初二年级月考数学试卷

合集下载

八年级数学月考试卷

八年级数学月考试卷

八年级数学月考试卷注意事项:1. 本试卷共4页,满分120分,考试时间90分钟。

2. 答卷前,考生务必将自己的姓名、班级、学号填写在试卷的指定位置。

3. 所有答案必须写在答题纸上,写在试卷上无效。

4. 考试结束后,将试卷和答题纸一并交回。

一、选择题(每小题3分,共30分)1. 下列实数中,是无理数的是()A. -2B. 0C. √4D. √22. 若一个数的算术平方根是8,则这个数的立方根是()A. ±2B. ±4C. 2D. 43. 下列运算不正确的是()A. (-a)^2 = a^2B. a ÷ a = 1 (a ≠ 0)C. a - 2a = -aD. a · a^2 = a^44. 若多项式x^2 + 4x + a 的乘积中不含x 的一次项,则a 的值为()A. 4B. -4C. 2D. -25. 下列说法正确的有()①实数与数轴上的点一一对应;②负数没有立方根;③ 16的平方根是4;④ 2的相反数是-2。

A. 1个B. 2个C. 3个D. 4个6. 下列各数,立方根一定是负数的是()A. -a^2 (a > 0)B. -a - 1 (a > 0)C. -a (a为任意实数)D. -(-a)^2 - 1 (a > 0)7. 下列式子不能用平方差公式计算的是()A. (a - b)(a + b)B. (-a - b)(-a + b)C. (-x - y)(x - y)D. (-x - 1)(-x + 1) - x^28. 若在实数范围内,在“3 + 1 □ x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x 不可能是()A. 3 + 1/x (x ≠ 0)B. 3 - xC. 2/3xD. 1 - 3/x (x ≠ 0)9. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 菱形10. 已知a,b,c 为实数,且a < b,若m = a^2 - 2b + 3c,n = b^2 - 2c + 3a,则m 与n 的大小关系是()A. m > nB. m < nC. m = nD. 无法确定二、填空题(每小题3分,共15分)11. 写出一个比3大且比4小的无理数:__________。

沪科版八年级月考试卷数学

沪科版八年级月考试卷数学

一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()A. -3B. 2C. -2D. 32. 若a > b,则下列不等式中正确的是()A. a - b > 0B. a + b > 0C. -a < -bD. ab > 03. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a > 0B. a < 0C. a > -2D. a < -24. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 若一个正方形的边长为a,则它的面积S为()A. a^2B. 2aC. 4aD. 2a^26. 下列方程中,解为整数的是()A. 3x + 4 = 0B. 2x - 5 = 0C. 5x + 2 = 0D. 4x - 3 = 07. 已知一元二次方程x^2 - 5x + 6 = 0,下列选项中,正确的是()A. 它有两个不同的实数根B. 它有两个相同的实数根C. 它没有实数根D. 它有一个实数根8. 若等腰三角形的底边长为b,腰长为a,则该三角形的面积S为()A. (a + b) / 2 hB. (a + b) h / 2C. (b + h) / 2 aD. (b + h) a / 29. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √xB. y = 1 / xC. y = |x|D. y = √(x^2 - 1)10. 已知一次函数y = kx + b(k ≠ 0)的图像经过点(2,3),则k的取值范围是()A. k > 0B. k < 0C. k ≠ 0D. k ≠ 1二、填空题(每题5分,共20分)11. 已知a = -5,b = 3,则a + b的值为__________。

八年级湘教版数学月考试卷

八年级湘教版数学月考试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. πC. 2/3D. √42. 下列各数中,无理数是()A. 2.5B. √9C. 0.333...D. √23. 下列各数中,负数是()A. -5B. 0C. 1/2D. √04. 下列各数中,整数是()A. -3.14B. √25C. 1/3D. π5. 若 a > b,则下列不等式中错误的是()A. a + 2 > b + 2B. a - 3 < b - 3C. a 2 > b 2D. a / 2 < b / 26. 若 m > n,则下列不等式中正确的是()A. m - n > 0B. m + n > 0C. m / n > 0D. m n > 07. 已知x² - 5x + 6 = 0,则 x 的值为()A. 2 或 3B. 1 或 4C. 2 或 1D. 3 或 28. 在直角坐标系中,点 P(2, -3) 关于 x 轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)9. 若一个等腰三角形的底边长为 6cm,腰长为 8cm,则这个三角形的周长是()A. 16cmB. 18cmC. 20cmD. 22cm10. 若一个正方形的边长为 4cm,则它的面积是()A. 16cm²B. 8cm²C. 4cm²D. 2cm²二、填空题(每题4分,共20分)11. 5的平方根是________,它的相反数是________。

12. 若 a = 3,则 |a| = ________,a² = ________。

13. 在直角坐标系中,点 A(4, 3) 关于原点的对称点是________。

14. 一个等边三角形的边长为 6cm,则它的周长是________cm。

初二月考试卷数学及答案

初二月考试卷数学及答案

一、选择题(每题5分,共30分)1. 下列各数中,不是有理数的是()A. 3B. -5C. √2D. 0答案:C2. 下列等式中,正确的是()A. a + b = b + aB. ab = baC. a^2 = b^2D. a^3 = b^3答案:B3. 若m和n是方程2x^2 - 5x + 3 = 0的两个根,则m + n的值是()A. 5B. 3C. 2D. 1答案:A4. 已知函数f(x) = x^2 - 4x + 4,那么f(x)的图像是()A. 开口向上,顶点在x轴上B. 开口向下,顶点在x轴上C. 开口向上,顶点在y轴上D. 开口向下,顶点在y轴上答案:A5. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (-2, -3)B. (-2, 3)C. (2, -3)D. (2, 3)答案:A二、填空题(每题5分,共25分)6. 若a和b是方程x^2 - 5x + 6 = 0的两个根,则a^2 + b^2的值是______。

答案:257. 已知函数f(x) = 3x - 2,那么f(-1)的值是______。

答案:-58. 在等差数列{an}中,a1 = 3,公差d = 2,那么a5的值是______。

答案:119. 在等比数列{bn}中,b1 = 2,公比q = 3,那么b4的值是______。

答案:16210. 若函数y = kx + b(k ≠ 0)的图像经过点(1, 3),则k的值是______。

答案:2三、解答题(每题15分,共60分)11. (15分)解下列方程:(1)2x - 5 = 3x + 1(2)5(x - 2) = 3(2x + 1)答案:(1)x = -6(2)x = -112. (15分)已知函数f(x) = 2x^2 - 3x + 1,求:(1)函数的顶点坐标(2)函数的对称轴答案:(1)顶点坐标为(3/4, -1/8)(2)对称轴为x = 3/413. (15分)已知数列{an}的通项公式为an = 2n + 1,求:(1)数列的前5项(2)数列的求和公式答案:(1)a1 = 3, a2 = 5, a3 = 7, a4 = 9, a5 = 11(2)S_n = n^2 + n14. (15分)已知函数y = kx + b(k ≠ 0)的图像经过点A(1, 2)和点B(3, 4),求:(1)函数的解析式(2)函数图像与x轴的交点坐标答案:(1)k = 1/2,b = 3/2,函数解析式为y = 1/2x + 3/2(2)交点坐标为(3, 0)。

八年级月考试卷上册数学

八年级月考试卷上册数学

1、若一个角的补角是120°,则这个角的度数是:A. 60°(答案)B. 70°C. 80°D. 90°2、下列说法正确的是:A. 直角没有邻补角B. 一个角的邻补角一定是钝角或锐角C. 一个角的邻补角可能是锐角、钝角或直角(答案)D. 一个角的邻补角一定是另一个角3、下列运算正确的是:A. 3a + 2b = 5abB. 5a2 - 2b2 = 3C. 7a + a = 7a2D. (1/2)a + (1/2)a = a(答案)4、下列各式书写规范的是:A. b/aB. a ×7C. 3(1/2)x 元D. 2m - 1 元(答案)5、下列说法不正确的是:A. 0是整数B. 0是正数C. 0不是负数(答案,但表述上更严谨的应是“0是非负数”)D. 0是自然数6、下列说法正确的是:A. 射线AB和射线BA是同一条射线B. 直线AB和直线BC相交于点BC. 若PA=PB,则P是线段AB的中点(答案需考虑A、B、P三点共线的情况,但此选项通常判断为错误,因为中点定义需满足点P位于线段AB上且PA=PB)D. 连接两点间的线段,叫做这两点的距离(答案:错误,应为“连接两点间的线段的长度,叫做这两点的距离”)7、下列运算正确的是:A. 3a - a = 3B. (a - b)2 = a2 - b2C. 7a + a = 8a(答案)D. a6 ÷a3 = a28、下列说法错误的是:A. 两点之间的所有连线中,线段最短B. 连接两点间的线段叫做这两点的距离(答案:错误,应为“长度”)C. 若AB=BC,则点B是线段AC的中点(答案:错误,需考虑A、B、C三点共线且B位于AC之间的情况)D. 画射线OA = 3cm(答案:错误,射线没有长度)。

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)

八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。

1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。

2022-2023学年度第一学期八年级第一次月考 (数学)(含答案)063108

2022-2023学年度第一学期八年级第一次月考 (数学)(含答案)063108

2022-2023学年度第一学期八年级第一次月考 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下列各组数不能构成一个三角形的三边长的是( )A.,,B.,,C.,,D.,,2. 如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.都有可能3. 如图,从下列四个条件:①;②;③;④中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是( )A.B.C.D.4. 若正多边形的一个外角是,则该正多边形的内角和为 A.B.C.D.5. 在中,,则( )A.B.C.D.123234345456BC =C B ′AC =C A ′∠CA =∠CB A ′B ′AB =A ′B ′123472∘()360∘540∘720∘900∘Rt △ABC ∠C =,∠B =90∘35∘∠A =45∘55∘65∘75∘6. 如图,中,则下列结论正确的是( )A.B.C.D.7. 如图,已知为中点,,,,那么下列结论中不正确的是( )A.B.C.D.8. 如图,在中,,平分于点,,则的长为 ( )A.B.C.D. 9.以下四种沿折叠的方法中,不一定能判定纸带两条边线,互相平行的是 A.图,展开后测得B.图,展开后测得且C.图,测得△ABC ∠B =∠C,BD =CF,BE =CD,∠EDF =α,2α+∠A =180∘α+∠A =90∘2α+∠A =90∘α+∠A =180∘2D AB EA ⊥AB CB ⊥AB AE =AB =2BC ∠E =30∘∠EAF =∠ADEDE =AC∠C +∠E =90∘△ABC ∠C =90∘AD ∠BAC ,DE ⊥AB E DE =3,BD =2CD BC 78910AB a b ()1∠1=∠22∠1=∠2∠3=∠43∠1=∠2D.图,展开后再沿折叠,两条折痕的交点为,测得,10. 如图所示,在中,分别是,的角平分线,且交于点,于,下列结论:①;②;③;④.其中正确的结论是( )A.①②③B.①②④C.②③④D.①②③④二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11. 如图,点在线段上,若在的同侧作等边 和等边 ,连接、,若 ,则的度数为________.12. 一个三角形的两边长为和,则第三边的取值范围是________.13. 如图,在中,,平分.若,则________.14. 如图,在中,点,,分别是,,的中点,若的面积等于,则的面积为________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15. 已知:如图,点,,,在同一条直线上, ,,求证: .4CD O OA =OB OC =OD△ABC AD ,CF ∠BAC ,∠ACB AD ,CF I IE ⊥BC E ∠BIE =∠CID =IE(AB+BC +AC)S △ABC 12BE =(AB+BC −AC)12AC =AF +DC C AB AB △ACM △BCN AN BM ∠MBA =28∘∠ANC 57a △ABC AD ⊥BC AE ∠BAC ∠1=,∠2=30∘20∘∠B =△ABC D E F BC AD EC △ABC 36△BEF A E F C DF =BE ∠B =∠D AD//BC.AE =CF16.【操作】填写下表:正边形内角和每一个内角的度数【猜想】根据上表数据猜想,正边形的每一个内角的度数都是________;(用含的代数式表示)【应用】是否存在一个正边形,它的每一个内角都是?若存在,求出的值;若不存在,请说明理由. 17. 在平面直角坐标系中,描出以下各点:.在平面直角坐标系中画出.计算的面积. 18.如图,是的直径,是的切线,切点为,交于点,点是的中点.试判断直线与的位置关系,并说明理由;若的直径为,,,求图中阴影部分的面积. 19. 如图,在中,是边上的高,平分,,.你会求的度数吗?你能发现与,之间的关系吗?20. 如图,正方形的边长为,边上有一动点,连结,线段绕点顺时针旋转后,得到线段,且交于,连结,过点作的延长线于点.求证:;(1)n n =4360∘90∘n =5n =6(2)n n (3)n 130∘n A(−2,−1),B(−4,2),C(3,5)(1)△ABC (2)△ABC AB ⊙O AC ⊙O A BC ⊙O D E AC (1)DE ⊙O (2)⊙O 4∠B =50∘AC =5△ABC AD BC AE ∠BAC ∠B =80∘∠C =46∘(1)∠DAE (2)∠DAE ∠B ∠C ABCD 1AB P PD PD P 90∘PE PE BC F DF E EQ ⊥AB Q (1)PQ =AD求证:;问:点在何处时,,并说明理由.在条件下,求的值.21.如图,,,,,垂足为.求证:;求的度数.22. 如图,在中,是边上的中线,是边上一点,过点作交的延长线于点.求证:;当,,时,求的长.23. 如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.(1)PQ =AD (2)P △PFD ∼△BFP (3)(2)cos ∠DFP ∠BAD =∠CAE =90∘AB =AD AE =AC AF ⊥CB F (1)△ABC ≅△ADE (2)∠FAE △ABC AD BC E AB C CF //AB ED F (1)△BDE ≅△CDF (2)AD ⊥BC AE =1CF =2AC PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF参考答案与试题解析2022-2023学年度第一学期八年级第一次月考 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】三角形三边关系【解析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:,因为,所以本组数不能构成三角形.故本选项符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意;,因为,所以本组数能构成三角形.故本选项不符合题意.故选.2.【答案】C【考点】三角形的高【解析】【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.故选.3.【答案】B【考点】全等三角形的性质与判定【解析】根据全等三角形的判定定理,可以推出当①②③为条件,④为结论时 ,根据判断出,根据全等三角形的性质得出;当①②④为条件,③为结论时:由判断出,根据全等三角形的性质得出, 从而得出.【解答】A 1+2=3B 2+3>4C 4+3>5D 4+5>6A C SAS △A'CB'≅△ACB AB =A'B'SSS △A'CB'≅△ACB ∠A'CB'=∠ACB ∠A'CA =∠B'CB解:当①②③为条件,④为结论时:∵,∴,即,∵,,∴,∴;当①②④为条件,③为结论时:∵,,,∴,∴,∴,即.若②③④为条件,通过两边及其一边的对角无法判定三角形相似,从而无法得出结论.故选.4.【答案】B【考点】多边形内角与外角【解析】外角和是,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.【解答】解:∵正多边形的每一个外角都是,∴正多边形的边数为:,∴该正多边形的内角和为:.故选.5.【答案】B【考点】三角形内角和定理【解析】此题暂无解析【解答】解:因为三角形内角和为,所以.故选.6.【答案】A【考点】全等三角形的判定∠CA =∠CB A ′B ′∠CA+∠AC =∠CB+∠AC A ′B ′B ′B ′∠C =∠ACB A ′B ′BC =C B ′AC =C A ′△C ≅△ACB(SAS)A ′B ′AB =A ′B ′BC =C B ′AC =C A ′AB =A ′B ′△C ≅△ACB(SSS)A ′B ′∠C =∠ACB A ′B ′∠C −∠AC =∠ACB−∠AC A ′B ′B ′B ′∠CA =∠CB A ′B ′B 360∘72∘=536072(5−2)×=180∘540∘B 180∘∠A =−∠B−∠C180∘=−−180∘35∘90∘=55∘B【解答】解:在和中,,∴,∴,∵,∴,∵,∴.故选.7.【答案】A【考点】全等三角形的性质与判定【解析】本题条件较为充分,,,,为中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.【解答】解:,,,∵为中点,∴,又,,∴,,,,故正确;∵,∴,∴,即,∴,,∴,,,,故,正确.故选.8.【答案】C【考点】角平分线的性质全等三角形的判定【解析】△BDE △CFD BE =CD∠B =∠C BD =CF△BDE ≅△CFD(SAS)∠BED =∠CDF ∠EDC =∠B+∠BED =∠EDF +∠FDC∠B =∠EDF =α∠B =∠C =α2a +∠A =180∘A EA ⊥AB BC ⊥AB EA =AB =2BC D AB ∵EA ⊥AB BC ⊥AB ∴∠EAB =∠ABC =90∘D AB AB =2AD EA =AB =2BC ∴AD =BC Rt △EAD ≅Rt △ABC ∴DE =AC ∠C =∠ADE ∠E =∠FAD C ∠EAF +∠DAF =90∘∠EAF +∠E =90∘∠EFA =−=180∘90∘90∘DE ⊥AC ∠EAF +∠DAF =90∘∠C +∠DAF =90∘∠C =∠EAF ∠C =∠ADE ∴∠EAF =∠ADE ∠C +∠E =90∘B D A解:∵在和中,,∴,∴.∵,∴.故选.9.【答案】C【考点】全等三角形的性质与判定平行线的判定【解析】根据平行线的判定定理,进行分析,即可解答.【解答】解:、,根据内错角相等,两直线平行进行判定,故正确;、∵且,由图可知,,∴,∴(内错角相等,两直线平行),故正确;、测得,∵与即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;、在和中,,∴,∴,∴(内错角相等,两直线平行),故正确.故选.10.【答案】A【考点】全等三角形的性质与判定三角形内角和定理角平分线的性质【解析】①由为三条角平分线的交点,于,得到,由于,即,由已知条件得到,于是得到;即①成立;②由△ADE △ADC ∠DAE =∠DACDA =DA ∠AED =∠ACD△ADE ≅△ADC CD =DE BD =2CD BC =BD+CD =3DE =9C A ∠1=∠2B ∠1=∠2∠3=∠4∠1+∠2=180∘∠3+∠4=180∘∠1=∠2=∠3=∠4=90∘a//b C ∠1=∠2∠1∠2D △AOC △BOD OA =OB∠AOC =∠BOD OC =OD△AOC ≅△BOD ∠CAO =∠DBO a//b C I △ABC IE ⊥BC E ∠ABI =∠IBD ∠CID+∠ABI =90∘∠CIE+∠DIE+∠IBD =90∘∠IBD+∠BID+∠DIE =90∘∠BIE =∠CID是三内角平分线的交点,得到点到三边的距离相等,根据三角形的面积即可得到即②成立;③如图过作于,于,有是三内角平分线的交点,得到,通过,得到,同理,,于是得到即③成立;④由③证得,,于是得到与不一定全等,即④错误.【解答】解:①,故正确,②∵是三内角平分线的交点,∴点到三边的距离相等,∴,即②正确;③如图过作于,于,∵是三内角平分线的交点,∴,在与中,,∴,∴,同理,,∴,∴,即③正确;④只有在 的条件下, ,即④错误.故选.二、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )11.【答案】【考点】全等三角形的性质【解析】此题暂无解析【解答】此题暂无解答12.【答案】【考点】I △ABC I △ABC I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG △AHT ≅△AGI R t R t AH =AG BE =BF CE =CG IH =IE ∠FHI =∠IED =90∘△IHF △DEI ∠ABC +∠ACB+∠BAC =,180∘∠IBE =∠ABC ,12∠IAC =∠BAC 12∠ICA =∠ACB ,12∠IBE +∠IAC +∠ICA =,90∘∠CID =∠IAC +∠ICA =−∠IBE =∠BIE.90∘①I △ABC I △ABC =++S △ABC S △ABI S △BCI S △ACI =⋅AB ⋅IE+BC ⋅IE+AC ⋅IE 121212=IE(AB+BC +AC)12I IH ⊥AB H IG ⊥AC G I △ABC IE =IH =IG Rt △AHI Rt △AGI {AI =AI ,IH =IG ,Rt △AHI ≅Rt △AGI AH =AG BE =BH CE =CG BE+BH =AB+BC −AH−CE =AB+BC −ACBE =(AB+BC −AC)12∠ABC =60∘AC =AF +DCA 28∘2<a <12三角形三边关系【解析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可求解.【解答】解:三角形的两边长分别为,,则第三边的取值范围是,即.故答案为:.13.【答案】【考点】三角形的外角性质三角形内角和定理【解析】此题暂无解析【解答】解:∵平分,∴,∴,在 中,,故答案为:.14.【答案】【考点】三角形的面积【解析】此题暂无解析【解答】此题暂无解答三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )15.【答案】证明:∵,∴,且,,∴(),∴,∴,57a 7−5<a <7+52<a <122<a <1250∘AE ∠BAC ∠1=∠EAD+∠2∠EAD =∠1−∠2=−30∘20∘=1Rt △ABD ∠B =−∠BAD 90∘=−−=90∘30∘10∘50∘50∘9AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF∴.【考点】全等三角形的性质与判定平行线的性质【解析】【解答】证明:∵,∴,且,,∴(),∴,∴,∴.16.【答案】解:填表如下:正边形内角和每一个内角的度数根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.【考点】多边形的内角和多边形内角与外角【解析】根据得,正边形的每一个内角度数为.故答案为:.【解答】解:填表如下:正边形内角和每一个内角的度数根据得,正边形的每一个内角度数为.AE =CF AD//BC ∠A =∠C ∠B =∠D DF =BE △ADF ≅△CBE AAS AF =CE AF −EF =CE−EF AE =CF (1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(2)(1)n (n−2)×180∘n (n−2)×180∘n(1)n n =4360∘90∘n =5540∘108∘n =6720∘120∘(2)(1)n (n−2)×180∘n(n−2)×180∘故答案为:.根据可得,,解得.因为为整数,所以不存在一个正边形,它的每一个内角都是.17.【答案】解:如图所示:的面积.【考点】网格中点的坐标三角形的面积【解析】无无【解答】解:如图所示:的面积.18.【答案】解:直线与相切.理由如下:(n−2)×180∘n (3)(2)=(n−2)×180∘n 130∘n =7.2n n 130∘(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)△ABC (2)△ABC =7×6−×2×312−×3×712−×5×612=42−3−10.5−15=13.5(1)DE ⊙O连接,,如图,∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.【考点】全等三角形的性质与判定切线的判定三角形中位线定理扇形面积的计算求阴影部分的面积三角形的面积【解析】连接、,根据切线的性质得到根据三角形中位线定理得到,证明根据全等三角形的性质、切线的判定定理证明;【解答】解:直线与相切.理由如下:连接,,如图,OE OD AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)OE OD ∠OAC =90∘OE//BC△AOE ≅△DOE (1)DE ⊙O OE OD∵是的切线,∴,∴.∵点是的中点,点为的中点,∴,∴,.∵,∴,∴.在和中,∴,∴,∴,∵为的半径,∴直线与相切.∵,是的切线,∴,∵点是的中点,∴ ,,∴图中阴影部分的面积为.19.【答案】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.AC ⊙O AB ⊥AC ∠OAC =90∘E AC O AB OE//BC ∠1=∠B ∠2=∠3OB =OD ∠B =∠3∠1=∠2△AOE △DOE OA =OD ,∠1=∠2,OE =OE ,△AOE ≅△DOE(SAS)∠ODE =∠OAE =90∘DE ⊥OD OD ⊙O DE ⊙O (2)DE AE ⊙O DE =AE E AC AE =AC =1252∠AOD =2∠B =2×=50∘100∘S =+−S △AOE S △DOE S 扇形AOD =2−S △AOE S 扇形AOD=2××2×−1252100×π×22360=5−π109(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12【考点】三角形的外角性质三角形内角和定理【解析】(1)先根据三角形内角和定理求出的度数,再根据平分求出的度数,根据求出的度数,由即可得出结论;(2)设,,,同(1)即可得出结论;【解答】解:在中,,,∴.∵平分,∴.∵是边上的高,∴,∴;∵是的高,∴,∵,∴,∵,,∴,∵是的角平分线,∴,∵,∴当时,;∴.20.【答案】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∠BAC AE ∠BAC ∠BAE AD ⊥BC ∠BAD ∠DAE =∠BAE−∠BAD ∠C =α∘∠B =β∘α>β(1)△ABC ∠B =80∘∠C =46∘∠BAC =−−=180∘80∘46∘54∘AE ∠BAC ∠BAE =∠BAC =1227∘AD BC ∠BAD =−∠B =−=90∘90∘80∘10∘∠DAE =∠BAE−∠BAD =−=27∘10∘17∘(2)AD △ABC ∠ADC =90∘∠C =β∠DAC =−β90∘∠B =α∠C =β∠BAC =−∠B−∠C =−α−β180∘180∘AE △ABC∠EAC =∠BAC =(−α−β)=−α−β1212180∘90∘1212∠B >∠C α>β∠DAE =∠DAC −∠EAC=−β−(−α−β)90∘90∘1212=(α−β)12∠DAE =(∠B−∠C)12(1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF=PD PF AP BF=AP BF PB BF PA =PB A =AB =11∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.【考点】相似三角形的性质与判定锐角三角函数的定义正方形的性质全等三角形的性质【解析】(1)由题意得:,,又由正方形的边长为,易证得,然后由全等三角形的性质,求得线段的长;(2)易证得,又由,根据相似三角形的对应边成比例,可得证得,则可求得答案.【解答】证明:根据题意得:,,∴,∵四边形是正方形,∴,∴,∴,∵,∴,在和中,PA =AB =1212PA =12P AB △PFD ∼△BFP (3)P AB ∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF ==5–√4545–√5PD =PE ∠DPE =90∘ABCD 1△ADP ≅△QPE PQ △DAP ∽△PBF △PFD ∽△BFP PA =PB (1)PD =PE ∠DPE =90∘∠APD+∠QPE =90∘ABCD ∠A =90∘∠ADP +∠APD =90∘∠ADP =∠QPE EQ ⊥AB ∠A =∠Q =90∘△ADP △QPE,∴,∴;解:∵,∴,∵,,∴,∴,∴,∴,∴∴当,即点是的中点时,.解:∵为的中点,,,,,,,在中,,在中在中.21.【答案】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴. ∠A =∠Q∠ADP =∠QPE PD =PE△ADP ≅△QPE(AAS)PQ =AD (2)△PFD ∼△BFP =PB BF PD PF ∠ADP =∠EPB ∠CBP =∠A △DAP ∼△PBF =PD PF AP BF=AP BF PB BFPA =PB PA =AB =1212PA =12P AB △PFD ∼△BFP(3)P AB∴PA =PB =AB =1212∵△DAP ∼△PBF ∴=BF PB AP AD ∴=BF 12121∴BF =14∴CF =CB−BF =1−=1434Rt △PBF PF =P +B B 2F 2−−−−−−−−−−√===+()122()142−−−−−−−−−−−−√516−−−√5–√4Rt △DCF DF =+CD 2CF 2−−−−−−−−−−√==+12()342−−−−−−−−−√54Rt △DPF cos ∠DFP =PF DF==5–√4545–√5(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘∵,∴,∴,∴.【考点】全等三角形的判定全等三角形的性质三角形内角和定理【解析】此题暂无解析【解答】证明:∵,∴,,∴,在和中,∴.解:∵,,∴.由知,∴.∵,∴,∴,∴.22.【答案】证明:∵,∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.【考点】全等三角形的判定全等三角形的性质平行线的性质【解析】(1)根据平行线的性质得到=,=,由是边上的中线,得到=,于是得到结论;(2)根据全等三角形的性质得到==,求得===,于是得到结论.【解答】证明:∵,AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)∠BAD =∠CAE =90∘∠BAC +∠CAD =90∘∠CAD+∠DAE =90∘∠BAC =∠DAE △ABC △ADE AB =AD,∠BAC =∠DAE,AC =AE,△ABC ≅△ADE(SAS)(2)∠CAE =90∘AC =AE ∠E =45∘(1)△ABC ≅△ADE ∠BCA =∠E =45∘AF ⊥BC ∠CFA =90∘∠CAF =45∘∠FAE =∠FAC +∠CAE =+=45∘90∘135∘(1)CF //AB ∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3∠B ∠FCD ∠BED ∠F AD BC BD CD BE CF 2AB AE+BE 1+23(1)CF //AB∴,.∵是边上的中线,∴,∴.解:∵,∴,∴.∵,,∴.23.【答案】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∠B =∠FCD ∠BED =∠F AD BC BD =CD △BDE ≅△CDF(AAS)(2)△BDE ≅△CDF BE =CF =2AB =AE+BE =1+2=3AD ⊥BC BD =CD AC =AB =3(1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∴,∴.设,则,由可得,,∴,∴,∴.即.∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF。

八年级月考试卷数学答案

八年级月考试卷数学答案

一、选择题1. 下列各数中,无理数是()A. 2.5B. $\sqrt{3}$C. 0.1010010001...D. $\frac{1}{2}$答案:B解析:无理数是指无限不循环小数,而$\sqrt{3}$是无理数。

2. 若$a > b$,则下列不等式中正确的是()A. $a + 1 > b + 1$B. $a - 1 < b - 1$C. $a \times 2 > b \times 2$D. $a \div 2 < b \div 2$答案:A解析:根据不等式的性质,当两边同时加上或减去同一个数时,不等号的方向不变。

所以选项A正确。

3. 下列函数中,是反比例函数的是()A. $y = 2x + 1$B. $y = \frac{1}{x}$C. $y = x^2$D. $y = \sqrt{x}$答案:B解析:反比例函数的一般形式为$y = \frac{k}{x}$($k \neq 0$),其中$k$为常数。

选项B符合反比例函数的定义。

4. 下列方程中,有解的是()A. $2x + 3 = 0$B. $x^2 + 2x + 1 = 0$C. $x^2 + 3x + 2 = 0$D. $x^2 - 2x + 1 = 0$答案:A解析:对于一元二次方程,其判别式$\Delta = b^2 - 4ac$。

当$\Delta > 0$时,方程有两个不相等的实数根;当$\Delta = 0$时,方程有两个相等的实数根;当$\Delta < 0$时,方程无实数根。

选项A的判别式$\Delta = 3^2 - 4 \times 2 \times 1 = 1 > 0$,所以方程有解。

5. 下列各式中,正确的是()A. $a^2 + b^2 = (a + b)^2$B. $a^2 - b^2 = (a + b)(a - b)$C. $a^2 + 2ab + b^2 = (a - b)^2$D. $a^2 - 2ab + b^2 = (a - b)^2$答案:B解析:根据平方差公式,$a^2 - b^2 = (a + b)(a - b)$,所以选项B正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二年级数学月考试卷2002.6
一填空题 (18格×2′)
1、16的算术平方根是______,-27的立方根是________。

2、24的整数部分是a 、小数部分是b ,则
a
b
=_________。

3、b a b a -=2,则a 的取值范围是_______________。

4、若a 的取值范围是-1〈a 〈2,则__________)2()1(22
=-+
+a a ,
5、方程032)1(5
42
=-+-+-x x k k k
为一元二次方程,则K=__________.
6、方程03322
=+-x x 的根为____________。

7、线段a=2cm,b=4cm,c=10cm,则b 、c 、 a 的第四比例项是___________。

8、已知a=3,b=12,若x 是a 、b 的比例中项,则x=_________________。

9、
43=y x ,则
y
y x +=_____,y x y
x +-2=____________。

10、若
3===f
e d c b a ,b+d+f=4,则a+c+e=______________________.
11、如图1,AA ′∥BB ′∥CC ′,则
AC
AB =_____,
C B BC
'
'=_____ 12、如图2,AC 平分∠BAD ,请添加一个条件________________, 使得
AD
AB
CD BC =。

13、若△ABC ∽△A ′B ′C ′且
16
9
='''∆∆C B A ABC S S ,则△A ′B ′C ′∽△ABC
的相似比是______,若△ABC 的周长为12,则△A ′B ′C ′的周长是______. 14、如图3、△ABC 中,DE ∥FG ∥BC ,若AD :DF :BF=1:1:1 则DE :FG :
图1
二、选择题 ( 10×2′) 1、5
4
4-
的结果是( ) A 、 542
B 、 522
C 、5302-
D -562
2、a
a 1
-
化简后的结果为( ) A 、a B 、a - C 、-a D a -- 3、下列根式中,是最简二次根式的是( ) A 、35a B 、
a a
3 C 、b
a a
b D 522a b a +
4、二次根式7323-+a a 与是同类二次根式,则a=( ) A 、 5 B 、3 C 、 4 D 以上都不正确
5、若
d c
b a =,则下列变形中错误的是( ) A 、b d a
c = B 、
d c b a 11+=+ C 、c d c d a b a b +-=+- D
d
c
d b c a =++ 6、在一张比例尺是1:500的地图上,一个图形的实际面积是625m 2则在地图上的面积为( ) A 、25m 2 B 、 25cm 2 C 、1.25m 2 D 125m 2 7
bc
,下列作图中,AC ∥BD ,则正确的是( )
D
8、在△ABC 和△A ′B ′C ′中,已知,AB=9cm ,BC=8cm ,CA=5cm ,A ′B ′=3cm , B ′C ′=
35cm C ′A ′=3
8
cm 则,( ) A 、∠A=∠A ′ B 、 ∠A=∠C ′ C 、∠A=∠B ′ D 、 ∠C=∠B ′
9、△ABC 为直角三角形,∠C=90°D 为AB 上一点(与A 、B 不重合),过D 作一直线, 使之截得的三角形与原三角形相似,则这样的直线有( )条。

10、一个等腰三角形两边长为 25和 32,这个三角形的周长是( ) A 、 32210+ B 、3425+ C 、 342532210++和 D 无法确定
三、计算题 (4×4′) 1、10
3
273175.02-
+ 2、)235)(235(-++- 3、
2
2b
ab b a a -⋅+ 4、
3
513
51-+
+
四、解方程 (2×3′)
1、0162=-+x x (配方法)
2、03622
=+-x x
五、化简 6′
试根据下图写出x 的取值范围,并由x 的范围,化简x x x --++2122
六、作图题4′
在方格纸中,每一个格的顶点叫做格点,以格点连线为边的三角形叫格点三角形。

请在右图10×10的方格纸中,用直尺画出两个相似但不全等的格点三角形,并加以
证明。

要求所画三角形是钝角三角形,并标出相应字母。

七、证明与计算
1、 矩形ABCD 中,AB=4,BC=6,M 是BC 的中点,
DE ⊥AM ,E 是垂足。

(1) 求△ADM 的面积:1′
(2) 求DE 的长:2′
(3) 求△ADE 的面积。

2′
2、 △PQR 是等边三角形,∠APB=120°
(1) 证明:QR 2=AQ ×RB ; 2′
(2) 若AP=72 ,AQ=2 。

求RQ 的长和△PRB 的面积。

5′。

相关文档
最新文档