大公镇初级中学2018届九年级阶段性调研测试(3月)数学试题(附答案)

合集下载

2018最新中考数学调研试卷有答案和解释

2018最新中考数学调研试卷有答案和解释

2018最新中考数学调研试卷有答案和解释一、选择题(本大题共10小题,共30.0分)-1/7的绝对值是( )A. 1/7B. -1/7C. 7D. -7据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×〖10〗^n,则n等于( )A. 10B. 11C. 12D. 13如图所示的几何体的俯视图是( )分式方程3/(x(x+1))=1-3/(x+1)的根为( )A. -1或3B. -1C. 3D. 1或-3在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是( )A. 47,46B. 48,47C. 48.5,49D. 49,49下列方程是关于x的一元二次方程的是( )A. x^2+1/x=1B. ax^2+bx+c=0C. (x+1)(x+2)=1D. 3x^2-2xy-5y=0如图所示,有一张一个角为〖60〗^∘的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A. 邻边不等的矩形B. 等腰梯形C. 有一个角是锐角的菱形D. 正方形三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A. 1/3B. 2/3C. 1/6D. 1/9如图,在Rt△ABC中,∠C=〖90〗^∘,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x 之间函数关系的图象大致是( )如图,在Rt△ABC中,∠C=〖90〗^∘,AC=6,BC=8,把△ABC绕AB边上的点D顺时针旋转〖90〗^∘得到△A'B'C',A'C'交AB于点E,若AD=BE,则△A'DE的面积是( )A. 3二、填空题(本大题共5小题,共15.0分)计算:(-2)^0-∛8=______.不等式组{■(3x+6≥0@4-2x>0)┤的所有整数解的和为______.已知点P(a,b)在反比例函数y=2/x的图象上,若点P关于y轴对称的点在反比例函数y=k/x的图象上,则k的值为______.如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P'(2,-2),点A的对应点为A',则抛物线上PA段扫过的区域(阴影部分)的面积为______.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处.当△CEB'为直角三角形时,BE的长为______.三、解答题(本大题共2小题,共75.0分)先化简,再求值:(x+y)^2-2y(x+y),其中x=√2-1,y=√3.如图,在四边形OABC中,BC//AO,∠AOC=〖90〗^∘,点A,B的坐标分别为(5,0),(2,6),点D为AB 上一点,且AD/BD=1/2,双曲线y=k/x(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27/300=108”,请你判断这种说法是否正确,并说明理由.如图,在Rt△ABC中,∠ABC=〖90〗^∘,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=______;②连接OD,OE,当∠A的度数为______时,四边形ODME是菱形.如图,山顶建有一座铁塔,塔高BC=80米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为〖45〗^∘,塔顶C点的仰角为〖60〗^∘.已测得小山坡的坡角为〖30〗^∘,坡长MP=40米.求山的高度AB(精确到1米).(参考数据:√2≈1.414,√3≈1.732)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=〖90〗^∘,点A,D,E在同一直线上,CM 为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=〖90〗^∘,请直接写出点A到BP的距离.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax^2+bx 过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE ⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t 为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.答案和解析【答案】1. A2. B3.D4.C5.C6.C7. D8. A 9. A 10. D11. -112. -213. -214. 1215. 3/2或316. 解:原式=x^2+2xy+y^2-2xy-2y^2=x^2-y^2,当x=√2-1,y=√3时,原式=3-2√2-3=-2√2.17. 解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN//BM,∴△ADN∽△ABM,∴DN/BM=AN/AM=AD/AB,即DN/6=AN/3=1/3,∴DN=2,AN=1,∴ON=OA-AN=4,∴D点坐标为(4,2),把D(4,2)代入y=k/x得k=2×4=8,∴反比例函数解析式为y=8/x;(2)S_四边形ODBE=S_梯形OABC-S_(△OCE)-S_(△OAD)=1/2×(2+5)×6-1/2×|8|-1/2×5×2=12.18. 〖144〗^∘19. 2;〖60〗^∘20. 解:如图,过点P作PE⊥AM于E,PF⊥AB于F.在Rt△PME中,∵∠PME=〖30〗^∘,PM=40,∴PE=20.∵四边形AEPF是矩形,∴FA=PE=20.设BF=x米.∵∠FPB=〖45〗^∘,∴FP=BF=x.∵∠FPC=〖60〗^∘,∴CF=PFtan〖60〗^∘=√3 x.∵CB=80,∴80+x=√3 x.解得x=40(√3+1).∴AB=40(√3+1)+20=60+40√3≈129(米).答:山高AB约为129米.21. 解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.22. 〖60〗^∘;AD=BE23. 解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD//x轴,AB//y轴,所以点A的坐标为(4,8).将A(4,8)、C(8,0)两点坐标分别代入y=ax^2+bx 得{■(16a+4b=8@64a+8b=0)┤,解得a=-1/2,b=4.故抛物线的解析式为:y=-1/2 x^2+4x;(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PE/AP=BC/AB,即PE/AP=4/8.∴PE=1/2 AP=1/2 t.PB=8-t.∴点E的坐标为(4+1/2 t,8-t).∴点G的纵坐标为:-1/2(4+1/2 t)^2+4(4+1/2 t)=-1/8 t^2+8.∴EG=-1/8 t^2+8-(8-t)=-1/8 t^2+t.∵-1/8<0,∴当t=4时,线段EG最长为2.②共有三个时刻.(①)当EQ=QC时,因为Q(8,t),E(4+1/2 t,8-t),QC=t,所以根据两点间距离公式,得:(1/2 t-4)^2+(8-2t)^2=t^2.整理得13t^2-144t+320=0,解得t=40/13或t=104/13=8(此时E、C重合,不能构成三角形,舍去).(②)当EC=CQ时,因为E(4+1/2 t,8-t),C(8,0),QC=t,所以根据两点间距离公式,得:(4+1/2 t-8)^2+(8-t)^2=t^2.整理得t^2-80t+320=0,t=40-16√5,t=40+16√5>8(此时Q不在矩形的边上,舍去).(③)当EQ=EC时,因为Q(8,t),E(4+1/2 t,8-t),C(8,0),所以根据两点间距离公式,得:(1/2 t-4)^2+(8-2t)^2=(4+1/2 t-8)^2+(8-t)^2,解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=16/3.于是t_1=16/3,t_2=40/13,t_3=40-16√5.【解析】1. 解:根据负数的绝对值等于它的相反数,得|-1/7|=1/7.故选:A.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.考查了绝对值的性质.2. 解:3875.5亿=387550000000=3.8755×〖10〗^11,故选:B.科学记数法的表示形式为a×〖10〗^n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×〖10〗^n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 解:从上往下看,该几何体的俯视图与选项D 所示视图一致.故选:D.找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.4. 解:去分母得:3=x^2+x-3x,解得:x=-1或x=3,经检验x=-1是增根,分式方程的根为x=3,故选:C.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5. 解:这8个数据的中位数是第4、5个数据的平均数,即中位数为(48+49)/2=48.5,由于49出现次数最多,又3次,所以众数为49,故选:C.根据中位数与众数的定义,从小到大排列后,中位数是第4、5个数据的平均数,众数是出现次数最多的一个,解答即可.本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.6. 解:A、x^2+1/x=1是分式方程,故此选项错误;B、ax^2+bx+c=0(a≠0),故此选项错误;C、(x+1)(x+2)=1是一元二次方程,故此选项正确;D、3x^2-2xy-5y=0是二元二次方程,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握定义是解题关键.7. 解:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为〖60〗^∘,则另一个角为〖30〗^∘,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为〖60〗^∘;(3)为等腰梯形.故选:D.可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形进行具体的判定.这是一道生活联系实际的问题,不仅要用到三角形中位线的性质、菱形、等腰梯形、矩形的性质,还锻炼了学生的动手能力.解答此类题目时应先画出图形,再根据已知条件判断各边的关系.8. 解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=2/6=1/3.故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9. 解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=√(AC^2+PC^2 ),即y=√(1+(x-1)^2 ),则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+√5时,y=√5+3-x=-x+3+√5,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y 与x的函数关系式,由关系式选择图象.本题考查了动点问题的函数图象.此题涉及到了函数y=√(1+(x-1)^2 )的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.10. 解:Rt△ABC中,AB=√(AC^2+BC^2 )=10,由旋转的性质,设AD=A'D=BE=x,则DE=10-2x,∵△ABC绕AB边上的点D顺时针旋转〖90〗^∘得到△A'B'C',∴∠A'=∠A,∠A'DE=∠C=〖90〗^∘,∴△A'DE∽△ACB,,即(10-2x)/x=8/6,解得x=3,∴S_(△A'DE)=1/2 DE×A'D=1/2×(10-2×3)×3=6,故选:D.在Rt△ABC中,由勾股定理求得AB=10,由旋转的性质可知AD=A'D,设AD=A'D=BE=x,则DE=10-2x,根据旋转〖90〗^∘可证△A'DE∽△ACB,利用相似比求x,再求△A'DE的面积.本题考查了相似三角形的判定与性质,勾股定理及旋转的性质的运用.关键是根据旋转的性质得出相似三角形,利用相似比求解.11. 解:原式=1-2=-1.故答案为:-1.分别进行零指数幂、开立方的运算,然后合并.本题考查了实数的运算,涉及了零指数幂、开立方等知识,属于基础题.12. 解:{■(3x+6≥0 ①@4-2x>0 ②)┤,由①得:x≥-2,由②得:x<2,∴-2≤x<2,∴不等式组的整数解为:-2,-1,0,1.所有整数解的和为-2-1+0+1=-2.故答案为:-2.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13. 解:∵点P(a,b)在反比例函数y=2/x的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(-a,b),∴k=-ab=-2.故答案为:-2.本题需先根据已知条件,求出ab的值,再根据点P 关于y轴对称并且点P关于y轴对称的点在反比例函数y=k/x的图象上即可求出点K的值.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的特征求出k的值是本题的关键.14. 解:连接AP,A'P',过点A作AD⊥PP'于点D,由题意可得出:AP//A'P',AP=A'P',∴四边形APP'A'是平行四边形,∵抛物线的顶点为P(-2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P'(2,-2),∴PO=√(2^2+2^2 )=2√2,∠AOP=〖45〗^∘,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP'=2√2×2=4√2,∴AD=DO=sin〖45〗^∘⋅OA=√2/2×3= (3√2)/2,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4√2×(3√2)/2=12.故答案为:12.根据平移的性质得出四边形APP'A'是平行四边形,进而得出AD,PP'的长,求出面积即可.此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP'是解题关键.15. 解:当△CEB'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=√(4^2+3^2 )=5,∵∠B沿AE折叠,使点B落在点B'处,∴∠AB'E=∠B=〖90〗^∘,当△CEB'为直角三角形时,只能得到∠EB'C=〖90〗^∘,∴点A、B'、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B'处,∴EB=EB',AB=AB'=3,∴CB'=5-3=2,设BE=x,则EB'=x,CE=4-x,在Rt△CEB'中,∵EB'^2+CB'^2=CE^2,∴x^2+2^2=(4-x)^2,解得x=3/2,∴BE=3/2;②当点B'落在AD边上时,如答图2所示.此时ABEB'为正方形,∴BE=AB=3.综上所述,BE的长为3/2或3.故答案为:3/2或3.当△CEB'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB'E=∠B=〖90〗^∘,而当△CEB'为直角三角形时,只能得到∠EB'C=〖90〗^∘,所以点A、B'、C 共线,即∠B沿AE折叠,使点B落在对角线AC上的点B'处,则EB=EB',AB=AB'=3,可计算出CB'=2,设BE=x,则EB'=x,CE=4-x,然后在Rt△CEB'中运用勾股定理可计算出x.②当点B'落在AD边上时,如答图2所示.此时ABEB'为正方形.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.16. 原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17. (1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA-AN=4,得到D点坐标为(4,2),然后把D 点坐标代入y=k/x中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S_四边形ODBE=S_梯形OABC-S_(△OCE)-S_(△OAD)进行计算.本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.18. 解:(1)〖360〗^∘×(1-15%-45%)=〖360〗^∘×40%=〖144〗^∘;故答案为:〖144〗^∘;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120-27-33-20=120-80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40/300=160人;(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.(1)用“经常参加”所占的百分比乘以〖360〗^∘计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. (1)证明:∵∠ABC=〖90〗^∘,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=〖180〗^∘,又∠ADE+∠MDE=〖180〗^∘,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE//AB,∴DE/AB=MD/MA,∵AD=2DM,∴DM:MA=1:3,∴DE=1/3 AB=1/3×6=2.故答案为2.②当∠A=〖60〗^∘时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=〖60〗^∘,∴△AOD是等边三角形,∴∠AOD=〖60〗^∘,∵DE//AB,∴∠ODE=∠AOD=〖60〗^∘,∠MDE=∠MED=∠A=〖60〗^∘,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为〖60〗^∘.(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.(2)①由DE//AB,得DE/AB=MD/MA即可解决问题.②当∠A=〖60〗^∘时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型.20. 首先分析图形:根据题意构造直角三角形;本题涉多个直角三角形,应利用其公共边构造关系式,进而可求出答案.本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21. (1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.22. 解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=〖60〗^∘.∴∠ACD=∠BCE.在△ACD和△BCE中,{■(AC=BC@∠ACD=∠BCE@CD=CE)┤∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=〖60〗^∘.∵点A,D,E在同一直线上,∴∠ADC=〖120〗^∘.∴∠BEC=〖120〗^∘.∴∠AEB=∠BEC-∠CED=〖60〗^∘.故答案为:〖60〗^∘.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=〖90〗^∘,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=〖90〗^∘.∴∠ACD=∠BCE.在△ACD和△BCE中,{■(CA=CB@∠ACD=∠BCE@CD=CE)┤∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=〖45〗^∘.∵点A,D,E在同一直线上,∴∠ADC=〖135〗^∘.∴∠BEC=〖135〗^∘.∴∠AEB=∠BEC-∠CED=〖90〗^∘.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=〖90〗^∘,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为(√3-1)/2或(√3+1)/2.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=〖90〗^∘,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=〖45〗^∘.AB=AD=DC=BC=√2,∠BAD=〖90〗^∘.∴BD=2.∵DP=1,∴BP=√3.∵∠BPD=∠BAD=〖90〗^∘,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=〖45〗^∘.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴√3=2AH+1.∴AH=(√3-1)/2.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH-PD.∴√3=2AH-1.∴AH=(√3+1)/2.综上所述:点A到BP的距离为(√3-1)/2或(√3+1)/2.(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=〖90〗^∘可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23. (1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同;(2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答.②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形.抛物线的求法是函数解析式中的一种,通常情况下用待定系数法,即先列方程组,再求未知系数,这种方法本题比较适合.对于压轴题中的动点问题、极值问题,先根据条件“以静制动”,用未知系数表示各自的坐标,如果能构成二次函数,即可通过配方或顶点坐标公式求其极值.。

2018—2019学年度第二学期部分学校九年级三月联合测试数学试题含答案

2018—2019学年度第二学期部分学校九年级三月联合测试数学试题含答案

数学试卷一、 选择题(共10小题,每小题3分,共30分) 1. 计算-1+4是A.B. 5-C. 3D. 52.A. 1x ≥B. 1x ≤C. 1x ≥-D. 1x ≤-3. 某校在“校园十佳歌手”比赛中,六位评委给1号选手的评分如下:90,96,91,96,95,94那么这组数据的众数和中位数分别是A. 96,95B. 96,94.5C. 95,94.5D. 95,954. 点()2,3P -关于x 轴对称的点的坐标是A. ()2,3--B. ()2,3-C. ()3,2--D. ()3,2- 5.下面是从不同的方向看一个物体得到的平面图形,则该物体的形状是 A. 圆锥 B.圆柱 C.三棱锥 D. 三棱柱6.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率是A.15 B. 25 C. 35 D. 457.以方程组23327x y x y +=-⎧⎨-=⎩的解为坐标的点在A. 第一象限B.第二象限C.第三象限D.第四象限8.观察下列等式:90+1=1,91+2=11,92+3=21,93+4=31⨯⨯⨯⨯,根据以上规律得出92019+2020⨯的结果是A. 20181B. 20191C. 20201D. 202119. 在平面直角坐标系中,将二次函数21y x =-的图象M 沿x 轴翻折,把所得的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N ,若一个点的横坐标与纵坐标均为整数,那么该点称为整点,则M 与N 所围成的封闭图形内(包括边界)整点的个数是 A. 17 B. 25 C. 16 D. 3210.如图, BC 是O 的直径,AB 切O 于点B ,8AB BC ==,点D 在O 上,DE AD ⊥交BC 于E ,3BE CE =, 则AD 的长是 A.17 B.17C. D.第14题图 HEDCB A11的结果是12.从一副洗匀的普通扑克牌(共54张)中随机抽取一张,则抽出黑桃的概率是13.计算22244x x x+--= 14.如图,把菱形ABCD 沿AB 折叠,B 落在BC 上的点E 处,若040BAE ∠=,则EDC ∠的大小是15. 如图直线y x =向右平移m 个单位后得直线l ,l 与函数()30y x x=相交于点A ,与x 轴相交于点B ,则22OA OB -=16.如图,00015,37.5,75,ABC ACB DAC ∠=∠=∠=2DC =,则BD 的长为三、解答题(共8小题,共72分)17(8分)计算()232522x x xx x ⋅+-÷18(8分)如图,,BGH DHG A C ∠=∠∠=∠,求证:E F ∠=∠19(8分)学校为了了解该校学生对“军运会”的熟悉程度,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为,,A B C 三类,A 表示“非常熟悉”, B 表示“比较熟悉”, C 表示“不熟悉”,得到如下统计图,请根据图中提供的信息,解答下列问题:⑴本次随机调查的人数是 人;⑵扇形图中C 类所对应的圆心角的度数为 度;⑶若该校共有1500人,请你估计该校B 类学生的人数。

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)

2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。

x=2B。

x=-2C。

x1=2,x2=-2D。

x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。

(x-2)^2+7B。

(x-2)^2-1C。

(x+2)^2+7D。

(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。

变小B。

变大C。

不变D。

以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。

5/4B。

4/5C。

3/5D。

4/37.下列性质中正方形具有而矩形没有的是()A。

对角线互相平分B。

对角线相等C。

对角线互相垂直D。

四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。

12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。

13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。

15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。

江苏省海安县大公镇初级中学2018届九年级阶段性调研测试(3月)数学试题(答案)$866550

江苏省海安县大公镇初级中学2018届九年级阶段性调研测试(3月)数学试题(答案)$866550

初三阶段性调研测试试卷数 学一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. -5的倒数是A .-5B .5C .―15D .152. 如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=60°,那么∠2的度数为A .140°B .120°C .60°D .30°3. 下列计算正确的是A .22223x y x y x y -=-B .235a b ab +=C .532mn mn -=D .22325xy xy x y +=4. 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .5. 一个几何体的三视图如图所示,那么这个几何体是( )A .B .C .D .平行四边形等腰三角形正五边形12 abl (第2题)6. 下列说法正确的是A .为了解全省中学生的心理健康状况,宜采用普查方式B .某彩票设“中奖概率为1100”,购买100张彩票就一定会中奖一次C .某地会发生地震是必然事件D .若甲组数据的方差2S 甲=0.1,乙组数据的方差2S 乙=0.2,则甲组数据比乙组稳定7. 如图,已知△ABC (AC <AB <BC ),用尺规在线段BC 上确定一点P ,使得P A +PC =BC ,则符合要求的作图痕迹是ABPCA BPC AB P CABPCA .B .C .D . 8.有这样一道题:如图,在正方形ABCD 中,有一个小正方形EFGH ,其中E ,F ,G 分别在AB ,BC ,FD 上,连接DH ,如果BC =12,BF =3.求tan ∠HDG 的值.以下是排乱的证明步骤:①求出EF 、DF 的长;②求出tan ∠HDG 的值;③证明∠BFE =∠CDF ;④求出HG 、DG ;⑤证明△BEF ∽△CFD .证明步骤正确的顺序是 A .①④⑤③②B .③⑤①④②C .③⑤④①②D .⑤①④③②A BCE GH第8题 第9题图1 第9题图2 第10题 9. 如图1,在△ABC 中,点P 从点A 出发向点C 运动,在运动过程中,设x 表示线段AP的长,y 表示线段BP 的长,y 与x 之间的关系如图2所示.以下分析错误..的是 A .AB =2 B .AC =4 C .∠ABC =90° D .tan ∠ACB =12 10.如图,在等边三角形ABC 中,AD ⊥BC ,BC =4,点P 是边BC 上一个动点,连接AP ,过点D 作DE ⊥AP 于点E .当点P 从点B 运动到点C 时,点E 所经过的路径长为 A.B. πC. D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.若式子1-x 在实数范围内有意义,则x 的取值范围是 ▲ .12.崇川区2017年GDP 共772.23亿元,将“772.23亿”用科学记数法可表示为 ▲ . 13. 设m ,n 是方程x 2-2x -2018=0的两个实数根,则m +n 的值为 ▲ . 14.分解因式 2b 2-8b +8= ▲ .15.小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,中位数是 ▲ (万步)16.如图,直角三角形纸片ABC ,AC 边长为10cm ,现从下往上依次裁剪宽为4cm 的矩形纸条,若剪得第二张矩形纸条恰好是正方形, 那么BC 的长度是▲ cm .17.如图,点A (1,0),B (0,2),把线段AB 绕点A 逆时针旋转90°,并延长至点C ,使AC =2AB ,则△ABD 与△ACD 的面积的比值等于 ▲ . 18.若关于x 的两个方程x 2++q =0,x 2-+p =0都有实数根,(21)(23)p q q p -+-+的最小值等于 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算:(13)-2-|-2|(-1)2018(2)解不等式组10831 4.x x -<⎧⎨+--⎩,()≥20.(本小题满分7分)先化简,在求值:()21142111a a a a +-÷-+- ,其中2a =- .21.(本小题满分8分)校园歌手大赛中甲、乙、丙3名学生进入了决赛,组委会决定通过抽签确定表演顺序. (1)求甲第二个出场的概率; (2)求甲比乙先出场的概率.AC(第16题)有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下每一天各自的销售情况(单位:元):甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41.乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.小明用图1表示甲城市16台自动售货机的销售情况,小亮用图2表示甲城市16台自动售货机的销售情况.(1)请你仔细观察图1,你能从中获得哪些信息?(写出两条不同信息)(2)请你仔细观察图2,把图2的统计图补充完整;(3)请你仿照小明的方法将乙城市16台自动售货机的销售情况表示出来.23.(本小题满分8分)已知矩形的一边长为x,且相邻两边长的和为10.(1)求矩形面积S与边长x的函数关系式,并写出自变量的取值范围;(2)求矩形面积S的最大值.24.(本小题满分9分)在□ABCD中,过点D作DE⊥AB于点E,点F在边CD上,AE=CF,连接AF,BF.(1)求证:四边形BFDE是矩形.(2)若CF=3,CF=4,DF=5,求证:AF平分∠DAB.如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于 E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由;(2)若BD =BF =2,求阴影部分的面积(结果保留π).26.(本小题满分10分)如图,函数k y x=(x <0)与y =ax +b 的图象交于点A(-1,n )和B (-2,1),直线y =mx 与k y x=(x <0)的图象交于点P ,与y =-x +1的图象交于点Q ,定义∠P AQ 为这个函数的“函数角”. (1)求k ,a ,b 的值;(2)当m =-12时,求这个函数的“函数角”的度数.(3)若射线AP 与x 轴交于点N (a ,0),当这个函数的“函数角”的度数不小于120°时,直接写出n 的取值范围.27.(本小题满分13分)如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D 重合),点Q是边CD上一点,连接PB、PQ,且∠PBC=∠BPQ.(1)当QD=QC时,求∠ABP的正切值;(2)设AP=x,CQ=y,求y关于x的函数解析式;(3)连接BQ,在△PBQ中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.28.(本小题满分13分)在平面直角坐标系中xOy,抛物线y=x2-2(m-1)x+m2-4m+3的顶点为C,直线y =-2x+3与抛物线相交于A、B两点,点A在抛物线的对称轴的左侧.(1)求点C的坐标(用含m的代数式表示);(2)若P为直线OC上一动点,求△APB的面积;(3)当OA+OB的值最小时,求m的值.初三阶段性调研测试 数学参考答案一、选择题(本大题共10小题,每小题3分,共30分.) 1.C 2.C 3.A 4.B 5.A 6.D7.D8.B9.D10.C二、填空题(本大题共8小题,每小题3分,共24分.) 11.x ≥1 12.7.7223×1010 13.2 14.2(b -2)2 15.1.3516.2017.118.3三、解答题(本大题共10小题,共96分.)19.(1)解:原式=9-2++1 ---------------------------------------------------------------------------- 4分 =8+ ------------------------------------------------------------------------------------- 5分 (2)解不等式①,得x <1------------------------------------------------------------------------------------ 7分解不等式②,得x ≥-3 ---------------------------------------------------------------------------------- 9分 ∴不等式组的解集为-3≤x <1 ---------------------------------------------------------------------10分20.解:原式=()()()()111+11+1a a a a a a +----⎡⎤⎢⎥⎣⎦×()()1142a a a -++------------ 4分=()()211a a -+×()()1142a a a-++=12a+,------------ 5分当2a =- 原式==------------ 7分21.(1)13; ---------------------------------------------------------------------------------------------------------- 3分(2)画树状图如下甲乙丙乙丙甲丙乙甲乙丙甲丙乙甲------------------------------------------------------------------------ 6分∴共六种情况,其中甲比乙先出场的有3种. ----------------------------------------------------- 7分∴甲比乙先出场的概率12. ------------------------------------------------------------------------------ 8分22.解:(1)这样表示数据方便,很容易看出两位数的个位数字是多少;方便记录每个小组的频数,等等. ------------------------------------------------------------------------------------------------- 3分 (2)补充图2如下:--------------------------- 6分(3)乙城市16台自动售货机的销售情况表示如下.12202788343034281234------------------------------------------------------------------ 9分23.解:(1)()10S x x =-,其中010x <<;----------------------------------------------------------------------------------------- 4分 (2)()10S x x =-=()2525x --+.∴当5x =时,S 有最大值25. ----------------------------------------------------------------- 8分 24.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =BE , ∴四边形BFDE 是平行四边形,又∵DE AB ⊥,∴四边形BFDE 是矩形. ------------------------------------------------------------- 5分 (2)证明:∵四边形BFDE 是矩形, ∴∠BFC =90°, ∵CF =3,BF =4,∴5BC =,∴5AD BC ==,∴5AD DF ==,∴DAF DFA ∠=∠,∵AB CD ∥,∴FAB DAF ∠=∠,∴AF 平分DAB ∠. ------------------------------------------- 9分25.解:(1)BC 与⊙O 相切.证明:连接OD .∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD . 又∵OD =OA ,∴∠OAD =∠ODA . ∴∠CAD =∠ODA .∴OD ∥AC . ∴∠ODB =∠C =90°,即OD ⊥BC .又∵BC 过半径OD 的外端点D ,∴BC 与⊙O 相切. ----------------------------------------------- 5分 (2)设OF =OD =x ,则OB =OF +BF =x +2,根据勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴6042==3603AOB S π⨯π扇形则阴影部分的面积为1222233ODB DOFS S ∆-=⨯⨯π=π扇形故阴影部分的面积为23π. ------------------------------------------------------------------------- 9分26.(1)∵ 函数k y x=(x <0)的图象经过点B (-2,1), ∴ 12k=-,得k =-2.∵ 函数k y x=(x <0)的图象还经过点A (-1,n ), ∴221n -==-,点A 的坐标为(-1,2). ∵ 函数y =ax +b 的图象经过点A 和点B , ∴2,2 1.a b a b -+=⎧⎨-+=⎩解得1,3.a b =⎧⎨=⎩ --------------------------------------------------------------- 3分(2)当m =-12时,y =-12x 与2y x=-的交点为B (-2,1). ∴点P 与点B 重合.∵y =-x +1与y =x +3互相垂直,∴函数角为90°. ------------------------------------------------------------------------------------------ 7分 (3)-2<n ≤5或n ≤-7- ----------------------------------------------------------10分 27.解:(1)延长PQ 交BC 延长线于点E .设PD =x .∵∠PBC =∠BPQ ,∴EB=EP .∵四边形ABCD 是正方形,∴AD ∥BC ,∴PD ∶CE= QD ∶QC= PQ ∶QE ,∵QD =QC ,∴PD =CE ,PQ =QE .∴BE =EP= x +2,∴QP =()122x +.在Rt △PDQ 中,∵PD 2+QD 2=PQ 2,∴22211(1)2x x +=+,解得43x =. ∴AP =AD -PD =23,∴211323tan AP AB ABP =⨯=∠=. -------------------------------------------- 5分 (2)过点B 作BH ⊥PQ ,垂足为点H ,连接BQ .∵AD //BC ,∴∠CBP =∠APB ,∵∠PBC =∠BPQ ,∴∠APB =∠HPB ,∵∠A =∠PHB =90°,∴BH = AB =2,∵PB = PB ,∴Rt △P AB ≌Rt △PHB ,∴AP =PH =x .∵BC =BH =2,BQ =BQ ,∠C =∠BHQ =90°,∴Rt △BHQ ≌Rt △BCQ ,∴QH =QC =y ,在Rt △PDQ 中,∵222PD QD PQ +=,∴()()()22222x y x y -+-=+,∴422x y x -=+. -----------------------------------------------------------------------------------------------10分(3)存在,∠PBQ =45°.由(2)可得,∠PBH =12∠ABH ,∠HBQ =12∠HBC ,∴∠PBQ =12(∠ABH +∠HBC )=12×90°=45°. -------------------------------------------------13分28.解:(1)抛物线的解析式可化为y =(x -m +1)2+(2-2m ).∴C (m -1,2-2m ) -------------------------------------------------------------------------------------- 4分(2)∵直线OC 的解析式为y =-2x .∴AB ∥OC .令AB 与x 轴、y 轴分别交于点D 、K ,则D (32,0),K (0,3).答图1过点O 作OG ⊥AB 于点G ,∵∠ODG =∠KDO ,∠OGD =∠DOK ,∴△OGD ∽△DOK∴OG ∶OD =OK ∶DK ,∴OG.∴AB 与OC.2(1)(22)23y x m m y x ⎧=-++-⎪⎨=-+⎪⎩,解得:23x m y m =⎧⎨=-+⎩或4211x m y m =-⎧⎨=-+⎩ ∴A (m -4,-2m +11),B (m ,-2m +3)∴AB =,∴△APB 的面积=12×=6. ------------------------------------------------------------ 9分(3)如答图1,设点A 关于y =-2x 的对称点为A ′,则AA ′=2AF =2OG.过点A 作AE ∥y 轴,A′E ∥x 轴,AE 与A′E 交于点E ,则可证△AEA ′∽△OOK .∴''AE A E AA OD OK DK ==,解得AE =65,A′E =125.∵A (m -4,-2m +11),∴A ′(m -325,-2m +495).1)当点A ′在第二象限,由于A ′、O 、B 三点在同一条直线上,B 不可能在第一或第二象限.2)当点A ′在第二象限时,点B 在第四象限时.分别过点A ′、B 作x 轴的垂线段,垂足分别为M 、N ,则△AOM ∽△BON , ∵A ′、O 、B 三点在同一条直线上,∴△A′OM ∽△BON ,∴324925532m m m m-+-=-+ ,解得m =165.3)当点A ′在第三象限时,m -325<0,-2m +495<0,即4910<m <325.此时点B 在第四象限,显然不成立.综上所述,m 的值165. ----------------------------------------------------------------------------------------13分。

2018年九年级数学3月阶段试卷苏科版

2018年九年级数学3月阶段试卷苏科版

2018年九年级数学3月阶段试卷(苏科版)泰兴市实验初级中学初三数学阶段试题2018.3(考试时间:120分钟满分:150分)第一部分选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列实数中,最大的是(▲)A.-1B.-2C.-0.5D.2.下列式子正确的是(▲)A.B.C.D.3.如图所示的物体的左视图(从左面看得到的视图)是(▲).4.已知△ABC在正方形网格中的位置如图所示,则点P叫做△ABC的(▲)A.中心B.重心C.外心D.内心5.能说明命题“关于x的一元二次方程x2+mx+4=0,当m<-2时必有实数解”是假命题的一个反例为(▲)A.m=﹣4B.m=﹣3C.m=-2D.m=46.我们定义一种变换S:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是(4,2,3,4,2)时,经过变换S可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是(▲)A.(1,2,1,1,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,2,2)第二部分非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为▲8.已知≠0,则▲.9.若二次根式是最简二次根式,则最小的正整数=▲10.5名运动员身高分别是(单位:厘米):179,176,180,177,175.则这5个数据的极差是▲11.如果二次三项式是一个完全平方式,那么的值是▲.12.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选▲13.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为▲第13题第14题第15题14.如图,河堤横断面迎水坡AB的坡度是,堤高BC=5m,则坡面AB的长度是▲m15.如图,将△ABC沿射线BC方向平移得到△DCE,当△ABC满足条件▲时(填一个条件),能够判定四边形ACED为菱形。

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷(带答案)

九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.52.(3分)如图,直线l1∥l2∥l3,另两条直线分别交l1、l2、l3于点A、B、C及点D、E、F,且AB=3,DE=4,EF=2,则()A.BC:DE=1:2B.BC:DE=2:3C.BC•DE=8D.BC•DE=6 3.(3分)(易错题)如图,▱ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是()A.△ABE∽△DGE B.△CGB∽△DGE C.△BCF∽△EAF D.△ACD∽△GCF 4.(3分)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺5.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.6.(3分)如图,已知△ABC和△DEF,点E在BC边上,点A在DE边上,边EF 和边AC相交于点G.如果AE=EC,∠AEG=∠B,那么添加下列一个条件后,仍无法判定△DEF与△ABC一定相似的是()A.=B.=C.=D.=7.(3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.8.(3分)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE的延长线与BA的延长线交于点F,则S△AFE :S四边形ABCE为()A.3:4B.4:3C.7:9D.9:79.(3分)如图,在正方形网格中,△ABC和△DEF相似,则关于位似中心与相似比叙述正确的是()A.位似中心是点B,相似比是2:1B.位似中心是点D,相似比是2:1C.位似中心在点G,H之间,相似比为2:1D.位似中心在点G,H之间,相似比为1:210.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(每小题3分,共12分)11.(3分)有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.12.(3分)在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC 上,当AE=时,以A、D、E为顶点的三角形与△ABC相似.13.(3分)如图,在五角星中,AD=BC,且C、D两点都是AB的黄金分割点,CD=1,则AB的长是.14.(3分)如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为.三、解答题(共78分)15.(12分)解下列方程:(1)3x2﹣5x﹣2=0(2)x2﹣1=2(x+1)(3)4x2+4x+1=3(3﹣x)2(4)(2x+8)(x﹣2)=x2+2x﹣1716.(6分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,交AC于F点,过点M作ME∥BC,交AB于点E.求证:△ABC∽△MED.17.(6分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N 两点之间的直线距离.18.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?19.(6分)关于x的方程(a2﹣4a+5)x2+2ax+4=0:(1)试证明无论a取何实数这个方程都是一元二次方程;(2)当a=2时,解这个方程.20.(8分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?21.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.22.(8分)如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C 重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.23.(8分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图,这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率.(2)小明和小亮约定做一个游戏,其规则如下:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形,则小明获胜,否则小亮获胜,这个游戏公平吗?请用列表或画树状图的方法说明.(纸牌用A、B、C、D)24.(10分)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.2.【解答】解:∵l1∥l2∥l3∴∵AB=3,DE=4,EF=2∴BC•DE=AB•EF=6.故选D.3.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD∴∠EDG=∠EAB∵∠E=∠E∴△ABE∽△DGE(第一个正确)∵AE∥BC∴∠EDC=∠BCG,∠E=∠CBG∴△CGB∽△DGE(第二个正确)∵AE∥BC∴∠E=∠FBC,∠EAF=∠BCF∴△BCF∽△EAF(第三个正确)第四个无法证得,故选D4.【解答】解:依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.故选:B.5.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.6.【解答】解:当=时,则=,而∠B=∠AEG,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF;当=,则=,而∠DEF=∠AEG,所以△DEF∽△AEG,又因为AE=EC,所以∠EAG=∠C,而∠AEG=∠B,所以△AEG∽△ABC,所以△ABC∽△EDF.故选:C.7.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.8.【解答】解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE :S四边形ABCE=9:7.故选:D.9.【解答】解:如图,在正方形网格中,△ABC和△DEF相似,连接AF,CE,∴位似中心在点G,H之间,又∵AC=2EF,∴相似比为2:1,故选:C.10.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.二、填空题(每小题3分,共12分)11.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.12.【解答】解:当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.13.【解答】解:∵C、D两点都是AB的黄金分割点,∴AC=AB,BD=AB,∴AC+BD=(﹣1)AB,即AB+CD=(﹣1)AB,∴AB=+2.故答案为+2.14.【解答】解:如图,根据题意,知△ABE∽△ADG,∴AB:AD=BE:DG,又∵AB=2,AD=2+6+8=16,GD=8,∴BE=1,∴HE=6﹣1=5;同理得,△ACF∽△ADG,∴AC:AD=CF:DG,∵AC=2+6=8,AD=16,DG=8,∴CF=4,∴IF=6﹣4=2;=(IF+HE)•HI∴S梯形IHEF=×(2+5)×6=21;所以,则图中阴影部分的面积为21.三、解答题(共78分)15.【解答】解:(1)3x2﹣5x﹣2=0,(3x+1)(x﹣2)=0,∴3x+1=0或x﹣2=0,∴x1=﹣,x2=2;(2)x2﹣1=2(x+1),(x+1)(x﹣1)﹣2(x+1)=0,(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(3)4x2+4x+1=3(3﹣x)2整理得:x2+22x=26,x2+22x+121=26+121(x+11)2=147,x+11=±7,∴x1=﹣11+7,x2=﹣11﹣7;(4)(2x+8)(x﹣2)=x2+2x﹣17整理得:x2+2x+1=0,∴(x+1)2=0,∴x1=x2=﹣1.16.【解答】证明:∵DM⊥AB,∴∠MDE=∠C=90°,∵EM∥BC,∴∠MED=∠B,∴△ABC∽△MED.17.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;18.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.19.【解答】解:(1)a2﹣4a+5=(a2﹣4a+4)+1=(a﹣2)2+1,∵(a﹣2)2≥0,∴(a﹣2)2+1≠0,∴无论a取何实数关于x的方程(a2﹣4a+5)x2+2ax+4=0都是一元二次方程;(2)当a=2时,原方程变为x2+4x+4=0,解得x1=x2=﹣2.20.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.21.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.22.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△ECF,∴∠DFE=∠CFE,∴FE平分∠DFC.23.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=,因此这个游戏公平.24.【解答】解:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴=,=,∴=,即=,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.。

2018年九年级数学3月调考试卷

2018年九年级数学3月调考试卷

2018年九年级数学3月调考试卷一.选择题(30分) 1.计算36的结果为( )A .6B .-6C .18D .-18 2.下列说法中正确的有( )① 0是最小的自然数;②0是最小的正数;③0是最小的非负数;④0既不是奇数,也不是偶数;⑤0表示没有温度。

A 、1个B 、2个C 、3个D 、4个 3. 点(2,5)关于x 轴对称点的坐标为( )A .(-2,5)B .(2,5)C .(-2,-5)D .(2,-5)4.已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长是( ) A 、20或16 B 、20 C 、16 D 、以上答案都不对5.已知关于y x ,的方程64122=+++--n m n m y x 是二元一次方程,则n m ,的值是( )1,1.-==n m A 1,1-.==n m B 34,31.-==n m C 34,31.=-=n m D6.将方程0142=+-x x 配方成()q p x =-2的形式,其中q 的值是( )A .2B .3C .4D .57.如图,△ABC 中,∠C =90○ ,点E 在AC 上,ED ⊥AB ,垂足为D ,且ED 平分△ABC 的面积,则AD :AC 等于( )A .1:1B .1: 2C .1:2D .1:48.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是( )A .-32B .32C .-23D .239.如图,已知中,,,直角的顶点是中点,两边,分别交,于点,,当在内绕顶点旋转时(点不与,重合)给出以下五个结论: ①△PFA ≌△PEB ,②EF=AP ,③△PEF 是等腰直角三角形,④,其中始终正确有( )A. 1个B. 2个C. 3个D. 4个10.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( )二.选择题(24分)11、当x 时,535--x +0)60tan (x -在实数范围内有意义.14、二次函数k x x y +--=322的图象在x 轴下方,则K 的取值范围是18、在平面直角坐标系xOy 中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),点2015A 的坐标为 .三、解答题(66分) 19、(8分)(1)计算:031)31(2829-+--+--+32cos 30 (2)解放程:41122-=--x x x .ABC △AB AC =90BAC ∠=EPF ∠P BC PE PF AB AC E F EPF ∠ABC △P E A B 12AEPF ABC S S =四边形△20、(8分)解中选取.21、(8分)在△ABC中,C∠=900 ,斜边长为5,两直角边为方程()()014122=-+--mxmx的两根,求m的值.22、(10分)如图,BD垂直于AC,BCD∠=ADF∠,ACAF⊥.(1)证明:四边形ABCD为平行四边形.(2)若AF=DF=5,AD=6,求AC的长.23、(10分)某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:(1)若企业销售该产品获得自睥利润为W(万元),请直接写出年利润W(万元)关于售价(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利澜不少于750万元,试确定该产品的售价x(元/件)的取值范围.24、(10分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).25、(12分)在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,直线经过,两点.(1)求抛物线的解析式;(3分)(2)在上方的抛物线上有一动点.①如图1,当点运动到某位置时,以为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点的坐标;(4分)②如图2,过点,的直线交于点,若,求的值.。

2018届九年级3月联考数学试卷

2018届九年级3月联考数学试卷

2018学年第二学期初三第一阶段联考数学试卷(满分150分测试时间120分钟)一、选择题(每小题4分,共48分)1.在﹣1,0,﹣2,1四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.12.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1 B.0 C.﹣1 D.23.为了方便市民出行.提倡低碳交通,近几年宁波市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是()A.0.7⨯105 B. 7⨯104 C. 7⨯105 D. 70⨯1034.下列图案中,既是中心对称图形也是轴对称图形的个数为()A.1个B.2个C.3个D.4个5.下列计算正确的是()A.a3﹣a2=a B.a3•a2=a6C.a3÷a2=a D.(a3)2=a56.在下列的四个几何体中,其主视图与俯视图相同的是()A.B.C.D.圆柱圆锥三棱柱球7.在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是S甲2=0.35,S乙2=0.15,S丙2=0.25,S丁2=0.27,这4人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁8.一个多边形内角和是1080°,则这个多边形是( )A .六边形B .七边形C .八边形D .九边形9.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是( ) A .4B .3C .2D .110.如图,将斜边长为4的直角三角板放在直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角板绕点O 顺时针旋转120°后点P 的对应点的坐标是( )A . (,1) B . (1,﹣) C . (2,﹣2) D . (2,﹣2)11.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E ,连接BE ,过点D 作BE 的平行线交AC 于点F ,则下列结论错误的是( )A .B .C .D .12.已知二次函数()12+-=h x y (h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或 -5B . -1或5C . 1或 -3D . 1或3二、填空题(每小题4分,共24分)13.二次根式中,a 的取值范围是 .14.计算()()3535-+的结果等于________.15.如图,直线AB ,CD 被直线AE 所截,AB ∥CD ,∠A=110°,则∠1= 度.(第15题图) (第17题图) (第18题图) 16.分解因式:a ab ab 442+-=_________________17.如图,△ABC 是边长为4个等边三角形,D 为AB 边的中点,以CD 为直径画圆,则图中阴影部分的面积为 (结果保留π).18.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数y=(x >0)的图象经过菱形对角线的交点A ,且与边BC 交于点F ,点A 的坐标为(4,2).则点F 的坐标是_________________三:解答题(本题有8小题,共78分)19.(6分)(1)0(3)4sin 458-π+-+(2)解分式方程:3423-=--x x x20.(8分)如图,小俊在A 处利用高为1.5米的测角仪AB 测得楼EF 顶部E 的仰角为30°,然后前进12米到达C 处,又测得楼顶E 的仰角为60°,求楼EF 的高度.(结果保留根号)21.(8分)将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.22.(10分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?23.(10分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.24.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.25.(12分)设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离(2)求点(3,0)M 到直线21y x =+的距离;(3)如果点(0,)N a 到直线21y x =+的距离为3,求a 的值.26.(14分)如图1,抛物线y=﹣x 2+bx+c 经过A (﹣1,0),B (4,0)两点,与y 轴相交于点C ,连结BC ,点P 为抛物线上一动点,过点P 作x 轴的垂线l ,交直线BC 于点G ,交x 轴于点E .(1)求抛物线的表达式;(2)当P 位于y 轴右边的抛物线上运动时,过点C 作CF ⊥直线l ,F 为垂足,当点P 运动到何处时,以P ,C ,F 为顶点的三角形与△OBC 相似?并求出此时点P 的坐标;(3)如图2,当点P 在位于直线BC 上方的抛物线上运动时,连结PC ,PB ,请问△PBC 的面积S 能否取得最大值?若能,请求出最大面积S ,并求出此时点P 的坐标,若不能,请说明理由.2018学年第二学期初三第一阶段联考数学答题卷(满分150分 测试时间120分钟)一:选择题:(每题4分,共48分)二:填空题(每小题4分,共24分)三:解答题(本题有8小题,共78分) 19.(6分)(1)0(3)4sin 458-π+-+2)解分式方程:3423-=--x x x20.(8分)如图,小俊在A 处利用高为1.5米的测角仪AB 测得楼EF 顶部E 的仰角为30°,然后前进12米到达C 处,又测得楼顶E 的仰角为60°,求楼EF 的高度.(结果保留根号)21.(8分)将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.22.(10分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?23.(10分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.24.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.25.(12分)设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离(2)求点(3,0)M 到直线21y x =+的距离;(3)如果点(0,)N a 到直线21y x =+的距离为3,求a 的值.26.(14分)如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x 轴于点E.(1)求抛物线的表达式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.2018学年第二学期初三第一阶段联考数学答案(满分150分 测试时间120分钟)一:选择题:(每题4分,共48分)二:填空题(每小题4分,共24分)三:解答题(本题有8小题,共78分)19.(6分)(1)0(3)4sin 458-π+-+原式=1322221-+-+ =3 3分(2)解分式方程:3423-=--x x x 解方程得x=2 2分 经检验:x=2是原分式方程的根 1分20.(8分)解答: 解:设楼EF 的高为x 米,可得EG=EF ﹣GF=(x ﹣1.5)米, 依题意得:EF ⊥AF ,DC ⊥AF ,BA ⊥AF ,BD ⊥EF (设垂足为G ), 在Rt △EGD 中,DG==(x ﹣1.5)米,在Rt △EGB 中,BG=(x ﹣1.5)米,∴CA=DB=BG﹣DG=(x﹣1.5)米,∵CA=12米,∴(x﹣1.5)=12,解得:x=6+1.5 8分则楼EF的高度为6+1.5米.21.(8分)解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);1分∵只有A组5人成绩不合格,∴合格人数为:50﹣5=45(人);1分(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;2分∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;2分(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:=.2分22.(10分)【解答】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,4分答:一个足球的单价103元、一个篮球的单价56元;1分(2)设可买足球m个,则买蓝球(20﹣m)个,根据题意得:103m+56(20﹣m)≤1550,解得:m≤9,3分∵m为整数,∴m最大取9 1分答:学校最多可以买9个足球.1分23.(10分)【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).5分(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.5分24:(10分)解答:(1)证明:连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ACO+∠DCE=90°,又∵ED⊥AD,∴∠EDA=90°,∴∠EAD+∠E=90°,∵OC=OA,∴∠ACO=∠EAD,故∠DCE=∠E,∴DC=DE,5分(2)解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,在Rt△EAD中,∵tan∠CAB=,∴ED=AD=(3+x),由(1)知,DC=(3+x),在Rt△OCD中,OC2+CD2=DO2,则1.52+[(3+x)]2=(1.5+x)2,解得:x1=﹣3(舍去),x2=1,故BD=1.5分25. (12分)(1)4;.…….4分(2)直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,.…….2分 ∵EOF MHE ∆∆∽∴MH MEOFEF =,即1MH =MH =...…….4分26:(14分)【解答】解:(1)将点A (﹣1,0),B (4,0)的坐标代入函数的表达式得:,解得:b=3,c=4.所以 抛物线的解析式为y=﹣x 2+3x+4. 4分(2)如图1所示:∵令x=0得y=4, ∴OC=4. ∴OC=OB .∵∠CFP=∠COB=90°,∴FC=PF 时,以P ,C ,F 为顶点的三角形与△OBC 相似. 设点P 的坐标为(a ,﹣a 2+3a+4)(a >0). 则CF=a ,PF=|﹣a 2+3a+4﹣4|=|a 2﹣3a|.∴|a2﹣3a|=a.解得:a=2,a=4.∴点P的坐标为(2,6)或(4,0). 6分(3)如图2所示:连接EC.设点P的坐标为(a,﹣a2+3a+4).则OE=a,PE=﹣a2+3a+4,EB=4﹣a.∵S四边形PCEB=OB•PE=×4(﹣a2+3a+4),S△CEB=EB•OC=×4×(4﹣a),∴S△PBC=S四边形PCEB﹣S△CEB=2(﹣a2+3a+4)﹣2(4﹣a)=﹣2a2+8a.∵a=﹣2<0,∴当a=2时,△PBC的面积S有最大值. 3分∴P(2,6),△PBC的面积的最大值为8.1分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三阶段性调研测试试卷数 学一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. -5的倒数是A .-5B .5C .―15D .152. 如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=60°,那么∠2的度数为A .140°B .120°C .60°D .30°3. 下列计算正确的是A .22223x y x y x y -=-B .235a b ab +=C .532mn mn -=D .22325xy xy x y +=4. 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .5. 一个几何体的三视图如图所示,那么这个几何体是( )A .B .C .D .平行四边形等腰三角形正五边形12 abl (第2题)6. 下列说法正确的是A .为了解全省中学生的心理健康状况,宜采用普查方式B .某彩票设“中奖概率为1100”,购买100张彩票就一定会中奖一次C .某地会发生地震是必然事件D .若甲组数据的方差2S甲=0.1,乙组数据的方差2S乙=0.2,则甲组数据比乙组稳定7. 如图,已知△ABC (AC <AB <BC ),用尺规在线段BC 上确定一点P ,使得P A +PC =BC ,则符合要求的作图痕迹是ABPCABPCAB P CAB P CA .B .C .D . 8.有这样一道题:如图,在正方形ABCD 中,有一个小正方形EFGH ,其中E ,F ,G 分别在AB ,BC ,FD 上,连接DH ,如果BC =12,BF =3.求tan ∠HDG 的值.以下是排乱的证明步骤:①求出EF 、DF 的长;②求出tan ∠HDG 的值;③证明∠BFE =∠CDF ;④求出HG 、DG ;⑤证明△BEF ∽△CFD .证明步骤正确的顺序是 A .①④⑤③②B .③⑤①④②C .③⑤④①②D .⑤①④③②A BCDE GH第8题 第9题图1 第9题图2 第10题9. 如图1,在△ABC 中,点P 从点A 出发向点C 运动,在运动过程中,设x 表示线段AP的长,y 表示线段BP 的长,y 与x 之间的关系如图2所示.以下分析错误..的是 A .AB =2 B .AC =4 C .∠ABC =90° D .tan ∠ACB =1210.如图,在等边三角形ABC 中,AD ⊥BC ,BC =4,点P 是边BC 上一个动点,连接AP ,过点D 作DE ⊥AP 于点E .当点P 从点B 运动到点C 时,点E 所经过的路径长为A. B. πC.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.若式子1-x 在实数范围内有意义,则x 的取值范围是 ▲ .12.崇川区2017年GDP 共772.23亿元,将“772.23亿”用科学记数法可表示为 ▲ . 13. 设m ,n 是方程x 2-2x -2018=0的两个实数根,则m +n 的值为 ▲ . 14.分解因式 2b 2-8b +8= ▲ .15.小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,中位数是 ▲ (万步)16.如图,直角三角形纸片ABC ,AC 边长为10cm ,现从下往上依次裁剪宽为4cm 的矩形纸条,若剪得第二张矩形纸条恰好是正方形, 那么BC 的长度是▲ cm .17.如图,点A (1,0),B (0,2),把线段AB 绕点A 逆时针旋转90°,并延长至点C ,使AC =2AB ,则△ABD 与△ACD 的面积的比值等于 ▲ .18.若关于x 的两个方程x 2++q =0,x 2-+p =0都有实数根,(21)(23)p q q p -+-+的最小值等于 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分) (1)计算:(13)-2-|-2|(-1)2018 (2)解不等式组10831 4.x x -<⎧⎨+--⎩,()≥20.(本小题满分7分) 先化简,在求值:()21142111aa a a +-÷-+- ,其中2a =- .21.(本小题满分8分)校园歌手大赛中甲、乙、丙3名学生进入了决赛,组委会决定通过抽签确定表演顺序. (1)求甲第二个出场的概率; (2)求甲比乙先出场的概率.ACB(第16题)有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下每一天各自的销售情况(单位:元):甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41. 乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23.小明用图1表示甲城市16台自动售货机的销售情况,小亮用图2表示甲城市16台自动售货机的销售情况.(1)请你仔细观察图1,你能从中获得哪些信息?(写出两条不同信息) (2)请你仔细观察图2,把图2的统计图补充完整;(3)请你仿照小明的方法将乙城市16台自动售货机的销售情况表示出来.23.(本小题满分8分)已知矩形的一边长为x ,且相邻两边长的和为10.(1)求矩形面积S 与边长x 的函数关系式,并写出自变量的取值范围; (2)求矩形面积S 的最大值.24.(本小题满分9分)在□ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,AE =CF ,连接AF ,BF . (1)求证:四边形BFDE 是矩形.(2)若CF =3,CF =4,DF =5,求证:AF 平分∠DAB .DABCEF图1543210810205305064888图2如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).26.(本小题满分10分)如图,函数kyx=(x<0)与y=ax+b的图象交于点A(-1,n)和B(-2,1),直线y=mx与kyx=(x<0)的图象交于点P,与y=-x+1的图象交于点Q,定义∠P AQ为这个函数的“函数角”.(1)求k,a,b的值;(2)当m=-12时,求这个函数的“函数角”的度数.(3)若射线AP与x轴交于点N(a,0),当这个函数的“函数角”的度数不小于120°时,直接写出n的取值范围.A27.(本小题满分13分)如图,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 不与点A 、点D 重合),点Q 是边CD 上一点,连接PB 、PQ ,且∠PBC =∠BPQ . (1)当QD =QC 时,求∠ABP 的正切值;(2)设AP =x ,CQ =y ,求y 关于x 的函数解析式;(3)连接BQ ,在△PBQ 中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.28.(本小题满分13分)在平面直角坐标系中xOy ,抛物线y =x 2-2(m -1)x +m 2-4m +3的顶点为C ,直线y =-2x +3与抛物线相交于A 、B 两点,点A 在抛物线的对称轴的左侧. (1)求点C 的坐标(用含m 的代数式表示); (2)若P 为直线OC 上一动点,求△APB 的面积; (3)当OA +OB 的值最小时,求m 的值.ABCDQPDA备用图初三阶段性调研测试 数学参考答案一、选择题(本大题共10小题,每小题3分,共30分.) 1.C 2.C 3.A 4.B 5.A 6.D7.D8.B9.D10.C二、填空题(本大题共8小题,每小题3分,共24分.) 11.x ≥1 12.7.7223×1010 13.2 14.2(b -2)2 15.1.3516.2017.118.3三、解答题(本大题共10小题,共96分.)19.(1)解:原式=9-2++1 ---------------------------------------------------------------------------- 4分 =8+ ------------------------------------------------------------------------------------- 5分 (2)解不等式①,得x <1------------------------------------------------------------------------------------ 7分解不等式②,得x ≥-3 ---------------------------------------------------------------------------------- 9分 ∴不等式组的解集为-3≤x <1 ---------------------------------------------------------------------10分20.解:原式=()()()()111+11+1a a a a a a +----⎡⎤⎢⎥⎣⎦×()()1142a a a-++ ------------ 4分=()()211a a -+×()()1142a a a-++=12a+, ------------ 5分当2a =-.------------ 7分21.(1)13; ---------------------------------------------------------------------------------------------------------- 3分(2)画树状图如下甲乙丙乙丙甲丙乙甲乙丙甲丙乙甲------------------------------------------------------------------------ 6分∴共六种情况,其中甲比乙先出场的有3种. ----------------------------------------------------- 7分 ∴甲比乙先出场的概率12. ------------------------------------------------------------------------------ 8分22.解:(1)这样表示数据方便,很容易看出两位数的个位数字是多少;方便记录每个小组的频数,等等. ------------------------------------------------------------------------------------------------- 3分 (2)补充图2如下:--------------------------- 6分(3)乙城市16台自动售货机的销售情况表示如下.122027883430342834------------------------------------------------------------------ 9分23.解:(1)()10S x x =-,其中010x <<; ----------------------------------------------------------------------------------------- 4分(2)()10S x x =-=()2525x --+.∴当5x =时,S 有最大值25. ----------------------------------------------------------------- 8分 24.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD , ∵AE =CF ,∴DF =BE , ∴四边形BFDE 是平行四边形,又∵DE AB ⊥,∴四边形BFDE 是矩形. ------------------------------------------------------------- 5分 (2)证明:∵四边形BFDE 是矩形, ∴∠BFC =90°, ∵CF =3,BF =4,∴5BC =,∴5AD BC ==,∴5AD DF ==,∴DAF DFA ∠=∠,∵AB CD ∥,∴FAB DAF ∠=∠,∴AF 平分DAB ∠. ------------------------------------------- 9分25.解:(1)BC 与⊙O 相切.证明:连接OD .∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD . 又∵OD =OA ,∴∠OAD =∠ODA . ∴∠CAD =∠ODA .∴OD ∥AC . ∴∠ODB =∠C =90°,即OD ⊥BC .又∵BC 过半径OD 的外端点D ,∴BC 与⊙O 相切. ----------------------------------------------- 5分 (2)设OF =OD =x ,则OB =OF +BF =x +2,根据勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12, 解得:x =2,即OD =OF =2,∴OB =2+2=4, ∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴6042==3603AOB S π⨯π扇形则阴影部分的面积为1222233ODB DOF S S ∆-=⨯⨯π=π扇形故阴影部分的面积为23π. ------------------------------------------------------------------------- 9分26.(1)∵ 函数k y x=(x <0)的图象经过点B (-2,1),∴12k=-,得k =-2. ∵ 函数k y x=(x <0)的图象还经过点A (-1,n ),∴ 221n -==-,点A 的坐标为(-1,2). ∵ 函数y =ax +b 的图象经过点A 和点B ,∴ 2,2 1.a b a b -+=⎧⎨-+=⎩解得1,3.a b =⎧⎨=⎩--------------------------------------------------------------- 3分(2)当m =-12时,y =-12x 与2y x=-的交点为B (-2,1). ∴点P 与点B 重合.∴函数角为90°. ------------------------------------------------------------------------------------------ 7分(3)-2<n ≤5或n ≤-7- ----------------------------------------------------------10分27.解:(1)延长PQ 交BC 延长线于点E .设PD =x .∵∠PBC =∠BPQ ,∴EB=EP .∵四边形ABCD 是正方形,∴AD ∥BC ,∴PD ∶CE= QD ∶QC= PQ ∶QE ,∵QD =QC ,∴PD =CE ,PQ =QE .∴BE =EP= x +2,∴QP =()122x +. 在Rt △PDQ 中,∵PD 2+QD 2=PQ 2,∴22211(1)2x x +=+,解得43x =. ∴AP =AD -PD =23,∴211323tan AP AB ABP =⨯=∠=. -------------------------------------------- 5分 (2)过点B 作BH ⊥PQ ,垂足为点H ,连接BQ .∵AD //BC ,∴∠CBP =∠APB ,∵∠PBC =∠BPQ ,∴∠APB =∠HPB ,∵∠A =∠PHB =90°,∴BH = AB =2,∵PB = PB ,∴Rt △P AB ≌Rt △PHB ,∴AP =PH =x .∵BC =BH =2,BQ =BQ ,∠C =∠BHQ =90°,∴Rt △BHQ ≌Rt △BCQ ,∴QH =QC =y ,在Rt △PDQ 中,∵222PD QD PQ +=,∴()()()22222x y x y -+-=+,∴422xy x -=+. -----------------------------------------------------------------------------------------------10分(3)存在,∠PBQ =45°.由(2)可得,∠PBH =12∠ABH ,∠HBQ =12∠HBC ,∴∠PBQ =12(∠ABH +∠HBC )=12×90°=45°. -------------------------------------------------13分28.解:(1)抛物线的解析式可化为y =(x -m +1)2+(2-2m ).∴C (m -1,2-2m ) -------------------------------------------------------------------------------------- 4分(2)∵直线OC 的解析式为y =-2x .∴AB ∥OC .令AB 与x 轴、y 轴分别交于点D 、K ,则D (32,0),K (0,3).答图1过点O 作OG ⊥AB 于点G , ∵∠ODG =∠KDO ,∠OGD =∠DOK ,∴△OGD ∽△DOK∴OG ∶OD =OK ∶DK ,∴OG .∴AB 与OC . 2(1)(22)23y x m m y x ⎧=-++-⎪⎨=-+⎪⎩,解得:23x m y m =⎧⎨=-+⎩或4211x m y m =-⎧⎨=-+⎩ ∴A (m -4,-2m +11),B (m ,-2m +3)∴AB =,∴△APB 的面积=12×=6. ------------------------------------------------------------ 9分(3)如答图1,设点A 关于y =-2x 的对称点为A ′,则AA ′=2AF =2OG . 过点A 作AE ∥y 轴,A′E ∥x 轴,AE 与A′E 交于点E ,则可证△AEA ′∽△OOK .∴''AE A E AA OD OK DK ==,解得AE =65,A′E =125.∵A (m -4,-2m +11),∴A ′(m -325,-2m +495). 1)当点A ′在第二象限,由于A ′、O 、B 三点在同一条直线上,B 不可能在第一或第二象限.2)当点A ′在第二象限时,点B 在第四象限时.分别过点A ′、B 作x 轴的垂线段,垂足分别为M 、N ,则△AOM ∽△BON ,∵A ′、O 、B 三点在同一条直线上,∴△A′OM ∽△BON ,∴324925532m m m m -+-=-+ ,解得m =165. 3)当点A ′在第三象限时,m -325<0,-2m +495<0,即4910<m <325. 此时点B 在第四象限,显然不成立.综上所述,m 的值165. ----------------------------------------------------------------------------------------13分。

相关文档
最新文档