2015步步高高中数学文科文档2.4

合集下载

2015年高中数学步步高大一轮复习讲义(文科)第一章 1.3

2015年高中数学步步高大一轮复习讲义(文科)第一章 1.3

题型分类·深度剖析
(1)若命题 p:函数 y=x2-2x 的单调递增区间是[1, 1 +∞), 命题 q: 函数 y=x-x的单调递增区间是[1, +∞), 则( D ) 跟踪训练 2 A.p∧q 是真命题 C.綈 p 是真命题 B.p∨q 是假命题 D.綈 q 是真命题
必要不充分 条件. (2)“p 或 q”为真命题是“p 且 q”为真命题的___________
“綈 p”为真命题的个数是 A.1 B. 2
C.3 D.0
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二 含有逻辑联结词命题的真假判断
思维启迪 解析 答案 思维升华
【例 2】
命题 p:将函数 y=sin 2x π 的图像向右平移 个单位得到函数 3 π y=sin2x-3的图像; 命题 q: 函数 π π y = sin x+6 cos 3-x 的最小正周 期为 π, 则命题“p 或 q”“p 且 q” ( )
【例 1】 写出下列命题的否定, 并判断其真假: 1 (1)p: 任意 x∈R, x -x+ ≥0; 4
2
思维升华
(2)q:所有的正方形都是矩形; (3)r:存在 x0∈R,x2 0+2x0+劫 2≤0; (4)s:至少有一个实数 x0 ,使 x3 0+1=0.
基础知识 题型分类 思想方法 练出高分





假 假






基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
夯基释疑
夯实基础 突破疑难
题号
1 2 3 4 5
答案

【步步高】(广东专用)2015届高考数学二轮复习专.

【步步高】(广东专用)2015届高考数学二轮复习专.

第1讲排列.组合与二项式定理2•排列、组合、两个计数原理往往通过实际问 题进行综合考查,一般以选择、填空题的形式 出现,难度中等,还经常与概率问题相结合, 出现在解答题的第一或第二个小题中,难度也 为中等;对于二项式定理的考查,主要出现在 选择题或填空题中,难度为易或中等.考情解读 1 •高考中对两个计数原理、排考情解手学2F知识梳理1 •分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.2 •排列与组合⑴排列:从光个不同元素中取出个元素,按照一定的顺序排成一列,叫做从死个不同元素中取出加个元素的一个排歹•从〃个不同元素中取出加个元素的排列数公式是A = n{n - 1)(〃-2)…(〃+ 1)或写成n\(2)组合:从死个不同元素中取出个元素组成一组,叫做从死个不同元素中取出加个元素的一个组 合•从〃个不同元素中取出加个元素的组合数公式是 咆d ・g+l )或号成r -5 -」 /与秋5-应!(…)! • ⑶组合数的性质①etc ;严;②c^^c+cr 1. 3•二项式定理⑴二项式定理:(a + b)" = C%"沪 + C\a n ~lb + C%"叫2 + ••• + Gfl"~r b r + ••• + C"^b'\r = 0,1^, •••, n). (2)二项展开式的通项Tr +i = W, r = 0,U, •», n,其中 C ;叫做二项 式系数.11m\_ 亠and)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等cm即eg, cjzzcr1,②最大值:当"为偶数时,中间的一项的二项式系数&取得最大值;当«为奇数时,中间的两项的二项式系数C二卅1C]相等,且同时取得最大值.+ 1 + •••③各二项◎丽分类突破>热点一两个计数原理>热点二排列与组合>热点三二项式定理两个例1 (1)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大•当思维启迪先3,4固定在图中的位置时,填写空格的方法为(A.6 种B.12 种C.18 种D.24 种—•O * "E解析•• •每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6,7,8任一个;余下两个数字按从小到大只有一种方法.共有2X3=6种结果,故选A・答案A⑵如果一个三位正整数“a“J满足如<^且如《2,则称这样的三位数为凸数(如120,343,275), 那么所有凸A.240B.204C.729D.920 思维启迪按中间数进行分类.解析分8类,当中间数为2时,有1X2=2种;当中间数为3时,有2X3=6种;当中间数为4时,有3X4 = 12 种;当中间数为5时,有4X5=20 种;当中间数为6时,有5X6=30 种;当中间数为7时,有6X7=42 种;(1)在应用分类加法计数原理和分步乘法计数原理 时,一般先分类再分步,每一步当中又可能用到!■ 分类加法计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当i 玄加练1选出2名男医生、1名女医生组成一个医疗小组,则 不同的选法共有()A.60 种B.70 种C.75 种D.150 种 思或表(1)(201)有6名男医生、5名女医生,从中列出示意足这样条件的函数的个数为(A.8B.9C.26D.27ln(x 2+l)=l=»x=±A/e —1,ln(x 2+l)=2=>x=±\t 2--l,所以定义域取值即在这5个元素中选取,②当定义域中有4个元素时,C ;C]=4,③当定义域中有5个元素时,有一种情况. 所以共有4+4+1=9(个)这样的函数. 答案B数/仗2111(2 + 1)的值域为{0,1,2},则满 ①当定义域中有3个元素C ;C ;Cj=4, 解析I软诫汇排列与组合例2 (1)(2014 •重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168思维启迪将不能相邻的节目插空安排;—廿•: GW q「IT •解卞先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1, 小品2,相声” “小品1,相声,小品2”和“相声, 小品1,小品2"・对于第一种情况,形式为“□小品1歌舞1小品2口相声丁 ,有A;CjA;=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“口小品1□相声□小品2□” ,有A圖=48(种)安排方法,故共有36+36+48=120(种)安排方法.答案B其中“1=(), “5 = 2, “]2 = 5,且%+ 1-加=1,R = l,2,3,…,11,则满足这种条件的不同数列的个数为(A.84B.168C.76D.152思维启迪⑵数列V\a k+x—a^ = l, jt = 1,2,3, (11)前一项总比后一项大1或小1,如到色中4个变化必然有3升1减,到如2中必然有5升2减,是组合的问题,AC1XC?=84. 答案A解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.⑵以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.变式训练2(1)在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序〃和C实施时必须相邻,则实验顺序的编排方法共有()A.24 种C.96 种B.48 种D.144 种首先安排4有2种方法;第二步在剩余的5个位置选取相邻的两个排C, 有4种排法,而C位置互换有2种方法;第三步安排剩余的3个程序,有&种排法, 共有2X4X2XA;=96(种).答案C(2)从0,1,23,4中任取四个数字组成无重复数字的四位数,其中偶数的个数________ (用数字作答).且为0,1,2,3,4中任取四个数字组成无重复数字的四位一是当0在个位的四位偶数有A;=24(个);二是当0不在个位时,先从2,4中选一个放在个位,再从余下的三个数选一个放在首位,应有A]A提=36(个),故共有四位偶数60个.丰热点三二项式定理例3 (1)在(a+x)7展开式中『的系数为35,则实数a的值为 _____ •思维启迪利用通项公式求常数项;解析通项公式:77+i=C"-匕所以展开式中J的系数为C制=35,解得尸1・P)如果(1 +X +Z)(x 一“)5(“为实常数)的展开式中所有项 的系数和为0,则展开式中含0项的系数为—_・思维启迪可用赋值法求二项展开式所有项的系数和. 解析•・・令兀=1得(1+x +x 2)(x 一“)啲展开式中所有项 的系数和为(1 + 1 + 12)(1-«)5=0, •I “ = 1, (1 +x +x 2)(x —a)5=(1 +x +x 2)(x — l)5= (Z —1)仗一1)4=兀3仗一1)4一仗一1)4, 其展开式中含『项的系数为d(-l)3-C ;(-l)°=-5.(1)在应用通项公式时,要注意以下几点:① 它表示二项展开式的任意项,只要死与厂确定, 该项就随之确定;② 7;+】是展开式中的第厂+1项,而不是第厂项; ③ 公式中,方的指数和为nRa, 〃不能随便颠 倒位置;思维升4④ 对二项式(a-by 展开式的通项公式要特别注意符号问题.(2) 在二项式定理的应用中,“赋值思想”是一 种重要方法,是处理组合数问题、系数问题的 经典方法. 变式训练3(1)(2014•湖北诺二项式(2工+了的展开式中]的系数 是84,则实数a 等于()A.2思维升尹叱5»r二项式(2x+-)7的展开式的通项公式为T;+1 = G(2Q7 丁白JC 旷处7巳令7—2r=—3,得厂=5・故展开式中Z的系数是C?2V=84,解得a=l.X答案C—<«>/*«J r n(2)(2014-浙江)在(1 +x)6(l +刃4的展开式中,记严尸项的系数为几n, n),贝IJ/(3,O) +/(2,1) +/(1,2) + 力0,3)等于(。

高中数学2015新课标步步高2.2

高中数学2015新课标步步高2.2

§2.2 函数的单调性与最值1.函数的单调性 (1)(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.结论M 为最大值1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =|x |是R 上的增函数. ( × )(4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞). ( × ) (5)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( × ) (6)函数y =1-x 21+x 2的最大值为1.( √ ) 2.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .先递增再递减答案 C解析 作出函数y =x 2-6x +10的图象(图略), 根据图象可知函数在(2,4)上是先递减再递增.3.(2013·安徽)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件答案 C解析 本题利用函数的图象确定字母的取值范围,再利用充要条件的定义进行判断. 当a =0时,f (x )=|(ax -1)x |=|x |在区间(0,+∞)上单调递增;当a <0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图象知函数在(0,+∞)上单调递增,如图(1)所示;当a >0时,结合函数f (x )=|(ax -1)x |=|ax 2-x |的图象知函数在(0,+∞)上先增后减再增,不符合条件,如图(2)所示.所以,要使函数f (x )=|(ax -1)x |在(0,+∞)上单调递增只需a ≤0.即“a ≤0”是“函数f (x )=|(ax -1)x |在(0,+∞)上单调递增”的充要条件.4.函数f (x )=2xx +1在[1,2]的最大值和最小值分别是________________________________________________________________________.答案 43,1解析 f (x )=2x x +1=2(x +1)-2x +1=2-2x +1在[1,2]上是增函数,∴f (x )max =f (2)=43,f (x )min =f (1)=1.5.函数y =log 2112(2x 2-3x +1)的单调减区间为________.答案 (1,+∞)解析 由2x 2-3x +1>0,得函数的定义域为(-∞,12)∪(1,+∞).令t =2x 2-3x +1,则y =log 21t ,∵t =2x 2-3x +1=2(x -34)2-18,∴t =2x 2-3x +1的单调增区间为(1,+∞).又y =log 21t 在(1,+∞)上是减函数,∴函数y =log 21 (2x 2-3x +1)的单调减区间为(1,+∞).题型一 函数单调性的判断例1 讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性.思维启迪 可根据定义,先设-1<x 1<x 2<1,然后作差、变形、定号、判断. 解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数f (x )在(-1,1)上为减函数.思维升华 利用定义法证明或判断函数单调性的步骤:(1)已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数;(2)求函数y =x 2+x -6的单调区间.(1)证明 设x 1,x 2是任意两个正数,且0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2 =x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,又x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.(2)解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数. 由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞). 题型二 利用函数的单调性求参数例2 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14C .-14≤a <0D .-14≤a ≤0(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.思维启迪 利用函数的单调性求参数或参数的取值范围,解题思路为视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参.答案 (1)D (2)[32,2)解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得0>a ≥-14.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0a >1(2-a )×1+1≤a, 解得32≤a <2,∴a 的取值范围是[32,2).思维升华 已知函数的单调性确定参数的值或范围要注意以下两点:①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3 (2)已知f (x )=⎩⎪⎨⎪⎧a x (x >1),⎝⎛⎭⎫4-a 2x +2 (x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)答案 (1)C (2)B 解析 (1)y =x -5x -a -2=1+a -3x -(a +2),由函数在(-1,+∞)上单调递增,有⎩⎪⎨⎪⎧a -3<0a +2≤-1,解得a ≤-3. (2)因为f (x )是R 上的单调递增函数,所以可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥4-a 2+2.解得4≤a <8,故选B.题型三 函数的单调性和最值例3 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.思维启迪 抽象函数的问题要根据题设及所求的结论来适当取特殊值,证明f (x )为单调减函数的首选方法是用单调性的定义来证.问题(3)用函数的单调性即可求最值. (1)解 令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明 任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0, 即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)解 ∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得, f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.思维升华 (1)抽象函数的单调性的判断要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等;(2)利用函数单调性可以求函数最值,若函数f (x )在[a ,b ]上单调递增,则f (x )的最小值是f (a ),最大值是f (b ).(1)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x-1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( )A .2B .3C .4D .-1(2)函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.答案 (1)C (2)6解析 (1)根据f (1+x )=f (-x ),可知函数f (x )的图象关于直线x =12对称.又函数f (x )在[12,+∞)上单调递增,故f (x )在(-∞,12]上单调递减,则函数f (x )在[-2,0]上的最大值与最小值之和为f (-2)+f (0)=f (1+2)+f (1+0)=f (3)+f (1)=log 28+log 22=4. (2)易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6.函数单调性的应用典例:(12分)函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.思维启迪(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本小题的切入点.要构造出f(M)<f(N)的形式.规范解答(1)证明设x1,x2∈R,且x1<x2,∴x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1. [2分]f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,[4分]∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[10分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[12分]解函数不等式问题的一般步骤:第一步:确定函数f(x)在给定区间上的单调性;第二步:将函数不等式转化为f(M)<f(N)的形式;第三步:运用函数的单调性“去掉”函数的抽象符号“f”,转化成一般的不等式或不等式组;第四步:解不等式或不等式组确定解集;第五步:反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1.构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视M、N的取值范围,即忽视f(x)所在的单调区间的约束.方法与技巧1.利用定义判断或证明函数的单调性 设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 函数的单调性是对某个区间而言的. 2.求函数的单调区间首先应注意函数的定义域,函数的单调区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.常用方法:根据定义、利用图象和单调函数的性质、利用导数的性质. 3.复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数. 简称:同增异减. 失误与防范函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间要分开写,即使在两个区间上的单调性相同,也不能用并集表示.A 组 专项基础训练一、选择题1.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)答案 A解析 由题意知f (x )在(0,+∞)上是减函数.A 中,f (x )=1x满足要求;B 中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;C 中,f (x )=e x 是增函数;D 中,f (x )=ln(x +1)是增函数.2.若函数f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案 D解析 ∵f (x )=-x 2+2ax =-(x -a )2+a 2在[1,2]上是减函数, ∴a ≤1.①又g (x )=(a +1)1-x 在[1,2]上是减函数.∴a +1>1,∴a >0.② 由①、②知,0<a ≤1.3.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( )A .(0,34)B .(0,34]C .[0,34)D .[0,34]答案 D解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎪⎨⎪⎧a >0-4(a -3)4a ≥3,得0<a ≤34,综上a 的取值范围是0≤a ≤34.4.已知f (x )为R 上的减函数,则满足f (1x)>f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞)答案 D解析 依题意得1x <1,即x -1x >0,所以x 的取值范围是x >1或x <0.5.定义新运算“”:当a ≥b 时,a b =a ;当a <b 时,a b =b 2,则函数f (x )=x )x -x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12 答案 C解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 二、填空题6.函数f (x )=ln(4+3x -x 2)的单调递减区间是__________.答案 ⎣⎡⎭⎫32,4解析 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254的减区间为⎣⎡⎭⎫32,4,∵e>1,∴函数f (x )的单调递减区间为⎣⎡⎭⎫32,4.7.设函数f (x )=ax +1x +2a 在区间(-2,+∞)上是增函数,那么a 的取值范围是__________.答案 [1,+∞)解析 f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,∵函数f (x )在区间(-2,+∞)上是增函数.∴⎩⎪⎨⎪⎧ 2a 2-1>0-2a ≤-2⇒⎩⎪⎨⎪⎧2a 2-1>0a ≥1⇒a ≥1. 8.已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎪⎪⎪⎪1x >1, ∴1x >1或1x <-1,∴0<x <1或-1<x <0. 三、解答题9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值.解 (1)f (x )=x 2-4x -4=(x -2)2-8. 当t >2时,f (x )在[t ,t +1]上是增函数, ∴g (t )=f (t )=t 2-4t -4;当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8; 当t +1<2,即t <1时,f (x )在[t ,t +1]上是减函数, ∴g (t )=f (t +1)=t 2-2t -7.从而g (t )=⎩⎪⎨⎪⎧t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)g (t )的图象如图所示,由图象易知g (t )的最小值为-8.10.已知函数f (x )=-2x +1,x ∈[0,2],求函数的最大值和最小值.解 设x 1,x 2是区间[0,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-2x 1+1-(-2x 2+1) =-2(x 2+1-x 1-1)(x 1+1)(x 2+1)=-2(x 2-x 1)(x 1+1)(x 2+1). 由0≤x 1<x 2≤2,得x 2-x 1>0,(x 1+1)(x 2+1)>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故f (x )在区间[0,2]上是增函数.因此,函数f (x )=-2x +1在区间[0,2]的左端点取得最小值,右端点取得最大值,即最小值是f (0)=-2,最大值是f (2)=-23. B 组 专项能力提升1.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x在区间(1,+∞)上一定( ) A .有最小值B .有最大值C .是减函数D .是增函数答案 D 解析 由题意知a <1,∴g (x )=f (x )x =x +a x-2a , 当a <0时,g (x )在(1,+∞)上是增函数,当a >0时,g (x )在[a ,+∞)上是增函数,故在(1,+∞)上为增函数,∴g (x )在(1,+∞)上一定是增函数.2.已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.答案 (-∞,1]解析 ∵f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a (x ≥a ),e -x +a (x <a ), ∴f (x )在[a ,+∞)上为增函数,则[1,+∞)⊆[a ,+∞),∴a ≤1.3.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2. 当0<x ≤2时,h (x )=log 2x 是增函数;当x >2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.4.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), a =1时,定义域为{x |x >0且x ≠1},0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, ∴g (x )=x +a x-2在[2,+∞)上是增函数. ∴f (x )=lg(x +a x-2)在[2,+∞)上是增函数. ∴f (x )=lg(x +a x-2)在[2,+∞)上的最小值为 f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2,而h (x )=3x -x 2=-(x -32)2+94在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2.∴a >2.5.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.(1)证明 任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1. 综上所述知a的取值范围是(0,1].。

2015年高中数学步步高大一轮复习讲义(文科)第二章 2.3

2015年高中数学步步高大一轮复习讲义(文科)第二章 2.3

当 x<0 时,f(-x)=(-x)2+2=-(-x2-2)=-f(x);
当 x=0 时,f(0)=0,也满足 f(-x)=-f(x).
故该函数为奇函数.
题型二 函数周期性的应用
例 2 (1)定义在 R 上的函数 f(x)满足 f(x+6)=f(x),当-3≤x<-1 时,f(x)=-(x+2)2;
1. 判断下面结论是否正确(请在括号中打“√”或“×”)
(1)函数 f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.
(2)若函数 y=f(x+a)是偶函数,则函数 y=f(x)关于直线 x=a 对称.
(3)若函数 y=f(x+b)是奇函数,则函数 y=f(x)关于点(b,0)中心对称.
x (4)若函数 f(x)=x-2x+a为奇函数,则 a=2.
D.2
( × )
( √ )
( √ )
( √ )
( √ )
答案 A
解析 f(-1)=-f(1)=-(1+1)=-2.
3. 已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b 的值是
1 A.-3
答案 B
B.3
解析 依题意 b=0,且 2a=-(a-1),
1
∴a=3,则 a+b=3.
(-1,0)∪Βιβλιοθήκη 1,+∞).题型一 判断函数的奇偶性 例 1 判断下列函数的奇偶性:
(1)f(x)= 9-x2+ x2-9; 1-x
(2)f(x)=(x+1) 1+x; 4-x2
(3)f(x)=|x+3|-3. 思维启迪 确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试中、件资且卷包管中料拒试含路调试绝验线敷试卷动方槽设技作案、技术,以管术来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

[数学]步步高大一轮复习讲义数学文科a版【答案解析】版-精品文档

[数学]步步高大一轮复习讲义数学文科a版【答案解析】版-精品文档

§1.1 集合的概念及其基本运算要点梳理1.(1)确定性 互异性 无序性 (2)属于 不属于 ∈ ∉ (3)列举法 描述法 图示法 区间法 (5)有限集 无限集 空集2.(1)A B B A ⊆ ⊆ ⊆ 2n 2n -1 2n -23.(1){x |x ∈A ,且x ∈B } {x |x ∈U ,且x ∉A } 基础自测 1.{2,4} 2.{x |0<x <1} 3.(2,3)4.⎩⎨⎧⎭⎬⎫0,1,-12 5.B题型分类·深度剖析例1 解 (1)当a +2=1,即a =-1时,(a +1)2=0,a 2+3a +3=1与a +2相同,∴不符合题意.当(a +1)2=1,即a =0或a =-2时,①a =0符合要求. ②a =-2时,a 2+3a +3=1与(a +1)2相同,不符合题意. 当a 2+3a +3=1,即a =-2或a =-1.①当a =-2时,a 2+3a +3=(a +1)2=1,不符合题意. ②当a =-1时,a 2+3a +3=a +2=1,不符合题意. 综上所述,a =0,∴2 013a =1.(2) ∵当x =0时,x =x 2-x =x 3-3x =0,∴它不一定能表示一个有三个元素的集合.要使它表示一个有三个元素的集合,则应有⎩⎪⎨⎪⎧x ≠x 2-x ,x 2-x ≠x 3-3x ,x ≠x 3-3x .∴x ≠0且x ≠2且x ≠-1且x ≠-2时,{x ,x 2-x ,x 3-3x }能表示一个有三个元素的集合. 变式训练 1 0或98例2 解 A 中不等式的解集应分三种情况讨论:①若a =0,则A =R ;②若a <0,则A =⎩⎨⎧⎭⎬⎫x |4a ≤x <-1a ;③若a >0,则A =⎩⎨⎧⎭⎬⎫x |-1a <x ≤4a .(1)当a =0时,若A ⊆B ,此种情况不存在.当a <0时,若A ⊆B ,如图:,则⎩⎨⎧4a >-12-1a ≤2,∴⎩⎪⎨⎪⎧a >0或a <-8a >0或a ≤-12,又a <0,∴a <-8.当a >0时,若A ⊆B ,如图:,则⎩⎨⎧-1a ≥-124a ≤2,∴⎩⎪⎨⎪⎧a ≥2或a <0a ≥2或a <0.又∵a >0,∴a ≥2.综上知,当A ⊆B 时,a <-8或a ≥2. (2)当a =0时,显然B ⊆A ;当a <0时,若B ⊆A ,如图:,则⎩⎨⎧4a ≤-12-1a >2,∴⎩⎪⎨⎪⎧-8≤a <0-12<a <0.又∵a <0,∴-12<a <0.当a >0时,若B ⊆A ,如图:,则⎩⎨⎧-1a ≤-124a ≥2,∴⎩⎪⎨⎪⎧0<a ≤20<a ≤2.又∵a >0,∴0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.(3)当且仅当A 、B 两个集合互相包含时,A =B ,由(1)、(2)知,a =2.变式训练 2 4 例3 1或2变式训练3 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时, B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.例4 A变式训练 4 6 {0,1,2,3}课时规范训练 A 组1.C2.C3.A4.-1或25.{(0,1),(-1,2)}6.187.解 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3. 8.解 ∵M ={y |y =x 2,x ∈R }={y |y ≥0},N ={y |y =3sin x ,x ∈R }={y |-3≤y ≤3},∴M -N ={y |y >3},N -M ={y |-3≤y <0},∴M *N =(M -N )∪(N -M )={y |y >3}∪{y |-3≤y <0}={y |y >3或-3≤y <0}. B 组1.C2.B3.A4.A5.a ≤06.-37.(-∞,-3)8.解 由x -5x +1≤0,∴-1<x ≤5,∴A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}. (2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意,故实数m 的值为8.§1.2 命题及其关系、充分条件与必要条件要点梳理1.判断真假 判断为真 判断为假2.(1)若q ,则p 若綈p ,则綈q 若綈q ,则綈p ,(2)逆命题 否命题 逆否命题 (3)①相同 ②没有3.(1)充分条件 必要条件 (2)充要条件基础自测 1.3 2.②③ 3.充分不必要 4.C 5.D 题型分类·深度剖析 例1 ②④ 变式训练1 ①③例2 解 (1)在△ABC 中,∠A =∠B ⇒sin A =sin B ,反之,若sin A =sin B ,∵A 与B 不可能互补(∵三角形三个内角和为180°),∴只有A =B .故p 是q 的充要条件.(2)易知,綈p :x +y =8,綈q :x =2且y =6,显然綈q ⇒綈p ,但綈p 綈q ,即綈q 是綈p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(3)显然x ∈A ∪B 不一定有x ∈B ,但x ∈B 一定有x ∈A ∪B ,∴p 是q 的必要不充分条件.(4)条件p :x =1且y =2,条件q :x =1或y =2,∴p ⇒q 但q p ,故p 是q 的充分不必要条件. 变式训练2 ①④例3 证明 充分性:当a =0时,方程为2x +1=0,其根为x =-12,方程有一个负根,符合题意.当a <0时,Δ=4-4a >0,方程ax 2+2x +1=0有两个不相等的实根,且1a <0,方程有一正一负根,符合题意.当0<a ≤1时,Δ=4-4a ≥0,方程ax 2+2x +1=0有实根,且⎩⎨⎧-2a<01a >0,故方程有两个负根,符合题意.综上知:当a ≤1时,方程ax 2+2x +1=0至少有一个负根. 必要性:若方程ax 2+2x +1=0至少有一个负根. 当a =0时,方程为2x +1=0符合题意.当a ≠0时,方程ax 2+2x +1=0应有一正一负根或两个负根.则1a<0或⎩⎨⎧Δ=4-4a ≥0-2a <01a>0,解得a <0或0<a ≤1.综上知:若方程ax 2+2x +1=0至少有一负根,则a ≤1.故关于x 的方程ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.变式训练3 证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立,于是a n +1a n =p n(p -1)p n -1(p -1)=p (n ∈N *)即数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ,当n ≥2时,a n =S n -S n -1=p n -1(p -1). ∵p ≠0,p ≠1,∴a n +1a n=p n (p -1)p n -1(p -1)=p .∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,又S 2=a 1+a 2=p 2+q ,∴a 2=p 2-p =p (p -1),∴p (p -1)p +q =p ,即p -1=p +q .∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.课时规范训练 A 组1.D2.B3.A4.充分不必要5.①③④6.[3,8)7.解 由题意p :-2≤x -3≤2,∴1≤x ≤5,∴綈p :x <1或x >5,q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.又∵綈p 是綈q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5.∴2≤m ≤4.8.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈pD ⇒/綈q ,则{x |綈q x |綈p },而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0}, ∴{x |-4≤x <-x |x ≤3a 或x ≥a ,a <0},则⎩⎨⎧ 3a ≥-2,a <0或⎩⎨⎧a ≤-4,a <0.综上,可得-23≤a <0或a ≤-4.B 组1.A2.C3.B4.⎝⎛⎭⎫34,1∪(1,+∞) 5.[1,2) 6.①③②④ 7.3或48.解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52,B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94,∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52.(2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎨⎧a ≤23a +1≤a 2+2,即13<a ≤3-52. ②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a <13.综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.§1.3 简单的逻辑联结词、全称量词与存在量词要点梳理1.(1)或 且 非 (2)真 假 假 真 假 假 真 真 假 真 假 真 真 2.(3)∀ ∃ (4)①含有全称量词 ②含有存在量词 基础自测1.所有的三角形都不是等边三角形 2.[-4,0] 3.①② 4.A 5.C 题型分类·深度剖析 例1 q 1,q 4变式训练1 解 (1)p ∨q :1是素数或是方程x 2+2x -3=0的根.真命题.p ∧q :1既是素数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是素数.真命题.(2)p ∨q :平行四边形的对角线相等或互相垂直.假命题. p ∧q :平行四边形的对角相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题.(3)p ∨q :方程x 2+x -1=0的两实根的符号相同或绝对值相等.假命题. p ∧q :方程x 2+x -1=0的两实根的符号相同且绝对值相等.假命题. 綈p :方程x 2+x -1=0的两实根的符号不相同.真命题.例2 解 (1)綈p :∃x 0∈R ,x 20-x 0+14<0,假命题.(2)綈q :至少存在一个正方形不是矩形,假 命题.(3)綈r :∀x ∈R ,x 2+2x +2>0,真命题.(4)綈s :∀x ∈R ,x 3+1≠0,假命题. 变式训练2 解 (1)綈p :∃x >0,使x 2-x >0,为真命题.(2)綈q :∀x ∈R,2x +x 2>1,为假命题. 例3 解 ①若p 正确,则由0<⎝⎛⎭⎫12|x -1|≤1,得a >1.②若q 正确,则ax 2+(a -2)x +98>0解集为R .当a =0时,-2x +98>0不合题意,舍去;当a ≠0时,则⎩⎪⎨⎪⎧a >0(a -2)2-4a ×98<0,解得12<a <8. ③∵p 和q 中有且仅有一个正确,∴⎩⎪⎨⎪⎧a >1a ≤12或a ≥8或⎩⎪⎨⎪⎧a ≤112<a <8,∴a ≥8或12<a ≤1.变式训练3 解 ∵函数y =a x 在R 上单调递增,∴p :a >1,不等式ax 2-ax +1>0对∀x ∈R 恒成立,∴a >0且a 2-4a <0,解得0<a <4,∴q :0<a <4.∵“p ∧q ”为假,“p ∨q ”为真,∴p 、q 中必有一真一假.①当p 真,q 假时,⎩⎪⎨⎪⎧ a >1a ≥4,得a ≥4;②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤10<a <4,得0<a ≤1.故a 的取值范围为(0,1]∪[4,+∞).课时规范训练 A 组1.C 2.A 3.C 4.-22≤a ≤22 5.a >1 6.綈p 、綈q7.解 由命题p 为真知,0<c <1,由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若p 或q 为真命题,p 且q 为假命题,则p 、q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1. 综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c |0<c ≤12或c ≥1.8.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又∵函数f (x )=(3-2a )x 是增函数,∴3-2a >1,∴a <1. 又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1,,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <1,,∴a ≤-2.综上可知,所求实数a 的取值范围为1≤a <2,或a ≤-2. B 组1.C 2.D 3.D 4.⎣⎡⎦⎤0,12 5.(-∞,1] 6.(-∞,-2]∪[-1,3) 7.①③ 8.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2,∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2,∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值范围为{a |a >2或a <-2}.§2.1 函数及其表示要点梳理1.(1)数集 任意 唯一确定 y =f (x ),x ∈A (2)定义域 值域 (3)定义域 值域 对应关系 (4)定义域 对应关系2.解析法 图象法 列表法3.都有唯一 一个映射4.函数 非空数集 基础自测1.⎩⎨⎧⎭⎬⎫-2,-12,1,522.①②3.-1 104.23或-1题型分类·深度剖析 例1 (2)(3)变式训练1 解 (1)y =1的定义域为R ,y =x 0的定义域为{x |x ∈R 且x ≠0},∴它们不是同一函数.(2)y =x -2·x +2的定义域为{x |x ≥2},y =x 2-4的定义域为{x |x ≥2或x ≤-2},∴它们不是同一函数.(3)y =x ,y =3t 3=t ,它们的定义域和对应关系都相同,∴它们是同一函数. (4)y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0},∴它们不是同一函数.例2 (2) 变式训练2 (1)D (2)A 例3 C 变式训练3 B 例4 0 变式训练4 D 课时规范训练 A 组1.D2.D3.A4.65.16.-347.解 当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=030k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115b 1=0,∴y =115x .当x ∈(30,40)时,y =2;当x ∈[40,60]时,设y =k 2x +b 2, 由已知得⎩⎪⎨⎪⎧40k 2+b 2=260k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110b 2=-2,∴y =110x -2.综上,f (x )=⎩⎨⎧115x , x ∈[0,30]2, x ∈(30,40)110x -2, x ∈[40,60].8.解 当f (x )≤0时,由x 2+2x -3≤0,可得-3≤x ≤1,此时,g (x )=0;当f (x )>0时,由x 2+2x -3>0可得x <-3或x >1,此时g (x )=f (x )=(x +1)2-4.∴g (x )=⎩⎪⎨⎪⎧0 (-3≤x ≤1)(x +1)2-4 (x <-3或x >1),其图象如图所示:B 组1.C2.D3.D4.②④5.(1)a (a 为正整数) (2)166.-27.[-4,2]8.解 (1)∵x =716时,4x =74,∴f 1(x )=⎣⎡⎦⎤74=1,g (x )=74-⎣⎡⎦⎤74=34,∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3,∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4.∴716≤x <12.§2.2 函数的定义域、值域及函数的解析式要点梳理1.(1)使函数有意义的自变量的取值范围 (3)③R ④R ⑤⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z⑥{x |x ∈R 且x ≠0}2.(1)函数值 函数值的集合 (2)①R ②⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a ③{y |y ∈R 且y ≠0} ④(0,+∞) ⑤R ⑥[-1,1] ⑦R 基础自测1.[-1,2)∪(2,+∞)2.{x |-3<x <2}3.(0,+∞)4.x 2+1x 2-1(x ≠0)题型分类·深度剖析 例1 (1)⎝⎛⎭⎫-13,1 (2)(-1,1) 变式训练1 (1)A (2)⎣⎡⎦⎤0,34 例2 解 ∵f (2x )的定义域是[-1,1],∴12≤2x ≤2,即y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2⇒2≤x ≤4.∴f (log 2x )的定义域是[2,4].变式训练2 解 ∵f (x )的定义域为[0,4],(1)有0≤x 2≤4,∴-2≤x ≤2,故f (x 2)的定义域为[-2,2];(2)有⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,∴1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3].例3 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)(分离常数法) y =x -3x +1=x +1-4x +1=1-4x +1,∵4x +1≠0,∴1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.(3)方法一 (换元法) 令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,∴y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法) 容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,∴y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12. (4)(基本不等式法) 函数定义域为{x |x ∈R ,x >0,且x ≠1},当x >1时,log 3x >0, 于是y =log 3x +1log 3x-1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是y =log 3x +1log 3x -1=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫1-log 3x -1 ≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).变式训练3 解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0.∵y =1时,x ∈∅,∴y ≠1,又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0,解得-13≤y ≤1.综上得-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法):设13-4x =t ,则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,∴g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法):函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小,∴2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数,∴当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112,故原函数的值域是⎝⎛⎦⎤-∞,112. 例4 解 (1)令x +1x =t ,则t 2=x 2+1x 2+2≥4,∴t ≥2或t ≤-2且x 2+1x2=t 2-2,∴f (t )=t 2-2,即f (x )=x 2-2 (x ≥2或x ≤-2).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1 (x >1).(3)设f (x )=kx +b ,∴3f (x +1)-2f (x -1)=3[k (x +1)+b ]-2[k (x -1)+b ]=kx +5k +b =2x +17.∴⎩⎪⎨⎪⎧ k =25k +b =17,即⎩⎪⎨⎪⎧k =2b =7.∴f (x )=2x +7. (4)∵2f (x )+f ⎝⎛⎭⎫1x =3x ,∴2f ⎝⎛⎭⎫1x +f (x )=3x .∴f (x )=2x -1x(x ≠0). 变式训练4 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c ,又f (0)=c =3,∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1,∴f (x )=x 2-x +3. 课时规范训练 A 组1.C2.B3.C4.C5.(-∞,3]6.⎣⎡⎦⎤2,103 7.[-2,7] 8.解 (1)设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx ,又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12,∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18,∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组1.B2.C3.A4.(-1,-910)∪(-910,2] 5.22 6.2837.解 ∵f (x )=12(x -1)2+a -12.∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a 、b 的值分别为32、3.8.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0,∴2a 2-a -3=0,∴a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负,∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0.∴-1≤a ≤32.∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4.§2.3 函数的单调性与最值要点梳理1.(1)f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的 (2)增函数 减函数 区间D2.(1)f (x )≤M (2)f (x 0)=M (3)f (x )≥M (4)f (x 0)=M 基础自测 1.[1,4] 8 2.43,1 3.(-3,0) 4.A 5.C题型分类·深度剖析例1 (1)解 由2f (1)=f (-1),可得22-2a =2+a ,得a =23. (2)证明 任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)=x 21+1-ax 1-x 22+1+ax 2=x 21+1-x 22+1-a (x 1-x 2)=x 21-x 22x 21+1+x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a . ∵0≤x 1<x 21+1,0<x 2<x 22+1,∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0,∴f (x )在[0,+∞)上单调递减.(3)解 任取1≤x 1<x 2,f (x 1)-f (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a , ∵f (x )单调递增,∴f (x 1)-f (x 2)<0,又x 1-x 2<0,那么必须x 1+x 2x 21+1+x 22+1-a >0恒成立.∵1≤x 1<x 2⇒2x 21≥x 21+1,2x 22>x 22+1,∴2x 1≥x 21+1,2x 2>x 22+1.相加得2(x 1+x 2)>x 21+1+x 22+1⇒x 1+x 2x 21+1x 22+1>22,∴0<a ≤22. 变式训练1 (1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.例2 解 令u =x 2-3x +2,则原函数可以看作y =12log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2,∴函数y =212log (32)x x -+的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =12log u 在(0,+∞)上是单调减函数,∴y =212log (32)x x -+的单调减区间为(2,+∞),单调增区间为(-∞,1).变式训练2 解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数,∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).例3 (1)证明 方法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0,再令y =-x ,得f (-x )=-f (x ),在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),因此f (x )在R 上是减函数. 方法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,f (-3)=-f (3)=2,∴f (x )在[-3,3]上的最大值为2,最小值为-2. 变式训练3 解 (1)∵当x >0,y >0时,f ⎝⎛⎭⎫x y =f (x )-f (y ),∴令x =y >0,则f (1)=f (x )-f (x )=0.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=f ⎝⎛⎭⎫x 2x 1,∵x 2>x 1>0.∴x 2x 1>1,∴f ⎝⎛⎭⎫x 2x 1>0,∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数. (3)由(2)知f (x )在[1,16]上是增函数.∴f (x )min =f (1)=0,f (x )max =f (16),∵f (4)=2,由f ⎝⎛⎭⎫x y =f (x )-f (y ), 知f ⎝⎛⎭⎫164=f (16)-f (4),∴f (16)=2f (4)=4,∴f (x )在[1,16]上的值域为[2,4]. 课时规范训练 A 组1.B2.D3.A4.[3,+∞)5.①③6.(1,+∞)7.(1)证明 设x 2>x 1>0,设x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增的.(2)解 ∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又f (x )在⎣⎡⎦⎤12,2上单调递增, ∴f ⎝⎛⎭⎫12=12,f (2)=2.∴易得a =25. 8.解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 21-1<0,x 22-1<0.-1<x 1x 2<1,∴x 1x 2+1>0,∴(x 2-x 1)(x 2x 1+1)(x 21-1)(x 22-1)>0. 因此,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时函数在(-1,1)上为减函数;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时函数在(-1,1)上为增函数.B 组1.B2.B3.C4.(-∞,0)∪(1,3]5.a >0且b ≤06.[1,+∞)7.①③④8.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.(2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立,下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2,∴m 的取值范围是m =0或m ≥2或m ≤-2.§2.4 函数的奇偶性与周期性要点梳理1.f (-x )=f (x ) f (-x )=-f (x ) 2.(1)相同 相反 (2)①奇函数 ②偶函数 ③奇函数 3.(1)f (x ) (2)存在一个最小 基础自测1.132.②③3.-9 4.(-1,0)∪(1,+∞) 5.C 题型分类·深度剖析例1 解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3,∴f (x )的定义域为{-3,3}.又f (3)+f (-3)=0,f (3)-f (-3)=0,即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数. (2)由⎩⎪⎨⎪⎧1-x 1+x ≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0,∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.∴f (x )=4-x 2(x +3)-3=4-x 2x,∴f (x )=-f (-x ),∴f (x )是奇函数. 变式训练1 解 (1)由1-x1+x>0⇒-1<x <1,定义域关于原点对称.又f (-x )=lg 1+x 1-x =lg ⎝ ⎛⎭⎪⎫1-x 1+x -1=-lg 1-x1+x =-f (x ),故原函数是奇函数. (2)由2+x2-x≥0且2-x ≠0⇒-2≤x <2,定义域关于原点不对称,故原函数是非奇非偶函数. (3)函数定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数.(4)由⎩⎪⎨⎪⎧1-x 2>0,|x 2-2|-2≠0得定义域为(-1,0)∪(0,1),关于原点对称,∴f (x )=lg (1-x 2)-(x 2-2)-2=-lg (1-x 2)x 2. ∵f (-x )=-lg[1-(-x )2](-x )2=-lg (1-x 2)x 2=f (x ),∴f (x )为偶函数.例2 解 (1)令x =y =0⇒f (0)=0,令y =-x ,则f (x )+f (-x )=0⇒f (-x )=-f (x )⇒f (x )在(-1,1)上是奇函数.(2)设0<x 1<x 2<1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f ⎝⎛⎭⎪⎫x 1-x 21-x 1x 2,而x 1-x 2<0,0<x 1x 2<1⇒x 1-x 21-x 1x 2<0⇒f ⎝ ⎛⎭⎪⎫x 1-x 21-x 1x 2>0,即当0<x 1<x 2<1时,f (x 1)>f (x 2),∴f (x )在(0,1)上单调递减.(3)由于f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫15=f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫-15=f ⎝ ⎛⎭⎪⎫12-151-12×5=f ⎝⎛⎭⎫13, 同理,f ⎝⎛⎭⎫13-f ⎝⎛⎭⎫111=f ⎝⎛⎭⎫14,f ⎝⎛⎭⎫14-f ⎝⎛⎭⎫119=f ⎝⎛⎭⎫15,∴f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫111-f ⎝⎛⎭⎫119=2f ⎝⎛⎭⎫15=2×12=1. 变式训练2 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上也是增函数,且由f (1)=0得f (-1)=0.若f [x (x -12)]<0=f (1),则⎩⎨⎧x (x -12)>0x (x -12)<1即0<x (x -12)<1,解得12<x <1+174或1-174<x <0.若f [x (x -12)]<0=f (-1),则⎩⎨⎧x (x -12)<0x (x -12)<-1,由x (x -12)<-1,解得x ∈∅.∴原不等式的解集是{x |12<x <1+174或1-174<x <0}.例3 (1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8,又f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 008)+f (2 009)+f (2 010)+f (2 011)=0,∴f (0)+f (1)+f (2)+…+f (2 011)=0. 变式训练3 2.5 课时规范训练 A 组1.B2.A3.B4.A5.-16.-1 7.-38.解 (1)当a =0时,f (x )=x 2,f (-x )=f (x ) ,函数是偶函数.当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数.(2)若f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x ,任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(x 21+1x 1)-⎝⎛⎭⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 1<x 2,∴x 1-x 2<0,x 1+x 2>1x 1x 2,∴f (x 1)<f (x 2), 故f (x )在[2,+∞)上是单调递增函数. B 组1.A2.C3.B4.(1)(2)(3) 5.0 6.②③⑤7.(1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ).故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数. (2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x ,故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4.8.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.§2.5 二次函数要点梳理 1.(2)①ax 2+bx +c (a ≠0) ②a (x -m )2+n (a ≠0) ③a (x -x 1)(x -x 2) (a ≠0) 基础自测 1.2 2.[1,2] 3.6 4.(-∞,-2] 5.B 题型分类·深度剖析例1 解 方法一 设f (x )=ax 2+bx +c (a ≠0),依题意有⎩⎨⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解之,得⎩⎪⎨⎪⎧a =-4,b =4,c =7,,∴所求二次函数为y =-4x 2+4x +7.方法二 设f (x )=a (x -m )2+n ,a ≠0,∵f (2)=f (-1),,∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值为n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解之,得a =-4.∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 依题意知:f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),a ≠0.即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a24a=8,解之,得a =-4或a =0(舍去).∴函数解析式为f (x )=-4x 2+4x +7.变式训练1 解 (1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2,∴y=-2(x -3)2+4,即x >2时,f (x )=-2x 2+12x -14.当x <-2时,即-x >2,又f (x )为偶函数,f (x )=f (-x )=-2×(-x )2-12x -14, 即f (x )=-2x 2-12x -14.∴函数f (x )在(-∞,-2)上的解析式为f (x )=-2x 2-12x -14.(2)函数f (x )的图象如图:(3)由图象可知,函数f (x )的值域为(-∞,4].例2 解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6]x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].变式训练2 解 f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为x =a2,顶点为⎝⎛⎭⎫a 2,-4a . ①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f ⎝⎛⎭⎫a 2=-4a ,令-4a =-5,∴a =54∈(0,2). ③当a2≤0,即a ≤0时,f (x )在区间[0,1]上递减,此时f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,即a 2+4a -5=0,∴a =-5或a =1(舍去).综上所述,a =54或a =-5.例3 解 (1)由f (0)=1得,c =1.∴f (x )=ax 2+bx +1.又f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减,∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1. 因此满足条件的实数m 的取值范围是(-∞,-1). 变式训练3 解 (1)∵f (x )=x 2+mx +n ,∴f (-1+x )=(-1+x )2+m (-1+x )+n =x 2-2x +1+mx +n -m =x 2+(m -2)x +n -m +1, f (-1-x )=(-1-x )2+m (-1-x )+n =x 2+2x +1-mx -m +n =x 2+(2-m )x +n -m +1. 又f (-1+x )=f (-1-x ),∴m -2=2-m ,即m =2.又f (x )的图象过点(1,3), ∴3=12+m +n ,即m +n =2,∴n =0,∴f (x )=x 2+2x ,又y =g (x )与y =f (x )的图象关于原点对称,∴-g (x )=(-x )2+2×(-x ),∴g (x )=-x 2+2x . (2)∵F (x )=g (x )-λf (x )=-(1+λ)x 2+(2-2λ)x ,当λ+1≠0时,F (x )的对称轴为x =2-2λ2(1+λ)=1-λλ+1,又∵F (x )在(-1,1]上是增函数.∴⎩⎪⎨⎪⎧ 1+λ<01-λ1+λ≤-1或⎩⎪⎨⎪⎧1+λ>01-λ1+λ≥1,∴λ<-1或-1<λ≤0.当λ+1=0,即λ=-1时,F (x )=4x 显然在(-1,1]上是增函数. 综上所述,λ的取值范围为(-∞,0]. 课时规范训练 A 组1.D2.A3.B4.y =12(x -2)2-1 5.0≤m ≤146.0或-17.解 f (x )=(x -a )2+a -a 2,当a <-1时,f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧ f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去);当-1≤a ≤0时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (1)=1-a =2⇒a =-1; 当0<a ≤1时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (-1)=1+3a =2⇒a 不存在;当a >1时,f (x )在[-1,1]上为减函数,∴⎩⎪⎨⎪⎧f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在.综上可得a =-1.8.解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )的图象关于直线x =1对称. 而二次函数f (x )的对称轴为x =-b2a ,∴-b2a=1.① 又f (x )=x 有等根,即ax 2+(b -1)x =0有等根,∴Δ=(b -1)2=0.②由①②得b =1,a =-12.∴f (x )=-12x 2+x .(2)∵f (x )=-12x 2+x =-12(x -1)2+12≤12,如果存在满足要求的m ,n ,则必需3n ≤12,∴n ≤16.从而m <n ≤16<1,而x ≤1,f (x )单调递增,∴⎩⎨⎧f (m )=-12m 2+m =3mf (n )=-12n 2+n =3n ,可解得m =-4,n =0满足要求.∴存在m =-4,n =0满足要求. B 组1.D2.B3.C4.⎝⎛⎭⎫2,525.0<a ≤146.⎣⎡⎦⎤1,31277.[1,+∞)8.证明 (1)由于f (x )=x 2+(2t -1)x +1-2t .∴f (x )=1⇔(x +2t )(x -1)=0,(*)∴x =1是方程(*)的根,即f (1)=1,因此x =1是f (x )=1的实根,即f (x )必有实根. (2)当12<t <34时,f (-1)=3-4t >0,f (0)=1-2t =2⎝⎛⎭⎫12-t <0. f ⎝⎛⎭⎫12=14+12(2t -1)+1-2t =34-t >0,又函数f (x )的图象连续不间断.因此f (x )=0在区间(-1,0)及⎝⎛⎭⎫0,12上各有一个实根.§2.6 指数与指数函数要点梳理1.(1)a 的n 次方根 根式 根指数 被开方数 (2)①n a ②n a - n a ± na ③a④a ⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)2.(1)②1 ③1a p ④n a m ⑤1a m n 1na m ⑥0 没有意义 (2)①a r +s ②a rs ③a r b r3.(1)R (2)(0,+∞) (3)(0,1) (4)y >1 0<y <1 (5)0<y <1 y >1 (6)增函数 (7)减函数 基础自测1.(1)x 23 (2)(a +b )34 (3)m 52 2.7 3.(-2,-1)∪(1,2) 4.3 5.B题型分类·深度剖析例1 解 (1)原式=23278-⎛⎫- ⎪⎝⎭+121500-⎛⎫ ⎪⎝⎭-105-2+1=23827⎛⎫- ⎪⎝⎭+12500-10(5+2)+1=49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1.(3)原式=1122323311233ba b a b ab a -⎛⎫ ⎪⎝⎭=3111111226333a b +-++--=ab -1. 变式训练1 解 (1)原式=1323⎛⎫⎪⎝⎭×1+()1342×142+(132×123)6-1323⎛⎫⎪⎝⎭=2+4×27=110. (2)令13a =m ,13b =n ,则原式=m 4-8mn 3m 2+2mn +4n 2÷⎝⎛⎭⎫1-2n m ·m =m (m 3-8n 3)m 2+2mn +4n 2·m 2m -2n=m 3(m -2n )(m 2+2mn +4n 2)(m 2+2mn +4n 2)(m -2n )=m 3=a . 例2 (1)D (2)0<a <1、b <0 (3)1 变式训练2 (1)A(2)解 函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴 上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方 程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的 图象有唯一的交点,∴方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同交点,∴方程有两解. 例3 解 令t =a x (a >0且a ≠1),则原函数化为y =(t +1)2-2 (t >0). ①当0<a <1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤a ,1a ,此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. ∴f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14,∴⎝⎛⎭⎫1a +12=16,∴a =-15或a =13. 又∵a >0,∴a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数. ∴f (t )max =f (a )=(a +1)2-2=14,解得a =3(a =-5舍去). 综上得a =13或3.变式训练3 解 (1)当x <0时,f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0,即m (22t -1)≥-(24t -1),∵22t -1>0, ∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞). 课时规范训练 A 组1.B2.D3.D4.m <n5.16.12或327.-2。

2015步步高一轮文科第二篇2.9

2015步步高一轮文科第二篇2.9

解析
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
二次函数模型
【例 1】 某跳水运动员在一次跳水训练时 的跳水曲线为如图所示的抛物线的一段, 已知跳水板 AB 长为 2 m,跳水板距水面 CD 的高 BC 为 3 m,CE=5 m,CF=6 m, 为安全和空中姿态优美,训练时跳水曲线 应在离起跳点 h m(h≥1)时达到距水面最大高度 4 m,规定:以 CD 为横轴,CB 为纵轴建立直角坐标系. (1)当 h=1 时,求跳水曲线所在的抛物线方程; (2)若跳水运动员在区域 EF 内入水时才能达到压水花的训练要 求,求达到压水花的训练要求时 h 的取值范围.
项目能否获利?如果获利,求 题目中月处理成本与月处理量
出最大利润;如果不获利,则
的关系为分段函数关系,项目
国家每月至少需要补贴多少元
才能使该项目不亏损?
获利和月处理量的关系也是分
(2)该项目每月处理量为多少吨 段函数关系.
时,才能使每吨的平均处理成
本最低?
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
分段函数模型
(1)当 x∈[200,300]时,判断该 项目能否获利?如果获利,求 出最大利润;如果不获利,则
思维启迪 解析 思维升华
①当 x∈[120,144)时,xy=13x2-80x +5 040=13(x-120)2+240,
国家每月至少需要补贴多少元 才能使该项目不亏损? (2)该项目每月处理量为多少吨 时,才能使每吨的平均处理成 本最低?
基础知识

【VIP专享】2015年高中数学步步高大一轮复习讲义(文科)第二章 2.1

【VIP专享】2015年高中数学步步高大一轮复习讲义(文科)第二章 2.1

6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2015年高中数学步步高大一轮复习讲义(文科)第二章-2.5

2015年高中数学步步高大一轮复习讲义(文科)第二章-2.5

对数的底数)的最大值是 m,且 f(x)
是偶函数,则 m+μ=________.
思维启迪 解析 答案 思维升华
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
指数函数的图像、性质
【例 2】 (1)函数 f(x)=ax-b 的图像如
思维启迪 解析 答案 思维升华
图所示,其中 a,b 为常数,则下列
数学 北(文)
§2.5 指数与指数函数
第二章 函数概念与基本初等函数Ⅰ
基础知识·自主学习
要点梳理
知识回顾 理清教材
1.分数指数幂
mn (1)规定:正数的正分数指数幂的意义是 a n =
am
(a>0,m,
1
n∈N+,且
n>1);正数的负分数指数幂的意义是
m
an
n =
am(a>0,m,n NhomakorabeaN+,且 n>1);0 的正分数指数幂等于 0 ;0 的负 分数指数幂 没有意义 .
2
a
3
10a 2
2b
3
b2
2
=85.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
指数函数的图像、性质
【例 2】 (1)函数 f(x)=ax-b 的图像如
图所示,其中 a,b 为常数,则下列
结论正确的是
()
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(2)若函数 f (x) e-(x)2 (e 是自然
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.4 二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的图象比较(3)∞,0]时,减1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a .( × ) (2)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数. ( × ) (3)幂函数的图象都经过点(1,1)和点(0,0).( × ) (4)当n >0时,幂函数y =x n 是定义域上的增函数.( × ) (5)若函数f (x )=(k 2-1)x 2+2x -3在(-∞,2)上单调递增,则k =±22.( × ) (6)已知f (x )=x 2-4x +5,x ∈[0,3),则f (x )max =f (0)=5,f (x )min =f (3)=2. ( × ) 2.(2013·重庆)(3-a )(a +6)(-6≤a ≤3)的最大值为( )A .9 B.92 C .3 D.322答案 B解析 因为(3-a )(a +6)=18-3a -a 2 = -⎝⎛⎭⎫a +322+814, 所以当a =-32时,(3-a )(a +6)的值最大,最大值为92.3.函数f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(-5,-3)上 ( )A .先减后增B .先增后减C .单调递减D .单调递增答案 D解析 由f (x )为偶函数可得m =0,∴f (x )=-x 2+3,∴f (x )在区间(-5,-3)上单调递增.4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]解析 y =x 2-2x +3的对称轴为x =1. 当m <1时,y =f (x )在[0,m ]上为减函数. ∴y max =f (0)=3,y min =f (m )=m 2-2m +3=2. ∴m =1,无解.当1≤m ≤2时,y min =f (1)=12-2×1+3=2, y max =f (0)=3.当m >2时,y max =f (m )=m 2-2m +3=3, ∴m =0或m =2,无解.∴1≤m ≤2.5.若幂函数y =(m 2-3m +3)xm 2-m -2的图象不经过原点,则实数m 的值为________. 答案 1或2解析 由⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0,解得m =1或2.经检验m =1或2都适合.题型一 二次函数的图象和性质例1 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =1时,求f (|x |)的单调区间.思维启迪 对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6]x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].思维升华 (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.(1)二次函数的图象过点(0,1),对称轴为x =2,最小值为-1,则它的解析式是________. 答案 y =12(x -2)2-1(2)若函数f (x )=2x 2+mx -1在区间[-1,+∞)上递增,则f (-1)的取值范围是____________. 答案 (-∞,-3]解析 ∵抛物线开口向上,对称轴为x =-m4,∴-m4≤-1,∴m ≥4.又f (-1)=1-m ≤-3,∴f (-1)∈(-∞,-3]. 题型二 二次函数的应用例2 已知函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围.思维启迪 利用f (x )的最小值为f (-1)=0可列两个方程求出a 、b ;恒成立问题可以通过求函数最值解决.解 (1)由题意有f (-1)=a -b +1=0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调减区间为(-∞,-1], 单调增区间为[-1,+∞).(2)f (x )>x +k 在区间[-3,-1]上恒成立, 转化为x 2+x +1>k 在区间[-3,-1]上恒成立.设g (x )=x 2+x +1,x ∈[-3,-1],则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1,即k 的取值范围为(-∞,1).思维升华 有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], 所以当x =1时,f (x )取得最小值1; 当x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为直线x =-a , 因为y =f (x )在区间[-5,5]上是单调函数, 所以-a ≤-5或-a ≥5,即a ≤-5或a ≥5. 故a 的取值范围是(-∞,-5]∪[5,+∞). 题型三 幂函数的图象和性质例3 (1)已知幂函数f (x )=(n 2+2n -2)xn 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2(2)若(2m +1)21 >(m 2+m -1) 21,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2) D.⎣⎢⎡⎭⎪⎫5-12,2思维启迪 (1)由幂函数的定义可得n 2+2n -2=1,再利用f (x )的单调性、对称性求n ;(2)构造函数y =x 21,利用函数单调性求m 范围. 答案 (1)B (2)D解析 (1)由于f (x )为幂函数,所以n 2+2n -2=1, 解得n =1或n =-3,经检验只有n =1适合题意,故选B. (2)因为函数y =x 21的定义域为[0,+∞), 且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1.解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12.解2m +1>m 2+m -1,得-1<m <2,综上5-12≤m <2.思维升华 (1)幂函数解析式一定要设为y =x α (α为常数的形式);(2)可以借助幂函数的图象理解函数的对称性、单调性.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解 (1)m 2+m =m (m +1),m ∈N *, 而m 与m +1中必有一个为偶数, ∴m (m +1)为偶数.∴函数f (x )=x (m 2+m )-1(m ∈N *)的定义域为[0,+∞),并且在定义域上为增函数.(2)∵函数f (x )经过点(2,2),∴2=2(m 2+m )-1,即221=2(m 2+m )-1.∴m 2+m =2.解得m =1或m =-2. 又∵m ∈N *,∴m =1.∴f (x )=x 21. 由f (2-a )>f (a -1)得⎩⎪⎨⎪⎧2-a ≥0,a -1≥02-a >a -1.解得1≤a <32.∴a 的取值范围为[1,32).分类讨论思想在函数中的应用典例:(12分)已知函数f (x )=ax 2-|x |+2a -1(a 为实常数). (1)若a =1,作出函数f (x )的图象;(2)设f (x )在区间[1,2]上的最小值为g (a ),求g (a )的表达式.思维启迪 (1)因f (x )的表达式中含|x |,故应分类讨论,将原表达式化为分段函数的形式,然后作图.(2)因a ∈R ,而a 的取值决定f (x )的表现形式,或为直线或为抛物线,若为抛物线又分为开口向上和向下两种情况,故应分类讨论解决. 规范解答 解(1)当a =1时,f (x )=x 2-|x |+1 =⎩⎪⎨⎪⎧x 2+x +1,x <0x 2-x +1,x ≥0.[3分]作图(如右图所示)[5分](2)当x ∈[1,2]时,f (x )=ax 2-x +2a -1.[6分] 若a =0,则f (x )=-x -1在区间[1,2]上是减函数, g (a )=f (2)=-3.[7分] 若a ≠0,则f (x )=a ⎝⎛⎭⎫x -12a 2+2a -14a-1, f (x )图象的对称轴是直线x =12a .当a <0时,f (x )在区间[1,2]上是减函数,g (a )=f (2)=6a -3.当0<12a <1,即a >12时,f (x )在区间[1,2]上是增函数,g (a )=f (1)=3a -2. 当1≤12a ≤2,即14≤a ≤12时,g (a )=f ⎝⎛⎭⎫12a =2a -14a -1. 当12a >2,即0<a <14时,f (x )在区间[1,2]上是减函数, g (a )=f (2)=6a -3.[11分]综上可得,g (a )=⎩⎪⎨⎪⎧6a -3, a <142a -14a -1, 14≤a ≤12.3a -2, a >12[12分]温馨提醒 本题解法充分体现了分类讨论的数学思想方法,在二次函数最值问题的讨论中,一是要对二次项系数进行讨论,二是要对对称轴进行讨论.在分类讨论时要遵循分类的原则:一是分类的标准要一致,二是分类时要做到不重不漏,三是能不分类的要尽量避免分类,绝不无原则的分类讨论.方法与技巧1.二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. (2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图象、性质求解. 2.幂函数y =x α(α∈R )图象的特征α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.失误与防范1.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.A组专项基础训练一、选择题1.若f(x)=x2-ax+1有负值,则实数a的取值范围是() A.a≤-2 B.-2<a<2C.a>2或a<-2 D.1<a<3答案 C解析∵f(x)=x2-ax+1有负值,∴Δ=a2-4>0,则a>2或a<-2.2.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()答案 C解析若a>0,则一次函数y=ax+b为增函数,二次函数y=ax2+bx+c的开口向上,故可排除A;若a<0,一次函数y=ax+b为减函数,二次函数y=ax2+bx+c开口向下,故可排除D;对于选项B,看直线可知a>0,b>0,从而-b2a<0,而二次函数的对称轴在y轴的右侧,故应排除B,因此选C.3.如果函数f(x)=x2+bx+c对任意的实数x,都有f(1+x)=f(-x),那么() A.f(-2)<f(0)<f(2)B.f(0)<f(-2)<f(2)C.f(2)<f(0)<f(-2)D .f (0)<f (2)<f (-2) 答案 D解析 由f (1+x )=f (-x )知f (x )的图象关于x =12对称,又抛物线开口向上,结合图象(图略)可知f (0)<f (2)<f (-2).4.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]答案 D解析 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. 5.已知f (x )=x 21,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f (1a )<f (1b)B .f (1a )<f (1b)<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a)D .f (1a )<f (a )<f (1b )<f (b )答案 C解析 因为函数f (x )=x 21在(0,+∞)上是增函数,又0<a <b <1b <1a ,故选C.二、填空题6.若函数y =mx 2+x +5在[-2,+∞)上是增函数,则m 的取值范围是________.答案 0≤m ≤14解析 m =0时,函数在给定区间上是增函数;m ≠0时,函数是二次函数,对称轴为x =-12m≤-2,由题意知m >0,∴0<m ≤14.综上0≤m ≤14.7.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________.答案 0<a ≤14解析 令f (x )=x 2-11x +30+a .结合图象有⎩⎪⎨⎪⎧Δ≥0f (5)>0,∴0<a ≤14.8.当α∈⎩⎨⎧⎭⎬⎫-1,12,1,3时,幂函数y =x α的图象不可能经过第________象限.答案 二、四解析 当α=-1、1、3时,y =x α的图象经过第一、三象限;当α=12时,y =x α的图象经过第一象限. 三、解答题9.已知二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).若方程f (x )+6a =0有两个相等的根,求f (x )的单调区间. 解 ∵f (x )+2x >0的解集为(1,3), 设f (x )+2x =a (x -1)(x -3),且a <0,∴f (x )=a (x -1)(x -3)-2x =ax 2-(2+4a )x +3a .① 由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.② ∵方程②有两个相等的根,∴Δ=[-(2+4a )]2-4a ·9a =0,解得a =1或a =-15.由于a <0,舍去a =1.将a =-15代入①式得f (x )=-15x 2-65x -35=-15(x +3)2+65,∴函数f (x )的单调增区间是(-∞,-3], 单调减区间是[-3,+∞).10.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.B 组 专项能力提升1.设函数f (x )=⎩⎪⎨⎪⎧(12)x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)答案 C 解析 当a <0时,(12)a -7<1, 即2-a <23,∴a >-3,∴-3<a <0. 当a ≥0时,a <1,∴0≤a <1.故-3<a <1.2.已知函数f (x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,集合A ={m |f (m )<0},则( )A .∀m ∈A ,都有f (m +3)>0B .∀m ∈A ,都有f (m +3)<0C .∃m 0∈A ,使得f (m 0+3)=0D .∃m 0∈A ,使得f (m 0+3)<0答案 A解析 由a >b >c ,a +b +c =0可知a >0,c <0,且f (1)=0,f (0)=c <0,即1是方程ax 2+bx +c =0的一个根,当x >1时,f (x )>0.由a >b ,得1>b a, 设方程ax 2+bx +c =0的另一个根为x 1,则x 1+1=-b a>-1,即x 1>-2, 由f (m )<0可得-2<m <1,所以1<m +3<4,由抛物线的图象可知,f (m +3)>0,选A.3.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值域为________.答案 -1或3解析 由于函数f (x )的值域为[1,+∞),所以f (x )min =1且Δ<0.∴-5+1<a <5+1.又f (x )=(x -a )2-a 2+2a +4,当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1,即a 2-2a -3=0,解得a =3或a =-1.4.已知函数f (x )=3ax 2+2bx +c ,a +b +c =0,且f (0)·f (1)>0.(1)求证:-2<b a <-1;(2)若x 1、x 2是方程f (x )=0的两个实根,求|x 1-x 2|的取值范围.(1)证明 当a =0时,f (0)=c ,f (1)=2b +c ,又b +c =0,则f (0)·f (1)=c (2b +c )=-c 2<0与已知矛盾,因而a ≠0,则f (0)·f (1)=c (3a +2b +c )=-(a +b )(2a +b )>0即(b a +1)(b a +2)<0,从而-2<b a<-1. (2)解 x 1、x 2是方程f (x )=0的两个实根,则x 1+x 2=-2b 3a ,x 1x 2=-a +b 3a, 那么(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-2b 3a )2+4×a +b 3a =49·(b a )2+4b 3a +43=49(b a +32)2+13. ∵-2<b a <-1,∴13≤(x 1-x 2)2<49, ∴33≤|x 1-x 2|<23, 即|x 1-x 2|的取值范围是[33,23). 5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b 2a=-1, 解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].。

相关文档
最新文档