2014年广东省深圳市龙岗区中考模拟考试数学试题及答案

合集下载

2014年深圳市中考数学模拟试题(2)及答案

2014年深圳市中考数学模拟试题(2)及答案

A .B . D .C .深圳市2014年初中毕业生学业考试数学模拟试卷第一部分 选择题一、选择题。

(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中 只有一个是正确的)1. 9的算术平方根是( )A .3B .-3C .±3D .812. 第八届中国(深圳)文博会以总成交额143 300 000 000元再创新高.数据143 300 000 000用科学记数法(保留两个有效数字)表示为( ) A.111043.1⨯ B.11104.1⨯ C.1210433.1⨯ D.121014.0⨯ 3.下列平面图形,既是中心对称图形,又是轴对称图形的是( ) A .等腰三角形 B .正五边形 C .平行四边形 D .矩形 4. 下列运算正确的是( )A .23532x x x -=- B.52232=+C.1025)()(x x x -=-⋅- D.5235363)3()93(a x ax ax x a -=-÷- 5.左下图为主视方向的几何体,它的俯视图是( )6.若分式xxx --2632的值为0,则x 的值为( )A.0 B.2C.-2 D.0或27. 用配方法解方程2410x x ++=,配方后的方程是( )A .2(2)3x += B.2(2)3x -= C.2(2)5x -= D.2(2)5x +=8.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<9. 如图,将△ABC 绕着点C 顺时针旋转50°后得到△'''C B A . 若∠A =40°. ∠'B =110°,则∠'BCA 的度数是( )A .110°B .80°C .40°D .30°10.如图,已知AD 是△ABC 的外接圆的直径,AD =13 cm , 13cos =B , 则AC 的长等于( )A .5 cmB .6 cmC .12 c mD . 10 cm11.如图,梯形ABCD 中,AD ∥BC , 点E 在BC 上,BE AE =,点F 是CD 的中点,且AB AF ⊥,若7.2=AD ,4=AF ,6=AB ,则CE 的长为( ) A .22 B .132- C .2.5 D .2.312.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线DC ED BE --运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①5==BE AD ;②53cos =∠ABE ;③当50≤<t 时,252t y =;④当429=t 秒时,△ABE ∽△QBP ;其中正确的结论是( ).A .①②③ B.②③ C. ①③④ D.②④D A B C DF第二部分 非选择题二、填空题。

深圳中学2014年中考数学一模试卷(含答案)

深圳中学2014年中考数学一模试卷(含答案)

深圳中学2014年中考第一次模拟考试数学考生须知:1.本试卷共5页。

全卷满分150分。

考试时间为120分钟。

试题包含选择题和非选择题。

考生答题全部答在答题卡上,答在本试卷上无效。

2.请将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡上。

3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案。

答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其它位置答题一律无效。

一、选择题(共10小题,每小题3分,共30分.).C D.C D..C D.5.(3分)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().C D.7.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是().C D.210.(3分)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().C D.二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上).11.(3分)因式分解:a2+2a=_________.12.(3分)某市在市中心建了一个文化广场,建成后总面积达163500平方米,成为该市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为_________平方米.13.(3分)如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为_________.14.(3分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t=_________.15.(3分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是_________.16.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2014的值为_________.(用含m的代数式表示)三、解答题(本大题共9题,满分102分.解答应写出文字说明、证明过程或演算步骤).17.(9分)解不等式组,并把解集在数轴上表示出来.18.(9分)如图,已知:在△ABC中,AB=AC,∠BAF=∠CAE,求证:BE=CF.19.(10分)化简求值:,其中x=2.20.(10分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为_________;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是_________.21.(12分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?22.(12分)马航事件牵动了全国甚至全世界人们的心,当得知MH370客机最后失踪地点是在印度洋南部某海域C处,“雪龙”号科考船立即从B处出发以60km/h的速度前往搜救.已知出发时在B 测得搜救指挥基地A的方位角为北偏东80°,测得失踪地点C的方位角为南偏东25°.航行10小时后到达C处,在C处测得A的方位角为北偏东20°.求C到A的距离.23.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)24.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.25.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.深圳中学2014年中考第一次模拟试卷数学答案一、选择题(共10小题,每小题3分,共30分.).C D.C D..C D.5.(3分)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为().C D.sinA==7.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是().C D.210.(3分)如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为().C D.a,C=C=aa a+++l=二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上).11.(3分)因式分解:a2+2a=a(a+2).12.(3分)某市在市中心建了一个文化广场,建成后总面积达163500平方米,成为该市“文化立市”和文化产业大发展的新标志,把163500平方米用科学记数法可表示为 1.635×105平方米.13.(3分)如图,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周长为26,DE=4,则△BEC的周长为18.14.(3分)已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t=2或0.15.(3分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,则y2的解析式是y2=.解:∵=..16.(3分)若a1=1﹣,a2=1﹣,a3=1﹣,…;则a2014的值为1﹣.(用含m的代数式表示)﹣=1=,=1=m=﹣.三、解答题(本大题共9题,满分102分.解答应写出文字说明、证明过程或演算步骤).17.(9分)解不等式组,并把解集在数轴上表示出来.18.(9分)如图,已知:在△ABC中,AB=AC,∠BAF=∠CAE,求证:BE=CF.19.(10分)化简求值:,其中x=2.20.(10分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为100;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.扇形统计图:赞成:,反对:×=.21.(12分)某市为争创全国文明卫生城,2008年市政府对市区绿化工程投入的资金是2000万元,2010年投入的资金是2420万元,且从2008年到2010年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2012年需投入多少万元?22.(12分)马航事件牵动了全国甚至全世界人们的心,当得知MH370客机最后失踪地点是在印度洋南部某海域C处,“雪龙”号科考船立即从B处出发以60km/h的速度前往搜救.已知出发时在B 测得搜救指挥基地A的方位角为北偏东80°,测得失踪地点C的方位角为南偏东25°.航行10小时后到达C处,在C处测得A的方位角为北偏东20°.求C到A的距离.×=300×=100kmCA=300+100=1003)+23.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)BD=2BF=2××﹣24.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.25.(14分)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m 的值;若不存在,请说明理由.((=,∴)﹣=2(•±+2∴∴((EC=。

2014年广东省深圳市中考数学试卷及答案

2014年广东省深圳市中考数学试卷及答案

2014年广东省深圳市中考数学试卷及答案一、选择题1、9的相反数()1A:-9 B:9 C:±9 D:9答案:A解析:考点:相反数,有理数的概念中考常规必考,多第一题。

2、下列图形中是轴对称图形但不是中心对称图形的是()答案:B解析:考点:轴对称和中心对称。

中考常规必考。

3、支付宝与”快的打车”联合推出优惠,”快的打车”一夜之间红遍大江南北,据统计,2014年”快的打车”账户流水总金额达到47.3亿元,47.3亿元用科学计数法表示为()A:4.73×108B: 4.73×109 C:4.73×1010 D:4.73×1011答案:B解析:考点:科学计数法。

中考常规必考。

4、由几个大小相同的正方形组成的几何图形如图所示,则它的俯视图为()A B C D答案:A解析:考点:三视图A:平均数3 B:众数是-2 C:中位数是1 D:极差为8答案:D解析:考点:数据的代表。

极差:最大值-最小值。

6-(-2)=8。

平均数:(-2+1+2+1+4+6)÷6=2。

众数:1。

中位数:先由小到大排列:-2,1,1,2,4,6,中间两位为1和2,则中位数计算为:(1+2)÷2=1.5.6,已知函数y=ax+b经过(1,3)(0,-2),求a-b=()A:-1 B:-3 C:3 D:7答案:D解析:考点:待定系数法求函数解析式。

代入(1,3),(0,-2)到函数解析式y=ax+b得,a+b=3,b=-2,则a=5,b=-2,a-b=77、.下列方程中没有实数根的是()A、x2+4x=10B、3x2+8x-3=0C、x2-2x+3=0D、(x-2)(x-3)=12答案:C考点:判根公式的考察:△=b2-4ac。

C项中△<0,无实数根。

8、如图,△ABC和△DEF中,AB=DE, ∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A、AB∥DEB、∠A=∠DC、AC=DFD、∠ACB=∠F答案:C考点:三角形全等的条件:SSS、SAS、AAS、ASA、HL。

1405032014深圳中考数学模拟试卷附答案

1405032014深圳中考数学模拟试卷附答案

2014年深圳市数学全真模拟试卷第一部分 (选择题,共36分)一、选择题:本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的. 1.12-的倒数为( ) A .2B .2-C .12D .12-2.今年第七届深圳文博会圆满落幕,成交额再创新高.总成交额达1245.4亿元,这个数据用科学记数法表示为(保留三个有效数字)( ) A .1.25×103元 B .1.24×103元 C .1.25×1011元D .1.24×1011元3.下列运算正确的是( ) A .()323626xy x y -=-B .()222x y x y +=+ C .22()()x y x y x y -+--=-D .235()a a =4.下列不等式组的解集,在数轴上表示为如图1所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x -≤⎧⎨+<⎩C .1020x x +≥⎧⎨-<⎩D .1020x x +>⎧⎨-≤⎩5.下列图形中既是中心对称图形,又是轴对称图形的是( )A B C D6.下列四个命题中,假.命题的是( ) A .四条边都相等的四边形是菱形 B .有三个角是直角的四边形是矩形C .对角线互相垂直平分且相等的四边形是正方形D .一组对边平行,另一组对边相等的四边形是等腰梯形7.如图2,由6个大小相同的正方体搭成的几何体,则关于它的视图说法正确的是( ) A .主视图的面积最大 B .左视图的面积最大 C .俯视图的面积最大D .三个视图的面积一样大-1 0 1 2图1图2ADEPBC图6图3OAB图4Oyx8.如图3,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( ) A .2cm B .3cm C .23cm D .25cm9.下列说法中正确的是( )A .“打开电视,正在播放《新闻联播》”是必然事件B .某次抽奖活动中奖的概率为1100,说明每买100张奖券,一定有一次中奖 C .数据1,1,2,2,3的众数是3D .想了解深圳市居民人均年收入水平,宜采用抽样调查 10.如图4为反比例函数3k y x-=的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ) A .k <3 B .k ≤3 C .k >3D .k ≥311.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图5所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A .48分钟B .37.2分钟C .30分钟D .33分钟12.如图6,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .23B .26C .3D .6第二部分 (非选择题,共64分)二、填空题(本题共4小题,每小题3分,共12分). 13.因式分解:24ab a -=___________________________.14.如图7,在ΔABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于点D ,若BD =10厘米,BC =8厘米,则点D 到直线AB 的距离是__________厘米.15.如图8,边长为1的小正方形构成的网格中,⊙O 的圆心O 在格点上,半径为1,则∠AED 的正切值等路程/百米 时间/分钟30 9636 018 图5O yx(A )A 1C1 1 2BA 2A 3B 3 B 2 B 1 图9图7D ACB图8OA BCDE于_________.16.如图9,已知点(00)A ,,(30)B ,,(01)C ,,在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B ,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…,则第n 个等边三角形的边长等于_________.三、解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.)17.(本题6分)计算:()()12011012tan 601sin 45cos30123-⎛⎫︒-+-+︒-︒-- ⎪⎝⎭18.(本题6分)解不等式组53(1)13722x x x x >+⎧⎪⎨≤-⎪⎩19.(本题7分)某校为了举办“庆祝建党90周年”的活动,小明调查了本校所有学生,将调查的结果制作扇形统计图和条形统计图(如图10所示),根据图中给出的信息,回答下列问题(1)该学校学生有_________人.(2分)(2)学校赞成举办运动会比赛的学生所占圆心角为_________度.(3分) (3)学校赞成举办演讲比赛的学生有_________人.(2分)活动形式A B C人数160图10A :文化演出B :运动会C :演讲比赛C AB40% 35%20.(本题7分)如图11,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线CF 交AD于F ,点E 是AB 的中点,连结EF . (1)求证:EF ∥BC ;(4分)(2)若四边形BDFE 的面积为6,求△ABD 的面积.(3分)21.(本题8分)2011年深圳大运会某工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款12万元,乙工程队工程款5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成; (2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:①这项工程的工期是多少天(5分)②在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.(3分)F ABCDE图1122.(本题9分)抛物线对称轴为直线x =4,且过点O (0,0),()2,10B --,A 是抛物线与x 轴另一个交点. (1)求二次函数的解析式;(3分)(2)如图12,点C 从O 点出发,沿x 轴以每秒钟一个单位的速度运动,矩形CDEF 内接于抛物线,C 、D 在x 轴上,E 、F 在抛物线上,运动时间t (0<t <4)为何值时,内接矩形CDEF 的周长最长?并求周长的最大值;(3分)(3)在(2)中内接矩形CDEF 的周长取得最大的条件下,x 轴上是否存在点P 使△PEF 为直角三角形(P 为直角顶点),若存在,请求P 点坐标;若不存在,说明理由. (3分)23.(本题9分)如图13,在直角坐标系中,点A ,B ,C 的坐标分别为(1-,0),(3,0),(0,3),D (1,m )在直线BC 上,⊙A 是以A 为圆心,AD 为半径的圆. (1)求m 的值;(2分)(2)求证:⊙A 与BC 相切;(2分)(3)在x 负半轴上是否存在点M ,使MC 与⊙A 相切,若存在,求点M 的坐标;若不存在,说明理由;(2分)(4)线段AD 与y 轴交于点E ,过点E 的任意一直线交⊙A 于P 、Q 两点,问是否存在一个常数K ,始终满足PE •QE =K ,如果存在,请求出K 的值;若不存在,请说明理由.(3分)y A OBCDEF QPx图13 OACDFE图1258 64 2 y x参 考 答 案一、选择题(每题3分,共36分)1.B 2.C 3.C 4.D 5.C 6.D 7.C 8.C 9.D 10.A 11.B 12.A 二、填空题(每题3分,共12分)13.(2)(2)a b b +- 14.6 15.12 16.32n 三、解答题17.解:原式=23311233--+-=- 18.解:解不等式(1)得32x >解不等式(2)得72x ≤ 不等式组的解集为3722x <≤ 19.解:(1)400 (2)126 (3)10020.(1)证明:∵AC =CD ,CF 是ACD ∠的平分线,∴F 是AD 的中点,又∵E 是AB 的中点,EF //BD ,(2)∵EF //BD ,∴AEF ABD ∠=∠,AFE ADB ∠=∠,∴AEF ∆∽ABD ∆∴214AEF ABD S AE S AB ∆∆⎛⎫== ⎪⎝⎭,68114ABD S ∆==- 21.(1)设这项工程的工期需要x 天,根据题意得:316xx x +=+,解得:x =6 经检验x =6是方程的解,答:完成这项工程的需要6天 (2)方案一:6×12=72万元,方案二不符合题意,方案三:3×12+6×5=66万元,∵66<72,选择方案三22.(1)2142y x x =-+(2)设(,0)C t ,四边形CDEF 的周长为l则22212()2(482)416(2)202l CD FC t t t t t t =+=-++-=-++=--+ 当点C 的坐标为(2,0)时,,四边形CDEF 的周长有最大值20 (3)由(2)得:(2,0),(6,0),(2,6),(6,6)C D F E设(,0)P m ,由222PE PF EF +=得:222226(2)(6)64m m +-+-+=化简得:28480m m -+=,240b ac ∆=-<,∴方程无解,∴点P 不存在 23.(1)设BC 的直线方程为y kx b =+,将B 、C 点代入可得1,3k b =-=,则BC 直线方程为3y x =-+,将D (1,m )点代入得m =2.(2)由222AD BD AB +=得:AD BC ⊥,∴⊙A 与BC 相切(3)存在(21,0)M -,理由如下:假设点M ,连接CM 与圆切于点N ,连AN ,则AN CM ⊥则ANM ∆∽COM ∆,AN MNOC OM=,设(,0)M t ,则()218223t t---=-解得:21t =-或t =3(舍去)(4)存在k =6,理由如下:当PQ 与y 轴重合时,(71)(71)6k =-+=当PQ 与y 轴不重合时,设y 轴与圆交于点R 与F ,连接PF 与QR ,∵,QER PEF RQE EFP ∠=∠∠=∠,∴ERQ ∆∽EPF ∆,∴ER EQPE EF=, 则=k(71)(71)6PE QE ER EF ∙=∙=-+=。

深圳市2014年初中毕业考试数学模拟试卷(1)及答案解析

深圳市2014年初中毕业考试数学模拟试卷(1)及答案解析

绝密级(解密时间2013年5月1日上午9点)2014年初中毕业考试数学模拟试卷说明:1.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。

2.全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。

考试时间90分钟,满分1 00分。

3.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠。

4.本卷选择题1-12,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13-23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。

5.考试结束,请将本试卷和答题卡一并交回。

第一部分选择题一、(本部分共12小题,每小题3分共36分.每小题4个选项,其中只有一个是正确的)1. -2的绝对值等于【】A.2 B.-2 C.12D.±22. 长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)【】A、6.7×105米B、6.7×106米C、6.7×107米D、6.7×108米3. 下列交通标志图案是轴对称图形的是【】A.B.C.D.4. 下列计算正确的是【】A.a3a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a65. 在公式I=UR中,当电压U一定时,电流I与电阻R之间的函数关系可用图象大致表示为【】A. B.C.D.6.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD为100米,点A、D、B在同一直线上,则AB两点煌距离是【】A.200米 B.2003米 C.2203米 D.100(3+1)米7. 如图,在矩形ABCD中,AB=2,BC=3,点E、F、G、H分别在矩形ABCD的各边上,EF∥HG,EH∥FG,则四边形EFGH的周长是【】A.10 B.13 C.210 D.2138. 如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差▲ km/h。

2014年深圳市中考数学全真模拟试卷含答案 (精选4套)

2014年深圳市中考数学全真模拟试卷含答案 (精选4套)
4、本卷选择题1—12,每小题选出答案后,用2B铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区规定范围内.
5、考试结束,请将本试卷和答题卡一并交回.
第一部分选择题
(4)、存在点N,做一条与BC平行的直线,平移,
当它与抛物线有一个交点时,此时以BC为底的三角形
高度最大。抛物线与该直线的交点,就是所求的N点。
易求BC的K值为 ,所以设动直线为:
,与抛物线联立:
(1分)
所以 (1分)
过N做y轴的平行线,交BC于一点,求此点坐标
BC: ,令x=4,解得y=2,∴三角形BCN面积的最大值= (1分)
A.0B.2C.-2D.0或2
7.用配方法解方程 ,配方后的方程是( )
A. B. C. D.
8.若一次函数 的函数值 随 的增大而减小,且图象与 轴的负半轴相交,那么对 和 的符号判断正确的是()
A. B. C. D.
9.如图,将△ 绕着点 顺时针旋转50°后得到△ .若∠ =40°.
∠ =110°,则∠ 的度数是()
21、(1)证明:正方形ABCD中,∠BAD=90°,AD=AB,
∵AF⊥AE,∴∠FAB+∠BAE=90°
∵∠DAE+∠BAE=90°,∴∠FAB=∠DAE -----2分
∵∠FBA=∠D=90°,∴△ABF≌△ADE
∴AE=AF -------------4分
(2)解:在Rt△ABF中,∠FBA=90°,AF=7,BF=DE=2
在Rt△BCF中,设BC=x米,则BF=2x,CF=
在Rt△BCE中,∠BEC=60°,CE=

深圳市2014年中考数学模拟试卷三

深圳市2014年中考数学模拟试卷三

深圳市2014年中考数学模拟试卷三一、选择题(每小题3分,共36分) 1.21-的相反数是( )。

A .12- B .2- C .12D .22.有资料表明,被称为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年树林的消失量用科学记数法表示是( )(保留三个有效数字)。

(A )1.50×108公顷 (B )1.50×107公顷(C) 1.50×106公顷 (D) 150公顷 3. 下图中几何体的俯视图是( )4.如图,AB ∥CD ,EG ⊥AB ,垂足为G .若∠1=50°,则∠E A .60° B .50° C .40° D .30°5.如图,身高为1.6m 的某学生想测量一棵大树的高度,她沿着树 影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树 的影子顶端重合,测得BC=3.2m , CA=0.8m, 则树的高度为 A 、4.8m B 、6.4m C 、8m D 、10m 6.一鞋店试销一种新款女鞋,卖出情况如下表所示:这个鞋店的经理最关心的是哪种型号的鞋销量最大,则对她来说,下列统计量中最重要的是A 、平均数B 、众数C 、中位数D 、方差7.已知△ABC 和△A′B′C′是位似图形.△A′B′C′的面积为6cm 2,周长是△ABC 的一半.AB =8cm ,则AB 边上高等于A .3 cmB .6 cmC .9cmD .12cm 8.二元一次方程组⎩⎨⎧-=-=+124y x y x 的解是( )A .⎩⎨⎧==13y xB .⎩⎨⎧==31y xC .⎩⎨⎧==22y x D .⎪⎩⎪⎨⎧==3735y x 9.从1,2,3,4这四个数字中,任意抽取两个不同的数字组成一个两位数,则这个两第6题位数能被3整除的概率是( ) A.31 B.41 C.61 D.12110. 如图,圆锥的底面半径为1,母线长为3,则这个圆锥的侧面积是A .πB .2πC .3πD .4π11.在同一直角坐标系中,函数x ky =(0≠k )与k kx y +=(0≠k )的图象大致是A .B .C .D .12.如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动.设运动时间为t (s ),∠APB=y (°),则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(每小题3分,共12分)13.因式分解:3x 2-12= ;14. 如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 .15.如图,已知B(2,3),C(2,1),将△OBC 绕点O 逆时针旋转90°得到△OB ´C ´,则在旋转过程中边BC 所扫过的区域(图中阴影部分)的面积为 .(结果保留π)第14题图16.用同样大小的两个正方形按下列规律摆放,将重叠部分涂上颜色,则第n 个图案中的正方形总个数是 .第10题图 OPDCBAA B C D第15题图三、解答题17.(本题5分)计算:-22+27+(π-1)0-3×︒+-60tan 118. (本题6分)解方程:0111=--+-x xx x 19.(本题7分)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)若AB=6,∠B=60°,BC=10.求四边形ABEF的面积.20.(本题7分)如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游 戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小 于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域 内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次, 直到指针指向一个数字为止.(1)请你通过画树状图的方法求小颖获胜的概率.(2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.……A B C D E F D ′ 甲乙21.(本题8分)某工厂现有甲种原料226kg ,乙种原料250kg ,计划利用这两种原料生产A 、设生产A 产品件,请解答下列问题:(1) 求x 的值,并说明有哪几种符合题意的生产方案;(2) 若甲种原料50元/kg 、乙种原料40元/kg ,说明(1)中哪种方案较优?22.(本题9分)如图,AB 是⊙0的直径,BC 是⊙0的弦,半径OD ⊥BC ,垂足为E ,若BC=36,DE=3.求:(1)⊙0的半径; (2)弦AC 的长;(3)阴影部分的周长.23.(本题10分)如图1,已知抛物线的顶点为A(O ,1),矩形CDEF 的顶点C 、F 在抛物线上,D 、E 在x 轴上,CF 交y 轴于点B(0,2),且E(2,0).(1)求此抛物线的解析式;(2)如图2,若P 点为抛物线上不同于A 的一点,连结PB 并延长交抛物线于点Q ,过点P 、Q 分别作x 轴的垂线,垂足分别为S 、R . ①求证:PB =PS ; ②判断△SBR 的形状;③试探索在线段SR 上是否存在点M ,使得以点P 、S 、M 为顶点的三角形和以点Q 、R 、M 为顶点的三角形相似,若存在,请找出M 点的位置;若不存在,请说明理由.(第22题图)(图1) (图2)。

广东深圳市2014年中考数学试题及答案(word解析版)

广东深圳市2014年中考数学试题及答案(word解析版)

2014年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014年广东深圳)9的相反数是()A.﹣9 B.9 C.±9 D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2014年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2014年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2014年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2014年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2014年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.A C=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2014年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2014年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2014年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2014•怀化)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=3.考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.15.(3分)(2014年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=8.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2014年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2014年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2014年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a=200,b=0.4,c=60.(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2014年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2014年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊥x 轴于H,设MC 与x 轴交于K,则△ACK∽△ADH,又∵DC=4AC,故DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年深圳市龙岗区中考模拟考试数学试题第一部分 选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的) 1.2014的相反数是( ) A .2014B .2014-C .20141D .20141-2.“辽宁号”航母的满载排水量为67500吨,数据67500用科学记数法表示为( ) A .210675⨯B .21075.6⨯C .41075.6⨯D .51075.6⨯3.下列图形中,既是..轴对称图形又是..中心对称图形的是( )A B C D4.下图是由八个完全相同的小正方体组成的几何体,其主视图是( )正面 A B C D 5.下列计算中,正确..的是( ) A .9132=- B .()332-=-C .326m m m =÷D .()222b a b a -=-6.已知⊙O 1与⊙O 2的半径R 、r 分别是方程01272=+-x x 的两根,且圆心距1=d ,那么⊙O 1与⊙O 2的位置关系是( ) A .外离B .外切C .相交D .内切7.已知一个多边形的每一个内角都等于135°,则这个多边形是( )A .正六边形B .正八边形C .正十边形D .正十二边形D8.下列命题中,错误..的是( ) A .平行四边形的对角线互相平分B .对角线相等的四边形是矩形C .一组对边平行,一组对角相等的四边形是平行四边形D .顺次连接等腰梯形各边中点所得的四边形为菱形9.某中学九(1)班学生为希望工程捐款,该班50名学生的捐款情况统计如图1所示,则他们捐款金额的众数和中位数分别是( ) A .16,15 B .15,16 C .20,10D .10,20图1 图210.如图2,在边长为9的等边△ABC 中,BD =3,∠ADE =60°,则AE 的长为( ) A .6B .7C .7.5D .811.如图3,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C 的坐标为(3,4).反比例函数xky =(x >0)的图象经过顶点B ,则k 的值为( ) A .32 B .24C .20D .12图3 图412.如图4,在Rt ABC △中,︒=∠90C ,6=AC ,8=BC ,⊙O 为ABC △的内切圆,点D 是斜边AB 的中点,则ODA ∠tan 的值为( ) A .2 B C .34D .2第二部分 非选择题填空题(本题共4小题,每小题3分,共12分) 13.分式方程312-=x x 的解为______________. 14.如图5,已知圆锥的底面半径OA =3cm ,高SO =4cm ,则该圆锥的侧面积为 ______________cm 2.15.如图6,交警为提醒广大司机前方道路塌陷在路口设立了警示牌.已知立杆AD 的高度是3m ,从侧面B 点测得警示牌顶端C 点和底端D 点的仰角分别是60°和45°.那么警示牌CD 的高度为______________ m .16.如图7,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上。

顶点B 的坐标为(6,32),点C 的坐标为(1,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为______________.图5 图6 图7解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17.计算:03)2014(845cos 23π---︒⋅+-18.先化简,再求值:⎪⎭⎫⎝⎛+-+÷+-1111222x x x x x ,其中12+=x .19.五一期间,某超市为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成四个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).顾客每消费满100元就可以转动转盘一次,超市根据转盘指针指向区域所标金额返还相应金额的购物券。

李阿姨消费了240元,转了两次转盘。

回答下列问题: (1)李阿姨最多可以获得___________元购物券;(2)李阿姨获得___________元购物券的可能性最大;(3)请用画树状图....或列表..的方法,求李阿姨获得购物券金额不低于50元的概率.图820.如图9,在正方形ABCD 中,E 是AB 边上一点,F 是AD 延长线上一点,BE =DF . (1)求证:CE =CF ;(2)若点G 在AD 边上,且∠GCE =45°,BE =3,DG =5,求GE 的长.图921.如图10,在Rt△ABC中,∠ACB=90º,D是AB边上的一点,以BD为直径作⊙O 交AC于点E,连结DE并延长,与BC的延长线交于点F,且BD=BF.(1)求证:AC与⊙O相切;(2)若BC=6,AB=12,求⊙O的面积.图1022.商场销售某种品牌的空调和电风扇:(1)已知购进8台空调和20台电风扇共需17400元,购进10台空调和30台电风扇共需22500元,求每台空调和电风扇的进货价;(2)已知空调标价为2500元/台,电风扇标价为250元/台。

若商场购进空调和电风扇共60台,并全部打八折出售,设其中空调的数量为a台,商场通过销售这批空调和电风扇获得的利润为w元,求w和a之间的函数关系式;(3)在(2)的条件下,若这批空调和电风扇的进货价不超过45300元,商场通过销售这批空调和电风扇获得的利润又不低于6000元,问商场共有多少种不同的进货方案,哪种进货方案获得的利润最高?最高利润是多少?23.如图11,在平面直角坐标系中,□ABCD的顶点A、B、C的坐标分别为A(0,4)、B(1,4)、C(0,1),将□ABCD绕点C沿顺时针方向旋转90°,得到□A’B’CD’,A’D’与BC相交于点E.(1)求经过点D、A、A’的抛物线的函数关系式;(2)求□ABCD与□A’B’CD’的重叠部分(即△CED’)的面积;(3)点P是抛物线上点A、A’之间的一动点,是否存在点P使得△AP A’的面积最大?若存在,求出△AP A’的最大面积,及此时点P的坐标;若不存在,请说明理由.图11 备用图数学参考答案及评分标准一、选择题(36分)二、填空题(12分)三、解答题 17、原式=122223--⨯+……………………4分 (四个点,每个点1分) =1 ……………………5分18、原式=()1111222--++÷-x x x x x…………1分 将12+=x 代入得: =()11222-+÷-x xx x x…………2分 原式=1121-+ =()()()()11112+-+⋅-x x x x x x…………3分 =21 (5)分=11-x …………4分 =22 …6分19、解:(1)80; ……………………2分 (2)50; ……………………4分(3)画树状图: ……………………6分 或列表:∴85161050==元)(不低于P ……………………7分20、(1)证明:∵正方形ABCD∴BC=DC ,∠B=∠FDC=90° ………………2分 又∵BE=DF∴△CBE ≌△CDF (SAS ) ∴CE=CF ………………3分(2)解:由(1)得:△CBE ≌△CDF∴∠BCE=∠DCF ………………4分 ∴∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90° 又∵∠GCE=45°∴∠GCF=∠GCE=45° ………………5分 ∵CE=CF ,∠GCE=∠GCF ,GC=GC∴△ECG ≌△FCG (SAS ) ………………7分 ∴GE=GF=DG+DF= DG+BE=3+5=8 ………………8分21、(1)连接OE ∵OD=OE∴∠1=∠2 ………………1分 ∵BD=BF∴∠1=∠F ………………2分∴∠2=∠F∴OE ∥BF ………………3分 又∵BF ⊥AC ∴OE ⊥AC∴AC 与⊙O 相切 ………………4分 (2)由(1)得:OE ∥BF∴△AOE ∽△ABC ………………5分∴AB AOBC OE = ………………6分 即12126rr -=∴4=r ………………7分 ∴S⊙O =π2r =π24⨯=16π ………………8分22、(1)设每台空调、电风扇的进货价分别为y x ,元,由题可得:⎩⎨⎧=+=+22500301017400208y x y x ………………2分 解得:⎩⎨⎧==1501800y x ………………3分所以每台空调进货价为1800元,每台电风扇进货价为150元(2))60)(1508.0250()18008.02500(a a w --⨯+-⨯= ………………5分 3000150+=a ………………6分(3)由题可得:⎩⎨⎧≥+≤-+6000300015045300)60(1501800a a a ………………7分解得:2220≤≤a∴222120或或=a ………………8分 ∴有三种方案:①空调20电风扇40②空调21电风扇39 (未列出三种方案不扣分)③空调22电风扇38方案③,当22=a 时,w 最大,最大值为6300元 ………………9分23、解:(1)D (1-,1)、A ’(3,1) ………1分(只得其中一个也给1分) 设抛物线的解析式为c bx ax y ++=2将D (1-,1)、A (0,4)、A ’(3,1)代入得:⎪⎩⎪⎨⎧=++==+-13941c b a c c b a ………2分解得:⎪⎩⎪⎨⎧==-=421c b a ∴422++-=x x y ………3分或:5)1(2+--=x y ………3分 (2)根据旋转:∠CED ’ =90°∴△CED ’∽△CAB ………4分∴2''⎪⎭⎫⎝⎛=∆∆CB CD S S CAB CED即2'10123⎪⎪⎭⎫⎝⎛=∆CED S ………5分 ∴203'=∆CED S ………6分 或:易得:13+=x y BC 与231''+-=x y D A ………4分 (只得其中一个也给1分)由⎪⎩⎪⎨⎧+-=+=23113y x y 得E (103,1019) ………5分∴20321031'=⨯=∆CED S ………6分 (3)易得:4'+-=x y AA 设P (t ,422++-t t ),则Q (t ,4+-t ) ………7分∴PQ =()()4422+--++-t t t =t t 32+-∴()827232323322'+⎪⎭⎫ ⎝⎛--=⋅+-=∆t t t S APA∴△AP A ’的最大面积为827 ………8分 此时,P (23,419) ………9分。

相关文档
最新文档