解析】(1)求出函数导数,将切线横坐标代入得到斜率,再求出切点纵坐标,最后写出切线方程;(2)求导后,通分,分a≥0,a<0两种情况讨论得到单调区间;(3)当a≥0时,代特值验证即可,当a<0时,函数最大值大于0,解出即可.【详解】由题意,f(1)=1,f x =1x+1,所以f 1 =2,所以切线方程为:y-1=2x-1⇒2x-y-1=0.(2)x>0,f (x)=1x+a=ax+1x,若a≥0,则f (x)>0,f x 在0,+∞单增;若a<0,则x∈0,-1 a时,f x >0,f x 单增;x∈-1a,+∞时,f x <0,f x 单减.(3)由(2),若a≥0,则f(2)=ln2+2a>0,满足题意;若a<0,f x max=f-1 a=ln-1a-1>0⇒a>-1e,则-1e<a<0,综上:a>-1 e.题型三:利用导数处理恒成立与有解问题【例1】(2022·福建省福安市第一中学高三阶段练习)设函数f x =x -1 e x -e ,g x =e x -ax -1,其中a ∈R .若对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,则a 的最大值为( )A.0 B.1eC.1D.e【答案】C【分析】由题意易知f x ≥0恒成立,则可等价为对∀x 2∈0,+∞ ,g x 2 ≥0恒成立,利用参变分离,可变形为a ≤e x -1x ,(x >0)恒成立,易证e x -1x >1,(x >0),则可得a ≤1,即可选出答案.【详解】对∀x 2∈0,+∞ ,都∃x 1∈R ,使得不等式f x 1 ≤g x 2 成立,等价于f x 1 min ≤g x 2 min ,当x <1时,x -1<0,e x -e <0,所以f x >0,当x ≥1时,x -1≥0,e x -e ≥0,所以f x ≥0,所以f x ≥0恒成立,当且仅当x =1时,f (x )min =0,所以对∀x 2∈0,+∞ ,g x 2 ≥0恒成立,即e x -ax -1≥0,当x =0,e x -ax -1=0≥0成立,当x >0时,e x-ax -1≥0⇒a ≤e x -1x恒成立.记h (x )=e x -x -1,x >0,因为h (x )=e x -1>0恒成立,所以h (x )在(0,+∞)上单调递增,且h (0)=0,所以h (x )=e x-x -1>0恒成立,即e x-1>x ⇒e x -1x>1,(x >0)所以a ≤1.所以a 的最大值为1.故选:C .【点睛】本题考查导数在不等式的恒成立与有解问题的应用,属于难题,此类问题可按如下规则转化:一般地,已知函数y =f (x ),x ∈a ,b ,y =g (x ),x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)max <g (x 2)min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)max <g (x 2)max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)min <g (x 2)max ;(4)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f (x 1)<g (x 2)成立,故f (x 1)min <g (x 2)min ;(5)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f (x 1)=g (x 2),则f (x )的值域是g (x )值域的子集.【例2】已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.【答案】(1)最大值为ln2-1,最小值为-12;(2)-1e 6,+∞ .【解析】(1)利用导数研究f (x )的区间单调性,进而确定端点值和极值,比较它们的大小,即可得最值;(2)将问题转化为x 1∈[-1,2]、x 2∈(0,+∞)上g (x 1)max <f (x 2)max ,利用二次函数性质及导数求函数最值,即可得结果.(1)由题设f (x )=ln x -x 2,则f (x )=2-x2x,所以在[1,2)上f (x )>0,f (x )递增,在(2,e ]上f (x )<0,f (x )递减,则f (1)=-12<f (e )=1-e2,极大值f (2)=ln2-1,综上,f (x )最大值为ln2-1,最小值为-12.(2)由g (x )=x 2-2x +2=(x -1)2+1在x ∈[-1,2]上g (x )max =g (-1)=5,根据题意,只需g (x )max <f (x )max 即可,由f (x )=a +1x且x ∈(0,+∞),当a ≥0时,f (x )>0,此时f (x )递增且值域为R ,所以满足题设;当a <0时,0,-1a 上f (x )>0,f (x )递增;-1a ,+∞ 上f (x )<0,f (x )递减;所以f (x )max =f -1a =-1-ln (-a ),此时-1-ln (-a )>5,可得a >-1e 6,综上,a 的取值范围-1e 6,+∞ .【点睛】关键点点睛:第二问,将问题转化为x 1∈[-1,2]、x 2∈(0,+∞)上g (x 1)max <f (x 2)max 求参数范围.【例3】已知函数f (x )=x sin x +cos x .(1)当x ∈0,π 时,求函数f (x )的单调区间;(2)设函数g (x )=-x 2+2ax .若对任意x 1∈-π,π ,存在x 2∈[0,1],使得12πf x 1 ≤g x 2 成立,求实数a 的取值范围.【答案】(1)当x ∈0,π 时,函数f (x )的单调递增区间为0,π2 ,函数f (x )的单调递减区间为π2,π ;(2)12,+∞.【解析】(1)首先对函数求导,根据x 的取值情况判断f x 的正负情况,进而得到f x 的增减情况;(2)对任意x 1∈-π,π ,存在x 2∈[0,1],使得h (x 1)≤g (x 2)成立,等价于h (x )max ≤g (x )max ,然后对a 进行讨论,分别求函数的最值,进而得到结论.(1)因为f (x )=x sin x +cos x ,所以f (x )=sin x +x cos x -sin x =x cos x .当x ∈0,π 时,f (x )与f (x )的变化情况如表所示:x 0,π2 π2π2,π f (x )+-f (x )单调递增π2单调递减所以当x ∈0,π 时,函数f (x )的单调递增区间为0,π2,函数f (x )的单调递减区间为π2,π.(2)当x ∈-π,π 时,f (-x )=f (x ),所以函数f (x )为偶函数.所以当x ∈-π,π 时,函数f (x )的单调递增区间为-π,-π2 ,0,π2,函数f (x )的单调递减区间为-π2,0 ,π2,π ,所以函数f (x )的最大值为f -π2 =f π2 =π2.设h x =12πf x ,则当x ∈-π,π 时,h x max =12π⋅π2=14.对任意x 1∈-π,π ,存在x 2∈[0,1],使得h (x 1)≤g (x 2)成立,等价于h (x )max ≤g (x )max .当a ≤0时,函数g (x )在区间[0,1]上的最大值为g (0)=0,不合题意.当0<a <1时,函数g (x )在区间[0,1]上的最大值为g (a )=a 2,则a 2≥14,解得a ≥12或a ≤-12,所以12≤a <1.当a ≥1时,函数g (x )在区间[0,1]上的最大值为g (1)=2a -1,则2a -1≥14,解得a ≥58,所以a ≥1.综上所述,a 的取值范围是12,+∞.【例4】(2022·黑龙江·哈尔滨三中高二期末)已知函数f x =ln xx ,g (x )=ln (x +1)+2ax 2,若∀x 1∈1,e 2,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,则实数a 的取值范围是( )A.-∞,-ln22B.-∞,-ln22C.-∞,-1eD.-∞,e -ln22【答案】A【分析】将问题转化为∃x ∈0,1 使得f (x )min >g (x )成立,通过求得导数和单调性,可得最值,再根据不等式成立,结合参数分离可得a 的范围.【详解】∀x 1∈1,e 2 ,∃x 2∈0,1 使得f (x 1)>g (x 2)成立,等价为∃x ∈0,1 使得f (x )min >g (x )成立,由f x =ln x x 得f x =1-ln xx2,当x ∈0,e 时,f x >0,此时f x 单调递增,当x ∈e ,+∞ 时,f x <0,此时f x 单调递减,f 1 =0,f e 2 =2e 2,故f x min =f 1 =0ln (x +1)+2ax 2<0在x ∈0,1 成立,当0<x <1时,-2a >ln (x +1)x 2min ,设h (x )=ln (x +1)x 2,0<x <1 ,则h (x )=1-1x +1-2ln (x +1)x 3,由m x =1-1x +1-2ln (x +1),得m x =1(x +1)2-2x +1=-1-2x(x +1)2<0,所以m x =1-1x +1-2ln (x +1)在0,1 递减,所以1-1x +1-2ln (x +1)<m 0 =0,则h (x )在0,1 递减,所以h (x )>h 1 =ln2,则-2a >ln2,所以a <-ln22.故选:A【例5】(2023·全国·高三专题练习)已知函数f x =x 3-34x +32,0≤x ≤122x +12,12<x ≤1,g x =e x -ax a ∈R ,若存在x 1,x 2∈0,1 ,使得f x 1 =g x 2 成立,则实数a 的取值范围是( )A.-∞,1 B.-∞,e -2C.-∞,e -54D.-∞,e【答案】C【分析】根据题意可得f x 的值域与 g x =e x -ax 的值域有交集即可,先求导分析f x 的值域,再求导分情况讨论g x =e x -ax 的单调性与值域,结合解集区间的端点关系列式求解即可【详解】①当0≤x ≤12时,f x =x 3-34x +32,则f x =3x 2-34=3x 2-14 ≤0在0,12上恒成立,。
第10讲 恒成立能成立3种常见题型(解析版)

第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。
恒成立问题的解法20141009

取值范围.
【解】
(1)令 F(x)= g(x)- f(x)= 2x3- 3x2- 12x+ k.
问题转化为 F(x)≥0 在 x∈[- 3, 3]时恒成立, 故解 [F(x)]min≥0 即可. ∵ F′ (x)= 6x - 6x- 12= 6(x - x- 2), 故由 F′(x)= 0,得 x= 2 或 x=- 1. ∵ F(- 3)= k- 45, F(3)= k- 9, F(- 1)= k+ 7, F(2)= k- 20, ∴ [F(x)]min= k- 45, 由 k- 45≥ 0,解得 k≥ 45, 故实数 k 的取值范围是[45,+∞ ).
3.极值只能在区间内取得,最值则可以在端 点处取得,有极值的不一定有最值,有最值的 也未必有极值;极值有可能成为最值,最值只 要不在端点处取必定是极值.
利用导数解不等式恒成立问题 利用导数研究某些函数的单调性与最值,可以解 决一些不等式证明及不等式恒成立问题,如利用 “f(x) < a 恒 成 立 ⇔ f(x)max < a” 和 “f(x) > a⇔f(x)min>a”的思想解题.
1:当 a 1,3 时,不等式 x 2 ax 2 0 恒成立,则 x 的范围为 .
x>-1或x<-2
对于一次函数f x kx b(k 0), x [m,n],有 f m 0 ; 1 f x 0恒成立 f n 0 f m 0 . 2 f x 0恒成立 f n 0
6+6a+ 3b=0 即 . 24+ 12a+ 3b=0
解得 a=-3,b=4. 3 2 (2)由(1)可知,f(x)=2x - 9x + 12x+8c, 2 f′ (x)= 6x -18x+ 12=6(x- 1)(x-2). 当 x∈ (0,1)时,f′ (x)>0; 当 x∈ (1,2)时,f′ (x)<0; 当 x∈ (2,3)时,f′ (x)>0.
不等式恒成立问题的解法

不等式恒成立问题的解法-中学数学论文不等式恒成立问题的解法
黑龙江大庆实验中学马云姝
一、分离参变量法
二、二次函数法
将原不等式通过移项后转化为二次函数恒正(或非负),恒负(或非正)的问题,再利用判别式来解决。
三、数形结合法
通过构造两个函数,画出它们的图象,通过图象来比较两个函数值的大小,即数形结合法来解决恒成立问题。
综上不等式恒成立问题常见的解法有三种:分离变量法、二次函数法、数形结合法。
其基本思路是借助函数思想,通过不同的角度构造函数,转化为求函数的最值问题,借助函数的图象或利用判别式来解决。
不等式中恒成立问题的解法研究 完美

不等式恒成立问题中心摘要近几年在数学高考试题中经常遇到不等式恒成立问题。
在05年高考辽宁、湖北及天津等省均出现此类题型。
本文根据高考题及高考模拟题总结了四种常见的解决不等式恒成立问题的方法。
法一:转换主元法。
适用于一次型函数。
法二:化归二次函数法。
适用于二次型函数。
法三:分离参数法。
适用于一般初等函数。
法四:数型结合法。
中文关键词“不等式”, “恒成立”在近些年的数学高考题及高考模拟题中经常出现恒成立问题,这样的题目一般综合性强,可考查函数、数列、不等式及导数等诸多方面的知识。
同时,培养学生分析问题、解决问题、综合驾驭知识的能力。
下面结合例题浅谈恒成立问题的常见解法。
1 转换主元法确定题目中的主元,化归成初等函数求解。
此方法通常化为一次函数。
例1:若不等式 2x -1>m(x 2-1)对满足-2≤m ≤2的所有m 都成立,求x 的取值范围。
解:原不等式化为 (x 2-1)m -(2x -1)<0记f(m)= (x 2-1)m -(2x -1) (-2≤m ≤2)根据题意有:⎪⎩⎪⎨⎧<=<=01)-(2x -1)-2(x f(2)01)-(2x -1)--2(x f(-2)22即:⎪⎩⎪⎨⎧<->+01-2x 2x 03-2x 2x 22解之:得x 的取值范围为231x 271+<<+-2 化归二次函数法根据题目要求,构造二次函数。
结合二次函数实根分布等相关知识,求出参数取值范围。
例2:在R 上定义运算⊗:x ⊗y =(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D)3122a -<<解:由题意可知 (x-a)[1-(x+a)] <1对任意x 成立即x 2-x-a 2+a+1>0对x ∈R 恒成立 记f(x)=x 2-x-a 2+a+1则应满足(-1)2-4(-a 2+a+1)<0 化简得 4a 2-4a-3<0解得 2321<<-a ,故选择C 。
一个不等式恒成立问题的求解与思考

一个不等式恒成立问题的求解与思考不等式恒成立问题,也就是指在一定条件下,一个不等式一定能够得到成立的一类问题。
通常我们遇到的这类问题都被称为绝对值不等式问题,即只要给出一个不等式,不管怎么变化,都可以满足该不等式。
这样的问题在实际中经常会被用到,比如我们经常遇到的判定问题,就需要用到不等式恒成立的性质,才能正确判断出这个问题的结果。
那么怎样才能求解一个不等式恒成立的问题呢?首先,要弄清楚问题的前提,知道给定的不等式是什么,以及可以接受的变换是什么。
比如,如果是求解|x+2|>3时x的取值,那么此式就可以变换为2x>1和2x<-5两个不等式,求解结果就是x>1/2和x<-5/2。
然后,就可以根据具体的前提来进行求解。
比如,如果现在有|x+5|<10这样一个式子,我们先可以将它变换为两个不等式:x+5<10,x+5>-10;根据前提,当x+5取值大于-10,小于10时满足要求,所以求解的解集为-5<x<5。
总的来说,求解不等式恒成立的问题,无非是三个步骤:先把不等式转化为两个不等式,然后实际求解,最后根据前提来判定结果。
这三步可以帮助我们把握好不等式恒成立问题的解法,同时也可以更加有效率的求解出所需要的解集。
除掉最基本的问题之外,有的时候我们还可以进行更多的思考,比如我们可以思考如果让给定的不等式如何变化,以便满足某个更加严格的要求,以及可以实现的类似于不等式恒成立的问题有哪些等等。
一方面,这样可以使得求解的工作变得更容易。
另一方面,有时候可能会发现一些新的性质,从而带来更多新的可能性。
总而言之,不等式恒成立问题是一个重要的数学问题,它被广泛应用在生活中,因此理解它的求解方法以及不等式恒成立的原理,都非常重要。
解决这类问题的过程中,我们需要做好前提分析,把握转化的方法以及实际求解,同时还要进行思考,打开思路,以便收获更多的发现。
只有这样,我们才可以有效的解决不等式恒成立的问题,为社会发展做出更多的贡献。
(完整)高中数学恒成立问题中求含参范围的方法总结,推荐文档

恒成立问题中含参范围的求解策略数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。
一、分离参数——最值化1 在给出的不等式中,如果能通过恒等变形分离出参数,即:a ≥f(x)恒成立,只须求出 ,则a ≥ ;若a ≤f(x)恒成立, 只须求出 ,则a ≤转化为函数求最值.例1 已知函数f(x)= ,若任意x ∈[2 ,+∞)恒有f(x)>0,试确定a 的取值范围. 解:根据题意得,x+−2>1在x ∈[2 ,+∞)上恒成立,即a>−+3x 在x ∈[2 ,+∞)上恒成立.设f(x)=-+3x .则f(x)=−+ ,当x=2时,=2 ,所以a>22在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若f(a)≥g(x)恒成立,只须求出g(x)最大值 ,则f(a)≥ .然后解不等式求出参数a 的取值范围; :若f(a)≤g(x)恒成立,只须求出g(x)最小值 ,则f(a)≤ .然后解不等式求出参数a 的取值范围.问题还是转化为函数求最值.例2 已知x ∈(−∞ ,1]时,不等式1++(a −)>0恒成立,求a 的取值范围.解 令=t ,∵x ∈(−∞ ,1] ∴t ∈(0 ,2].所以原不等式可化为<,要使上式在t ∈(0 ,2]上恒成立,只须求出f(t)=在t ∈(0 ,2]上的最小值即可. ∵f(t)==+=− 又t ∈(0 ,2] ∴∈[) ∴=f(2)=∴< , ∴−<a<例3 设c b a >>且ca mc b 1b a 1-≥-+-恒成立,求实数m 的取值范围。
解析:由于c a >,所以0c a >-,于是⎪⎭⎫ ⎝⎛-+--≤c b 1b a 1)c a (m 恒成立,因+≥⎪⎭⎫⎝⎛--+--++=⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫ ⎝⎛-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a (.4cb b a b ac b 2=--⋅-- (当且仅当b a c b -=-时取等号),故4m ≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式中恒成立问题的解法研究“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
本文就结合实例谈谈这类问题的一般求解策略。
在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、变换主元法处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。
⑴、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x 。
例2.对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围。
分析:题中的不等式是关于x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题。
解:令44)2()(2+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立(]1,1[-∈a )。
当2=x 时,可得0)(=a f ,不合题意。
当2≠x 时,应有⎩⎨⎧>->0)1(0)1(f f 解之得31><x x 或。
故x 的取值范围为),3()1,(+∞-∞ 。
例3 已知对于任意的a ∈[-1,1],函数f (x )=ax 2+(2a -4)x +3-a >0 恒成立,求x 的取值范围.解析 本题按常规思路是分a =0时f (x )是一次函数,a ≠0时是二次函数两种情况讨论,不容易求x 的取值范围。
因此,我们不能总是把x 看成是变量,把a 看成常参数,我们可以通过变量转换,把a 看成变量,x 看成常参数,这就转化一次函数问题,问题就变得容易求解。
令g (a )=(x 2+2x -1)a -4x+3在a ∈[-1,1]时,g (a )>0恒成立 ,则⎩⎨⎧>>-0)1(0)1(g g ,得133133+-<<--x .二、利用一元二次函数的判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有: (1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a例4:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是(2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。
例5.已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值范围为),31()1,(+∞--∞ 。
若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。
例6.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 ①当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立; ②当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值范围为)1,3[-。
例7、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。
解:设()23f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。
(1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73a ∴≤又4a >所以a 不存在; (2) 当222a -≤≤即:44a -≤≤时,()2m i n 3024a a f x f a ⎛⎫=-=--≥ ⎪⎝⎭ 62a ∴-≤≤ 又44a -≤≤42a ∴-≤≤ (3) 当22a-> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又4a <-74a ∴-≤<-综上所得:72a -≤≤三、利用函数的最值(或值域)(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(; (2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。
求实数a 的取值范围。
解:设c x x x x g x f x F -++-=-=1232)()()(23, 则由题可知0)(≤x F 对任意]3,3[-∈x 恒成立 令01266)(2'=++-=x x x F ,得21=-=x x 或而,20)2(,7)1(a F a F -=-=-,9)3(,45)3(a F a F -=-=- ∴045)(max ≤-=a x F∴45≥a 即实数a 的取值范围为),45[+∞。
例9.函数),1[,2)(2+∞∈++=x xax x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。
解:若对任意),1[+∞∈x ,0)(>x f 恒成立,即对),1[+∞∈x ,02)(2>++=xax x x f 恒成立, 考虑到不等式的分母),1[+∞∈x ,只需022>++a x x 在),1[+∞∈x 时恒成立而得而抛物线a x x x g ++=2)(2在),1[+∞∈x 的最小值03)1()(min >+==a g x g 得3->a注:本题还可将)(x f 变形为2)(++=xax x f ,讨论其单调性从而求出)(x f 最小值。
实际上,上题就可利用此法解决。
略解:022>++a x x 在),1[+∞∈x 时恒成立,只要x x a 22-->在),1[+∞∈x 时恒成立。
而易求得二次函数x x x h 2)(2--=在),1[+∞上的最大值为3-,所以3->a 。
例10、已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
解:根据题意得:21ax x+->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,设()23f x x x =-+,则()23924f x x ⎛⎫=--+ ⎪⎝⎭当2x =时,()max 2f x = 所以2a >例11、已知(],1x ∈-∞时,不等式()21240x xa a ++-⋅>恒成立,求a 的取值范围。
解:令2xt =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:21t a a +-<,()22211111124t f t t t t t +⎛⎫⎛⎫==+=+- ⎪ ⎪⎝⎭⎝⎭11,2t ⎡⎫∈+∞⎪⎢⎣⎭()()min 324f t f ∴==234a a ∴-< 1322a ∴-<< 例12.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立。
令xx x x g 24)(-=,则min )(x g a < 由144)(2-=-=xxx x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞。