12年高考真题——理科数学(湖北卷)
2012湖北卷高考理科数学

8.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB
内随机取一点,则此点取自阴影部分的概率是
A. B.
C. D.
9.函数 在区间 上的零点个数为
A.4B.5
C.6D.7
10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积 ,求其直径 的一个近似公式 .人们还用过一些类似的近似公式.根据 判断,下列近似公式中最精确的一个是
.③
依题意,由点 在第一象限可知,点 也在第一象限,且 , 不重合,
故 .于是由③式可得
.④
又 , , 三点共线,所以 ,即 .
于是由④式可得 .
而 等价于 ,即 ,又 ,得 ,
故存在 ,使得在其对应的椭圆 上,对任意的 ,都有 .
22.:(Ⅰ) ,令 ,解得 .
当 时, ,所以 在 内是减函数;
当 时, ,所以 在 内是增函数.
作 的垂线交 于点C,则CD的最大值为.
16.(选修4-4:坐标系与参数方程)
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴
建立极坐标系.已知射线 与曲线 (t为参数)
相交于A,B两点,则线段AB的中点的直角坐标为.
三、解答题
17.(本小题满分12分)
已知向量 , ,设函数 的图象关于直线 对称,其中 , 为常数,且 .
A. B. C. D.
二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.
(一)必考题(11—14题)
2012年湖北高考理科数学试题(解析版)

由折起前 知,折起后(如图2), , ,且 ,
所以 平面 .又 ,所以 .于是
,
当且仅当 ,即 时,等号成立,
故当 ,即 时,三棱锥 的体积最大.
解法2:
同解法1,得 .
令 ,由 ,且 ,解得 .
当 时, ;当 时, .
所以当 时, 取得最大值.
故当 时,三棱锥 的体积最大.
解析:令 ,扇形OAB为对称图形,ACBD围成面积为 ,围成OC为 ,作对称轴OD,则过C点。 即为以OA为直径的半圆面积减去三角形OAC的面积, 。在扇形OAD中 为扇形面积减去三角形OAC面积和 , , ,扇形OAB面积 ,选A.
9.函数 在区间 上的零点个数为
A.4B.5
C.6D.7
考点分析:本题考察三角函数的周期性以及零点的概念.
考点分析:本题考查排列、组合的应用.
难易度:★★
解析:(Ⅰ)4位回文数只用排列前面两位数字,后面数字就可以确定,但是第一位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4位回文数有 种。
答案:90
(Ⅱ)法一、由上面多组数据研究发现,2n+1位回文数和2n+2位回文数的个数相同,所以可以算出2n+2位回文数的个数。2n+2位回文数只用看前n+1位的排列情况,第一位不能为0有9种情况,后面n项每项有10种情况,所以个数为 .
(Ⅱ)由概率的加法公式,
又 .
由条件概率.
21.(本小题满分13分)
设 是单位圆 上的任意一点, 是过点 与 轴垂直的直线, 是直线 与 轴的交点,点 在直线 上,且满足 .当点 在圆上运动时,记点M的轨迹为曲线 .
2012年理数高考试题答案及解析-湖北-(7539)

2012 年普通高等学校招生全国统一考试(湖北卷)数学(理工类)试卷解析一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有一项是符合题目要求的 . 1.方程2 6 13 0x x 的一个根是 A . 3 2i B .3 2iC . 2 3iD .2 3i考点分析: 本题考察复数的一元二次方程求根 .难易度 :★解析: 根据复数求根公式:26 6 13 4 x 3 2i ,所以方程的一个根为3 2i2答案为 A.2.命题“ x 0 e R Q , 3x Q ”的否定是0 A . x 0 e R Q , 3x Q B . x 0 e R Q ,0 3xQ 0 C . x e R Q ,3x Q D . x e R Q , 3x Q考点分析: 本题主要考察常用逻辑用语,考察对命题的否定和否命题的区别 . 难易度 :★ 解析: 根据对命题的否定知, 是把谓词取否定, 然后把结论否定。
因此选 D y1 1 3.已知二次函数 y f (x) 的图象如图所示,则它与 x 轴所围图形的面积为1 O x1A .2π 5 B . 4 3第3 题图 11 C .3 2D .π2考点分析: 本题考察利用定积分求面积 . 难易度 :★ 4解析: 根据图像可得:2 y f ( x) x1,再由定积分的几何意 24 义,可求得面积为114 23 1 S( x 1)dx ( x x). 11332 正视图2 侧视图4.已知某几何体的三视图如图所示,则该几何体的体积为A .8π3B.3π俯视图第 1 页共 15 页第 4 题图C .10π3D. 6π考点分析:本题考察空间几何体的三视图.难易度:★解析:显然有三视图我们易知原几何体为一个圆柱体的一部分,并且有正视图知是一个1/2 的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B.5.设a Z ,且0 a 13,若2012 51 a 能被13 整除,则aA.0 B.1C.11 D.12考点分析:本题考察二项展开式的系数.难易度:★解析:由于2012 C0 2012 C1 2011 C2011 1 , 51=52-1,(52 1) 52 52 ... 52 12012 2012 2012 又由于13|52,所以只需13|1+a,0≤a<13, 所以a=12选D.6.设a,b, c, x, y, z是正数,且2 2 210a bc ,2 2 2 40x y z , ax by cz 20 ,则a b cx y zA.14 B.13C.12 D.34考点分析:本题主要考察了柯西不等式的使用以及其取等条件.难易度:★★解析:由于(22 )( 2 2 2 )( )22a b c x y z ax by cza b c等号成立当且仅当t,x y z2 x2 y2 z2则a=t x b=t y c=t z ,t ( ) 10a b c a b c a b c所以由题知t 1/ 2 , 又, 所以t 1/ 2,答案选C.x y z x y z x y z7.定义在(,0) (0, )上的函数 f (x) ,如果对于任意给定的等比数列{a } ,{ f (a )} 仍n n是等比数列,则称f ( x) 为“保等比数列函数”.现有定义在(,0) (0, ) 上的如下函数:① 2 xf (x) x ;②f (x) 2 ;③f (x) | x |;④f(x) ln | x|.第2页共15 页则其中是“保等比数列函数”的 f ( x) 的序号为A.①②B.③④C.①③D.②④考点分析:本题考察等比数列性质及函数计算.难易度:★解析:等比数列性质,22 2 2 2 2a n a a ,① f a n f a a a a f a1 ;n2 n 1 n 2 n n 2 n 1n②f a a a a 2a 2a n f a 2 2 2 2 2 f a nn n n1 ;③n n 2n 2 12 2f a n f a a a a f a ;n 2 n n 2 n 1n 1④ 2 2f n f a a a a f a .选Ca 2 ln n ln n ln n nn 2 1 18.如图,在圆心角为直角的扇形OAB 中,分别以OA,OB 为直径作两个半圆. 在扇形 OAB 内随机取一点,则此点取自阴影部分的概率是A. 1 2πB.1 12 πC.2πD.1π考点分析:本题考察几何概型及平面图形面积求法. 难易度:★解析:令OA 1,扇形 OAB 为对称图形, ACBD 围成面积为S ,围成 OC 为S2 ,1作对称轴OD,则过 C 点。
2012年湖北高考数学(理)解答题详解

解出:
������ = −1,������ = 3 ������������ = 3������ − 7 ������2 ,������3 ,������1 = −1,2, − 4 或 ������ = −1,������ = −3 ������������ = −3������ + 5 ������2 ,������3 ,������1 = −1, − 4,2
解:(I) 设 ������������ 的长度为 ������,那么BD = 3−������,������D = CD = ������ 1 1 1 1 2 V= SΔBCD ⋅ AD= ������ ⋅ ������(3−������)= ������ (3−������) 3 3 2 6 ������ 2 (3−������)= 于是 1 1 (������+������+6−2������) ������ ⋅ ������ ⋅ (6−2������) ≤ =36 2 2 3 ⋅ 36=6,当 x=6−2������ 即 ������=2 时取等号,
5 ������ ������ 2������������������( × − ) + ������ = 0 3 4 6
������ = − 2
5 ������ ������(������) = 2������������������( ������ − ) − 2 3 6 3������ ������ ∈ [0, ] 5 5 ������ ������ 5������ ������ − ∈ [− , ] 3 6 6 6 ������(������) ∈ [−1 − 2, 2 − 2] 5 ������ 1 ������������������( ������ − ) ∈ [− , 1] 3 6 2
2012年湖北高考数学理科试卷(带详解)

2012年湖北高考数学理科试卷(带详解)2012湖北高考理科数学一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程2+6+13=0x x 的一个根是 ( )A .3+2i -B .3+2i C .22i -+ D .2+2i【测量目标】复数的一元二次方程求根. 【考查方式】给出一元二次方程,由求根公式求出它的根. 【难易程度】容易 【参考答案】A【试题解析】根据复数求根公式:26613432i2x --⨯==-±,所以方程的一个根为32i -+,答案为A. 2.命题“300x x ∃∈∈R Q Q,”的否定是( ) A .300x x ∃∉∈RQ Q, B .300x x ∃∈∉RQ Q,C .30x x ∀∉∈R Q Q,D .300x x ∀∈∉RQ Q,【测量目标】常用逻辑用语,含有一个量词的命题的否定.【考查方式】给出了存在性命题,根据逻辑用语写出命题的否定.【难易程度】容易【参考答案】D【试题解析】根据对命题的否定知,是把谓词取否定,然后把结论否定因此选D.3.已知二次函数=()y f x的图象如图所示,则它与x 轴所围图形的面积为()第4题图A.2π5B. 43C.32D.π2【测量目标】定积分的几何意义.【考查方式】给出了二次函数的图象,求出函数解析式,由定积分的几何意义可求得面积.【难易程度】容易一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B. 5.设a ∈Z ,且013a <,若201251a+能被13整除,则a =( )A .0B .1C .11D .12 【测量目标】二项式定理.【考查方式】给出二项式,根据其展开式的系数求解.【难易程度】中等 【参考答案】D【试题解析】由于51=52-1,2012020121201120111201220122012(521)C 52C 52C 521-=-+-+…又由于13|52,所以只需13|1+a ,0a <13,所以a =12选D.6.设,,,,,a b c x y z 是正数,且222++=10a b c ,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14B .13C .12D .34【测量目标】不等式的基本性质.【考查方式】给出含未知量的3个方程,根据柯西不等式的使用及其去等条件可得出答案. 【难易程度】中等 【参考答案】C【试题解析】由于2222222()()()a b c x y z ax by cz ++++++等号成立当且仅当ab ct x y z===,则a tx b ty c tz ===,,, 2222()10t x y z ++=(步骤1)所以由题知12t =,又a b c a b cx y z x y z++===++(步骤2), 所以12a b c t xy z ++==++,答案选C.(步骤3) 7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}na ,{}()nf a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2xf x =; ③()f x x=;④()ln f x x =.则其中是“保等比数列函数”的()f x 的序号为( )A .① ② B.③④C .① ③D .② ④ 【测量目标】等比数列性质及函数计算. 【考查方式】给出了保等比数列的定义,判断所给4个函数是否为保等比数列. 【难易程度】中等 【参考答案】C【试题解析】等比数列性质,221n n n a a a ++=,①222222211()()()()nn n n n n f a f aa a a f a ++++=== (步骤1) 2212221()()2222()n n n n n a a a a a n n n f a f a f a ++++++==≠=②(步骤2) ()222211()()()n n n n n n f a f a a a a f a ++++===③(步骤3)2221()()=ln ln ()n n n n n f a f a a a f a +++≠④选C.(步骤4)8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 ( )A .21π-B .112π- C .2π D .1π第8题【测量目标】几何概型及平面图形面积公式. 【考查方式】给出扇形根据面积公式求出扇形面积以及阴影部分的面积,算出他们的比值即为概率. 【难易程度】中等【参考答案】A 【试题解析】令1OA =,扇形OAB 为对称图形,ACBD 围成面积为1S ,围成OC 为2S ,作对称轴OD ,则过C 点.2S 即为以OA 为直径的半圆面积减去三角形OAC 的面积, (步骤1)221111π2π122228S -⎛⎫=-⨯⨯=⎪⎝⎭.在扇形OAD 中12S 为扇形面积减去三角形OAC 面积和22S ,21211π2π(1)284216S S -=--=,12π24S S -+=,扇形OAB 面积1π4S =, 选A.(步骤2)第8题图9.函数2()cos f x x x =在区间[]0,4上的零点个数为( )A .4B . 5C .6D .7【测量目标】三角函数的周期性以及函数零点的判断.【考查方式】给出复合函数,根据函数周期性确定其在区间类的零点个数. 【难易程度】容易 【参考答案】C【试题解析】()0f x =,则0x =或2cos 0x=,2ππ+,2xk k =∈Z又[]0,4x ∈,0,1,2,3,4k =所以共有6个解.选C.10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式3169d V ≈人们还用过一些类似的近似公式. 根据π=3.14159...判断,下列近似公式中最精确的一个是( ) A .3169d V ≈B .32d V≈C .3300157d V ≈D .32111d V ≈【测量目标】球的体积公式以及估算. 【考查方式】根据球的体积估算圆周率. 【难易程度】中等 【参考答案】D 【试题解析】由34π32d V ⎛⎫= ⎪⎝⎭,得36πV d =,设选项中常数为ab ,则6π=b a (步骤1);A 中代人得69π 3.37516⨯==,B 中代入得6π32==,C 中代入得π61573.14300⨯==,D 中代人得611π= 3.142857,21⨯=由于D 中值最接近π的真实值,故选D.(步骤2) 二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分. 请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.设ABC △的内角,,A B C 所对的边分别为,,a b c 若()()a b c a b c ab+-++=,则角C = .【测量目标】余弦定理,解三角形.【考查方式】给出三角形的各边关系,利用余弦定理求出角C . 【难易程度】容易 【参考答案】120【试题解析】由()(+)a b c a b c ab +--=,得222ab c ab+-=-根据余弦定理2221cos ,222a b c ab C ab ab +-==-=-故120C ∠=.12.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .第12题图 【测量目标】循环结构的程序框图.【考查方式】给出程序框图,通过输入、赋值、输出语句,得出满足条件的s . 【难易程度】容易 【参考答案】9【试题解析】程序在运行过程中各变量的值如下表示:第一圈循环:当n=1时,得s=1,a=3.(步骤1)第二圈循环: 当n=2时,得s=4,a=5 (步骤2)第三圈循环:当n=3时,得s=9,a=7 (步骤3)此时n=3,不再循环,所以解s=9 . (步骤4)13.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,...,99.3位回文数有90个:101,111,121, (191)202,…,999.则(Ⅰ)4位回文数有个;(Ⅱ)21()+∈N位回文数有个.n n+【测量目标】排列、组合及其应用.【考查方式】根据回文数的定义求出4位回文数以及21()+∈N回文数的个数.n n+【难易程度】较难【参考答案】(I)90;(II)910n⨯【试题解析】(Ⅰ)4位回文数只用排列前面两位数字,后面数字就可以确定,但是第一位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4位回文数有91090⨯=种,答案:90. (Ⅱ)法一、由上面多组数据研究发现,2n +1位回文数和2n +2位回文数的个数相同,所以可以算出2n +2位回文数的个数.2n +2位回文数只用看前n +1位的排列情况,第一位不能为0有9种情况,后面n 项每项有10种情况,所以个数为910n⨯.法二、可以看出2位数有9个回文数,3位数90个回文数.计算四位数的回文数是可以看出在2位数的中间添加成对的“00,11,22,……99”,因此四位数的回文数有90个,按此规律推导22102nn s s =-,而当奇数位时,可以看成在偶数位的最中间添加0~9这十个数,因21210n nss +=,则答案为910n⨯.14.如图,双曲线22221(,0)x y a b a b-=>的两顶点为12A A ,虚轴两端点为12B B ,两焦点为12F F ,. 若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D . 则第14题图(Ⅰ)双曲线的离心率e = ;(Ⅱ)菱形1122F B F B 的面积1S 与矩形ABCD 的面积2S的比值12SS = .【测量目标】双曲线的标准方程、定义、离心率,以及一般平面几何图形的面积计算.【考查方式】给出了双曲线和平面几何图形的位置关系求出离心率,根据面积公式求出面积比. 【难易程度】较难 【参考答案】(I )51e +=,(II )1225SS+=【试题解析】(Ⅰ)由于以12A A 为直径的圆内切于菱形1122F B F B ,因此点O 到直线22F B 的距离为a ,又由于虚轴两端点为12B B ,,因此2OB 的长为b ,那么在22F OB △中,由三角形的面积公式知,2222111222bc a B F a b c ==+1),又由双曲线中存在关系222ca b =+联立可得出222(1)ee -=,根据(1,)e ∈+∞解出51e +=(步骤2)(II )菱形1122F B F B 的面积12S bc =,设矩形ABCD ,2BC m =,2BA n =∴m c n b=(步骤3),∵222m n a +=,∴2222m n b c b c ==++步骤4) ∴面积222244a bcS mn b c==+,∴221222S b c S a +=(步骤5)∵222bc a =-∴12252SS+=(步骤6).(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑. 如果全选,则按第15题作答结果计分.)15.(选修4-1:几何证明选讲)如图,点D 在O 的弦AB 上移动,4AB =,连接OD ,过点D作OD 的垂线交O 于点C ,则CD 的最大值为 .第15题图 【测量目标】直线与圆的位置关系.【考查方式】根据直线与圆的位置关系,判断点D 的位置从而求出线段最大值. 【难易程度】容易 【参考答案】2【试题解析】(由于OD CD ⊥,因此22CD OC OD =-线段OC 长为定值,即需求解线段OD 长度的最小值,根据弦中点到圆心的距离最短,此时D 为AB 的中点,点C与点B 重合,因此122CD AB == 16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知射线π4θ=与曲线21(1)x t y t =+⎧⎨=-⎩(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为 . 【测量目标】平面直角坐标与极坐标系下的曲线方程交点.【考查方式】给出了两曲线的极坐标方程,将它们化为一般方程并求出交点. 【难易程度】中等【参考答案】55(,)22 【试题解析】π4θ=在直角坐标系下的一般方程为()y x x =∈R ,将参数方程21(1)x t y t =+⎧⎨=-⎩(t 为参数)转化为直角坐标系下的一般方程为222(1)(11)(2)y t x x =-=--=-表示一条抛物线(步骤1),联立上面两个方程消去y 有2540xx -+=,设A B,两点及其中点P 的横坐标分别为0ABx x x 、、(步骤2),则有韦达定理0522A B x x x+==,又由于点P 点在直线y x=上,因此AB 的中点P 55(,)22.(步骤3) 三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知向量(cos sin sin )x x x ωωω=-,a ,(cos sin ,23cos )x x x ωωω=--b ,设函数()()f x x λ=+∈R a b 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π,04⎛⎫⎪⎝⎭,求函数()f x 在区间3π0,5⎡⎤⎢⎥⎣⎦上的取值范围.【测量目标】平面向量的数量积运算,三角函数的变换及化简.【考查方式】求出函数解析式,根据三角变换求得最小正周期和在特定区间类函数的取值范围.【难易程度】容易【试题解析】(I )因为22()sin cos cos f x x x x ωωωλ=-+cos23sin 2.x x ωωλ=-+π2sin(2)6x ωλ=-+(步骤1).由直线πx =是()y f x =图象的一条对称轴,可πsin(2π)16ω-=±,所以ππ2ππ+()62k k ω-=∈Z ,即1().23k k ω=+∈Z 又1(,1)2k ω∈∈Z ,,所以k =1,故56ω=,所以()f x 的最小正周期为6π5.(步骤2)(II )由()y f x =的图象过点π(,0)4,得π()04f =,(步骤3)即5πππ2sin()2sin 2,6264λ=-⨯-=-=-即2λ=- 故5π()2sin()2,36f x x =--(步骤4)由3π0,5x有π5π5π,6366x --所以15πsin()1236x --,得5π122sin()222,36x ----故函数()f x 在3π0,5⎡⎤⎢⎥⎣⎦上的取值范围为12,22⎡---⎣.(步骤5)18.(本小题满分12分)已知等差数列{}na 前三项的和为3-,前三项的积为8.(Ⅰ)求等差数列{}na 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}na 的前n 项和.【测量目标】等差数列的通项,前n 项和. 【考查方式】由等差数列的前三项和以及积的大小求出通项,由前三项成等比关系求出新数列的前n 和. 【难易程度】容易【试题解析】(I )设等差数列{}na 的公差为d ,则21aa d=+,312aa d=+.有题意得1111333()2a d a a d a d +=-⎧⎨++⎩()=8解得123a d =⎧⎨=-⎩或143a d =-⎧⎨=⎩(步骤1)所以由等差数列通项公式可得23(1)35,n a n n =--=-+或43(1)37.nan n =-+-=-故35,nan =-+或37.nan =-(步骤2)(II )当35na n =-+时,231,,a a a 分别为1,4,2--,不成等比数列. 当37na n =-时,231,,a a a 分别为1,2,4,--成等比数列,满足条件.故37,1,237.37,3nn n an n n -+=⎧=-=⎨-⎩(步骤3)记数列{}na 的前n 项和为nS .当n =1时,114;S a ==当n =2时,2125;S a a =+=当n 3,234...5(337)(347) (37)n n S S a a a n =++++=+⨯-+⨯-++-=[]2(2)2(37)311510.222n n n n -+-+=-+当2n =时,223112210522S=⨯-⨯+=综上,24131110,122n n S n n n =⎧⎪⎨-+⎪⎩,>.(步骤4)19.(本小题满分12分)如图1,45ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD折起,使90BDC ∠=(如图2所示).(Ⅰ)当BD 的长为多少时,三棱锥A BCD -的体积最大;(Ⅱ)当三棱锥A BCD -的体积最大时,设点E ,M分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN与平面BMN 所成角的大小.图1图2第19题图【测量目标】三棱锥的体积公式,均值不等式求最值,利用导数求函数的最值,空间直角坐标系的建立,平行与垂直关系的综合应用.【考查方式】给出了空间几何体的边、角等,通过均值不等式或者导数求出体积的最大值,利用空间向量或者垂直与平行关系求得线面角的大小.【难易程度】中等【试题解析】(I )解法1:在如图1所示的△ABC 中,设BD =x (03)x <<,则3CD x =-.由,45AD BC ACB ⊥∠=知,△ADC 为等腰直角三角形,所以AD =CD =3x -.(步骤1)由折起前AD ⊥平面BCD .又90BDC ∠=,所以11(3).22BCD S BD CD x x ==-△于是1111(3)(3)2(3)333212A BCD BCD V AD S x x x x x x -==--=-△(-)312(3)(3)21233x x x +-+-⎡⎤=⎢⎥⎣⎦当且仅当23,x x =-即当x =1时,等号成立, 故当x =1,即BD =1时,三棱锥A BCD -的体积最大.(步骤2) 解法2:同解法1,得321111=(3)(3)(69).3326A BCD BCD V AD S x x x x x x -=--=-+△(步骤1)令321()(69),6f x x x x =-+由1()(1)(3)02f x x x '=--=,03,x <<解得x =1.当(0,1)x ∈时,()0;f x '>当(1,3)x ∈时,()0f x '<. 所以当x =1,()f x 取1得最大值.故当BD =1时,三棱锥A BCD -的体积最大.(步骤2)(II)解法1:以D 为原点,建立如图a 所示的空间直角坐标系D xyz -.由(I )知,当三棱锥A BCD -的体积最大时,1,2BD AD CD ===.于是可得1(0,0,0),(1,0,0),(0,2,0),(0,0,2),(0,1,1),(,1,0)2D B C A M E且(1,1,1).BM =-(步骤3)设1(0,,0),=2N EN λλ则(-,-1,0).因为EN BM ⊥等价于0EN BM =,即111022λλ+-=(-,-1,0)(-1,1,1)=,故11,(0,,0)22N λ=(步骤4)所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN BM ⊥.设平面BMN 的一个法向量为n(,,),x y z =由BNBM⎧⊥⎪⎨⊥⎪⎩n n ,及1(1,,0),2BN =- 得2y x z x=⎧⎨=-⎩可取(1,2,1)=-n .(步骤5)3cos EN <>=,n即EN 与平面BMN 所成角的大小60.(步骤6)第19题图a解法2:由(I)知,当三棱锥A BCD-的体积最大时,1, 2.===(步骤3)BD AD CD如图b,取CD的中点F,连接,MF BF,EF,则MF AD.由(I)知AD⊥平面BCD,所以MF⊥平面BCD.(步骤4)如图c,延长FE至P点使得FP=DB,连接BP,DP,则四边形DBPF为正方形,所以.⊥取DF得中点N,连接EN,又DP BFE为FP的中点,则EN DP,所以.⊥因为MF⊥平面BCD,又EN⊂面EN BFBCD,所以MF EN⊥.又=MF BF F,因为MF∈面BMF,所以EN⊥BM..因为EN BM⊥当且仅当,⊥而点F是唯一EN BF的,所以点N是唯一的.即当1DN=(即N是CD的靠近点D的一个2四等分点),EN BM⊥.连接MN,ME,由计算得NB=NM=EB=EM5所以△NMB与△EMB是两个共底边的全等的等腰三角形,(步骤5)如图d.BM EGN⊥平面在平面EGN中,过点E作EH GN⊥于H,则EH⊥平面BMN.故ENH∠是EN与平面BMN所成的角.,所在△EGN中,易得EG=GN=NE=22以△EGN是正三角形,故=60EGN∠,即EN与平面BMN所成角的大小为60.(步骤6)图b图c图d第19题图 20.(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,降水量X300X <300700X << 700900X << 900X 工期延0 2 6 100.7,0.9. 求:(Ⅰ)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.【测量目标】概率的加法公式与方差,条件概率. 【考查方式】给出了降水量与工期延误的关系,根据概率的加法公式以及方差公式求出延误天数的均值与方差、条件概率.【难易程度】中等【试题解析】(I)由已知条件和概率的加法公式有:(300)0.3,(300700)(700)(300)=0.70.30.4P X P X P X P X==--=<<<<<(700900)=(900)700=0.90.70.2P X P X P X--=<<(<)(900)1(900)=10.90.1.P X P X=--=<(步骤1)所以Y的分布列为:Y0 2 6 1 0P0.0.0.0于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=2222()(03)0.3(23)0.4(63)0.2(103)0.19.8.D Y =-⨯+-⨯+-⨯+-⨯=故工期延误天数Y 的均值为3,方差9.8.(步骤2)(II )由概率的加法公式,(300)1(300)0.7P X P X =-=<,又(300900)(900)(300)0.90.30.6P X P X P X =-=-=<<<.由条件概率,得(300900)0.66(6300)(900300)(300)0.77P X P YXP X XP X ====<<.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.(步骤3)21.(本小题满分13分)设A 是单位圆221xy +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足(01),DM m DA m m =≠>,且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .3 4 2 .1(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的k >0,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【测量目标】双曲线的标准方程,直线的方程,直线与双曲线的位置关系,双曲线中的定点问题.【考查方式】给出了圆的方程以及直线与圆的位置关系,从而判断轨迹为何种曲线,根据直线与方程的联立求出满足条件的点. 【难易程度】较难【试题解析】(I )如图1,设0(,),(,),M x y A x y 则由(01),DM m DA m m =≠>,且可得0,,x x y m y ==所以001,.xx y y m==①因为A 点在单位圆上运动,所以22001x y +=②将①式代入②式即得所求曲线C 的方程为2221(0)y x m m m+=≠>,且1,(步骤1)因为(0,1)(1,),m ∈+∞所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为22(1,0),(1,0)m m ---;(步骤2)当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为22(0,1),(0,1)m m ---.(步骤3)(II )解法1:如图2、30k ∀>,设1122(,),(,),P x kx H x y 则111(,),(0,),Q x kx N kx --直线QN 的方程为12y kx kx =+,将其代入椭圆C 的方程并整理可得222222211(4)40.m k x k x x k x m +++-=依题意可知此方程的两根为12,,x x -于是由韦达定理可得21122244k x x x m k -+=-+,即21222.4m x x m k=+(步骤4)因为点H 在直线QN 上,所以212122222.4km x y kx kx m k-==+于是112121(2,2),(,)PQ x kx PH x x y kx =--=--=2211222242(,)44k x km x m k m k -++.而PQ PH ⊥等价于PQ PH =2221224(2)0,4m k x m k-=+即220m-=,又m >0,得2m =,故存在2m =,使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.(步骤5)第21题图1解法2:如图2、3,1(0,1)x ∀∈,设1122(,),(,),P x y H x y 则111(,),(0,)Q x y N y --因为P ,H 两点在椭圆C 上,所以222211222222m x y m m x y m ⎧+=⎨+=⎩,两式相减可得222221212()()0.m x x y y -+-=(步骤3)依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠,于是由③式可得212121212()()()()y y y y m x x x x -+=--+.(步骤4)又Q ,N ,H 三点共线,所以QNQHK K =,即1121122.yy y x x x +=+于是由④式可得211212*********()()1.2()()2PQPHy y y y y y y m K K x x x x x x x --+===---+(步骤5) 而PQ PH ⊥等价于PQPHK K =1-,即22m -=1-,又m >0,得m =2.故存在m =2,使得在其对应的椭圆2212y x +=上,对任意的k >0,都有PQ PH ⊥. (步骤6)图2图3(0<m <1) (m >1)第21题图 22.(本小题满分14分) (Ⅰ)已知函数()(1)(0)rf x rx xr x =-+->,其中r 为有理数,且01r <<. 求()f x 的 最小值;(Ⅱ)试用(Ⅰ)的结果证明如下命题:设12120,0,,aa b b ,为正有理数. 若121b b+=,则12121122;b b aaa b a b +(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题. 注:当α为正有理数时,有求导公式1()xx ααα-'=.【测量目标】利用导数求函数的单调区间及最值、解不等式问题,数学归纳法.【考查方式】给出函数解析式,求其导数从而求出函数的最值.给出了参数的范围,利用问题(I )的结论以及导数解决不等式的证明.在利用(II )的命题根据数学归纳法得到命题的一般形式进行推广.【难易程度】较难 【试题解析】(I )11()(1),r r f x r rx r x --'=-=-令()0f x '=,解得x =1.当0<x <1时,()0f x '<,所以f (x )在(0,1)内是减函数;当x >1时,()f x '>0,所以f (x )在(0,1)内是增函数.故函数()f x 在x =1处取得最小值(1)0.f =(步骤1) (II )由(I )知,当(0,)x ∈+∞时,有()(1)0f x f =,即(1)rx rx r +-若12,a a 中有一个不为0,则12121122b b aa ab a b ++成立(步骤2);若12,a a 均不为0,又121b b+=,可得211bb =-,于是在①中令112,,ax r b a ==可得1111122(1),b a a b b a a ⎛⎫+- ⎪⎝⎭即12121121(1)b b aaa b a b +-,亦即12121122b b aaa b a b +.(步骤3)综上,对12120,0,,aa b b 为正有理数且121b b+=,总有12121122b b a a a b a b +.②(步骤3)(III) (II )中命题的推广形式为: 设12,,,na a a …为非负实数,12,,,nb b b …为正有理数.若121,kb b b+++=…则12121122+kb b b k k kaa a ab a b a b ++…….(步骤4)③用数学归纳法证明如下: (1)当1n =时,11,b =有11,aa ③成立.(步骤5)(2)假设当n k =时③成立,即若12,,,ka a a …,非负实数,12,,,kb b b …,为正有理数.且121,kb b b+++=…则12121122kb b b k k ka a a ab a b a b ++…….当1n k =+时,已知12,,,ka a a …,1k a +非负实数,12,,,kb b b …,1k b +为正有理数且1211,kk b b b b+++++=…此时101k b+<<,即110k b+->,(步骤6)于是111212121121(...)kk kk b b b b b b b b k k k k a a a aa a a a++++= (1)2111+1+11111121()kk k k k k b b b b b b b b kk aa a a +++----+=…12111...1111k k k k b b b b b b ++++++=---,由归纳假设可得1211111112k k k k b b b b b b kaa a +++--- (1122)121211111111k k k k k k k k b a b a b a b b b a a a b b b b +++++++++=----……从而112121k k b b b b k k aa a a ++ (1)111122111k k b b k k k k a b a b a b a b ++-++⎛⎫++ ⎪-⎝⎭…(步骤7)又因1+1(1)=1k k bb +-+,由②得11111221122111111k k b b k k k kk k k k a b a b a b a b a b a b a b b b ++-++++⎛⎫++++ ⎪--⎝⎭……+(1-)1+1k k a b ++=1122k ka b a b a b ++…++11k k a b ++,从而112121kk b b b b k k a a a a ++ (11)2211k kk k a b a b a b a b +++++…+.(步骤7) 故当1n k =+时,③成立. 由(1)(2)可知,对一切正整数n ,所推广的命题成立. 说明:(III )中如果推广形式中指出③式对2n 成立,则后续证明不需要讨论1n =的情况(步骤8)。
完整版2012年湖北省高考数学试卷理科答案及解析

2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的2+6x+13=0的一个根是(湖北)方程x)1.(2012? A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i,∈Q”的否定是(“?x∈CQ)2.(2012?湖北)命题R0,?CQQQ ∈D.?xQ,?Q C.?x?CQ∈,C A.?x?Q.,∈Q B?x∈C R0R0RR003.(2012?湖北)已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为().. C AD.B.4.(2012?湖北)已知某几何体的三视图如图所示,则该集合体的体积为().D.6π.B.3πAC2012+a能被13整除,则a=()51Z(2012?湖北)设a∈,且0≤a≤13,若5.A.0 B.1 C.11 D.12222222,则=()x=10,+y+zax+by+cz=20=40,azyxcba?(6.2012湖北)设,,,,,是正数,且+b+cCBA ....D1}a),{f(f(0,+∞)上的函数(x),如果对于任意给定的等比数列{a}.7(2012?湖北)定义在(﹣∞,0)∪nn)x①f(+.现有定义在(﹣∞,0)∪(0,∞)上的如下函数:f仍是等比数列,则称(x)为“保等比数列函数”x2)=ln|x|).则其中是“保等比数列函数”的f(=2;②f(x)x;③f(x))的序号为(=;④f(x=x D.②④B.③④C.①③.A①②内随机为直径作两个半圆.在扇形OAB(2012?湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB8.)取一点,则此点取自阴影部分的概率是(.D﹣A.1C﹣B..2)在区间[0,4]上的零点个数为(湖北)函数9.(2012?f(x)=xcosx7 .5 C.6 D.A.4 B曰:置积尺数,以十六乘之,九而一,所得开立方2012?湖北)我国古代数学名著《九章算术》中“开立圆术”(10..人们还用过一≈的一个近似公式,求其直径dd除之,即立圆径,“开立圆术”相当于给出了已知球的体积V )判断,下列近似公式中最精确的一个是(些类似的近似公式.根据x=3.14159…..≈≈C.d.≈Dd A.d≈B.d分.请将答案5分,共25二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.,则角_________C=.cb所对的边分别是a,,c.若(a+b﹣)(a+b+c)=ab,,△201211.(?湖北)设ABC的内角AB,C_________.(2012?湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=12.位回2等.显然,3443,942492213.(2012?湖北)回文数是指从左到右与从右到左读都一样的正整数.如,,11 999,.则:191,202,…,个:,22,,33…99.3位回文数有90101,111121,…,119文数有个:_________位回文数有个;Ⅰ()4(Ⅱ)2n+1(n∈N)位回文数有_________个.+2,,两焦点为F.(2012?B湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A,A,虚轴两端点为,B1411122 D为直径的圆内切于菱形F.若以AAFBFB,切点分别为A,B,C,.则:2112221;(Ⅰ)双曲线的离心率_________e=(Ⅱ)菱形FBFB的面积S与矩形ABCD的面积S的比值=_________.212211二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(2012?湖北)(选修4﹣1:几何证明选讲)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为_________.16.(2012?湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线_________.来两点,则线段AB的中点的直角坐标为(t为参数)相较于A,B75分.解答应写出文字说明、证明过程或演算步骤.三、解答题:本大题共6小题,共λ?+)f(x=,设函数cos,(﹣=cosωx﹣sinωx2ωx)xxx=(17.2012?湖北)已知向量(cos ω﹣sinω,sinω),,1)(λπ∈(xR)的图象关于直线x=对称,其中ω,为常数,且ω∈)的最小正周期;f(1)求函数(x上的取值范围.,)在区间(,)的图象经过点(0)求函数fx[0]xy=f2()若(18.(2012?湖北)已知等差数列{a}前三项的和为﹣3,前三项的积为8.n(1)求等差数列{a}的通项公式;n 3项和.|}的前naa,,a成等比数列,求数列{|a(2)若n213,AB上且异于点B,连接⊥BC,垂足D在线段BC1,∠ACB=45°,BC=3,过动点A作AD(19.2012?湖北)如图,(如图2所示)ABD折起,使∠BDC=90°沿AD将△的体积最大;A﹣BCD(1)当BD的长为多少时,三棱锥,BMEN⊥CD上确定一点N,使得设点E,M分别为棱BC,AC 的中点,试在棱(2)当三棱锥A﹣BCD的体积最大时,所成角的大小.与平面BMN并求EN20.(2012?湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:X≥900 降水量X X<300 300≤X<700 700≤X<900工期延误天数Y 02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.22=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i湖北)设21.(2012?A是单位圆x与+yx轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x=rxf湖北).22(2012?(I)已知函数(x)﹣x)的最小值;b1b2≤ab+aab;a+b为正有理数,若b≥≥I(II)试用()的结果证明如下命题:设a0,a0,,bb=1,则222121121112(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求r1﹣αα.α道公式(x)=x42012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2012?湖北)考点:复数相等的充要条件。
2012年湖北省高考数学试卷(理科)附送答案

2012年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i2.(5分)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q3.(5分)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.4.(5分)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π5.(5分)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.126.(5分)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.7.(5分)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.(5分)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.(5分)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.710.(5分)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果s=.13.(5分)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有个;)位回文数有个.(Ⅱ)2n+1(n∈N+14.(5分)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD 的垂线交⊙O于点C,则CD的最大值为.16.(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.18.(12分)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.19.(12分)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.20.(12分)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥90002610工期延误天数Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.21.(13分)设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.22.(14分)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.2012年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)(2012•湖北)方程x2+6x+13=0的一个根是()A.﹣3+2i B.3+2i C.﹣2+3i D.2+3i【分析】由方程x2+6x+13=0中,△=36﹣52=﹣16<0,知=﹣3±2i,由此能求出结果.【解答】解:∵方程x2+6x+13=0中,△=36﹣52=﹣16<0,∴=﹣3±2i,故选A.2.(5分)(2012•湖北)命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x0∉∁R Q,x03∈Q D.∀x0∈∁R Q,x03∉Q【分析】根据特称命题“∃x∈A,p(A)”的否定是“∀x∈A,非p(A)”,结合已知中命题,即可得到答案.【解答】解:∵命题“∃x0∈C R Q,∈Q”是特称命题,而特称命题的否定是全称命题,∴“∃x0∈C R Q,∈Q”的否定是∀x0∈C R Q,∉Q故选D3.(5分)(2012•湖北)已知二次函数y=f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C.D.【分析】先根据函数的图象求出函数的解析式,然后利用定积分表示所求面积,最后根据定积分运算法则求出所求.【解答】解:根据函数的图象可知二次函数y=f(x)图象过点(﹣1,0),(1,0),(0,1)从而可知二次函数y=f(x)=﹣x2+1∴它与X轴所围图形的面积为=()=(﹣+1)﹣(﹣1)=故选B.4.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为()A. B.3πC.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:=3π.故选B.5.(5分)(2012•湖北)设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()A.0 B.1 C.11 D.12【分析】由二项式定理可知512012+a=(52﹣1)2012+a的展开式中的项含有因数52,要使得能512012+a能被13整除,只要a+1能被13整除,结合已知a的范围可求【解答】解:∵512012+a=(52﹣1)2012+a=+…++a由于含有因数52,故能被52整除要使得能512012+a能被13整除,且a∈Z,0≤a≤13则可得a+1=13∴a=12故选D6.(5分)(2012•湖北)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,则=()A.B.C.D.【分析】根据所给条件,利用柯西不等式求解,利用等号成立的条件即可.【解答】解:由柯西不等式得,(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2,当且仅当时等号成立∵a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,∴等号成立∴∴=故选C.7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln|x|.则其中是“保等比数列函数”的f (x)的序号为()A.①②B.③④C.①③D.②④【分析】根据新定义,结合等比数列性质,一一加以判断,即可得到结论.【解答】解:由等比数列性质知,①=f2(a n),故正确;+1),故不正确;②≠=f2(a n+1),故正确;③==f2(a n+1④f(a n)f(a n+2)=ln|a n|ln|a n+2|≠=f2(a n+1),故不正确;故选C8.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB 为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.【分析】求出阴影部分的面积即可,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB的面积.【解答】解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A.9.(5分)(2012•湖北)函数f(x)=xcosx2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.7【分析】令函数值为0,构建方程,即可求出在区间[0,4]上的解,从而可得函数f(x)=xcosx2在区间[0,4]上的零点个数【解答】解:令f(x)=0,可得x=0或cosx2=0∴x=0或x2=,k∈Z∵x∈[0,4],则x2∈[0,16],∴k可取的值有0,1,2,3,4,∴方程共有6个解∴函数f(x)=xcosx2在区间[0,4]上的零点个数为6个故选C10.(5分)(2012•湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈.人们还用过一些类似的近似公式.根据π=3.14159…..判断,下列近似公式中最精确的一个是()A.d≈B.d≈ C.d≈D.d≈【分析】根据球的体积公式求出直径,然后选项中的常数为,表示出π,将四个选项逐一代入,求出最接近真实值的那一个即可.【解答】解:由V=,解得d=设选项中的常数为,则π=选项A代入得π==3.375;选项B代入得π==3;选项C代入得π==3.14;选项D代入得π==3.142857由于D的值最接近π的真实值故选D.二、填空题:(一)必考题(11-14题)本大题共4小题,考试共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2012•湖北)设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.【分析】利用已知条件(a+b﹣c)(a+b+c)=ab,以及余弦定理,可联立解得cosB 的值,进一步求得角B.【解答】解:由已知条件(a+b﹣c)(a+b+c)=ab可得a2+b2﹣c2+2ab=ab即a2+b2﹣c2=﹣ab由余弦定理得:cosC==又因为0<C<π,所以C=.故答案为:12.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.【分析】用列举法,通过循环过程直接得出S与n的值,得到n=3时退出循环,即可.【解答】解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.13.(5分)(2012•湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:(Ⅰ)4位回文数有90个;(Ⅱ)2n+1(n∈N)位回文数有9×10n个.+【分析】(I)利用回文数的定义,四位回文数只需从10个数字中选两个可重复数字即可,但要注意最两边的数字不能为0,利用分步计数原理即可计算4位回文数的个数;(II)将(I)中求法推广到一般,利用分步计数原理即可计算2n+1(n∈N)位+回文数的个数【解答】解:(I)4位回文数的特点为中间两位相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选法;第二步,选中间两位数字,有10种选法;故4位回文数有9×10=90个故答案为90(II)第一步,选左边第一个数字,有9种选法;第二步,分别选左边第2、3、4、…、n、n+1个数字,共有10×10×10×…×10=10n 种选法,)位回文数有9×10n个故2n+1(n∈N+故答案为9×10n14.(5分)(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.【分析】(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为,根据以A1A2为直径的圆内切于菱形F1B1F2B2,可得,由此可求双曲线的离心率;(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn=,由此可得结论.(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为【解答】解:∵以A1A2为直径的圆内切于菱形F1B1F2B2,∴∴(c2﹣a2)c2=(2c2﹣a2)a2∴c4﹣3a2c2+a4=0∴e4﹣3e2+1=0∵e>1∴e=(Ⅱ)菱形F1B1F2B2的面积S1=2bc设矩形ABCD,BC=2n,BA=2m,∴∵m2+n2=a2,∴,∴面积S2=4mn=∴==∵bc=a2=c2﹣b2∴∴=故答案为:,二、填空题:(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B铅笔涂黑,如果全选,则按第15题作答结果计分.)15.(5分)(2012•湖北)如图,点D在⊙O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交⊙O于点C,则CD的最大值为2.【分析】由题意可得CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值,故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半.【解答】解:由题意可得△OCD为直角三角形,故有CD2=OC2﹣OD2,故当半径OC最大且弦心距OD最小时,CD取得最大值.故当AB为直径、且D为AB的中点时,CD取得最大值,为AB的一半,由于AB=4,故CD的最大值为2,故答案为2.16.(2012•湖北)(选修4﹣4:坐标系与参数方程):在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ=与曲线(t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为(2.5,2.5).【分析】化极坐标方程为直角坐标方程,参数方程为普通方程,联立可求线段AB的中点的直角坐标.【解答】解:射线θ=的直角坐标方程为y=x(x≥0),曲线(t为参数)化为普通方程为y=(x﹣2)2,联立方程并消元可得x2﹣5x+4=0,∴方程的两个根分别为1,4∴线段AB的中点的横坐标为2.5,纵坐标为2.5∴线段AB的中点的直角坐标为(2.5,2.5)故答案为:(2.5,2.5)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖北)已知向量=(cosωx﹣sinωx,sinωx),=(﹣cosωx ﹣sinωx,2cosωx),设函数f(x)=•+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1)(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(,0)求函数f(x)在区间[0,]上的取值范围.【分析】(1)先利用向量数量积运算性质,求函数f(x)的解析式,再利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k型函数,最后利用函数的对称性和ω的范围,计算ω的值,从而得函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再求内层函数的值域,最后将内层函数看做整体,利用正弦函数的图象和性质即可求得函数f(x)的值域.【解答】解:(1)∵f(x)=•+λ=(cosωx﹣sinωx)×(﹣cosωx﹣sinωx)+sinωx ×2cosωx+λ=﹣(cos2ωx﹣sin2ωx)+sin2ωx+λ=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z∴ω=+,又ω∈(,1)∴k=1时,ω=∴函数f(x)的最小正周期为=(2)∵f()=0∴2sin(2××﹣)+λ=0∴λ=﹣∴f(x)=2sin(x﹣)﹣由x∈[0,]∴x﹣∈[﹣,]∴sin(x﹣)∈[﹣,1]∴2sin(x﹣)﹣=f(x)∈[﹣1﹣,2﹣]故函数f(x)在区间[0,]上的取值范围为[﹣1﹣,2﹣]18.(12分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.【分析】(I)设等差数列的公差为d,由题意可得,,解方程可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为a n=3n﹣7,则|a n|=|3n ﹣7|=,根据等差数列的求和公式可求【解答】解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d由题意可得,解得或由等差数列的通项公式可得,a n=2﹣3(n﹣1)=﹣3n+5或a n=﹣4+3(n﹣1)=3n ﹣7(II)当a n=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当a n=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件故|a n|=|3n﹣7|=设数列{|a n|}的前n项和为S n当n=1时,S1=4,当n=2时,S2=5当n≥3时,S n=|a1|+|a2|+…+|a n|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式综上可得19.(12分)(2012•湖北)如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.【分析】(1)设BD=x,先利用线面垂直的判定定理证明AD即为三棱锥A﹣BCD 的高,再将三棱锥的体积表示为x的函数,最后利用导数求函数的最大值即可;(2)由(1)可先建立空间直角坐标系,写出相关点的坐标和相关向量的坐标,设出动点N的坐标,先利用线线垂直的充要条件计算出N点坐标,从而确定N 点位置,再求平面BMN的法向量,从而利用夹角公式即可求得所求线面角【解答】解:(1)设BD=x,则CD=3﹣x∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D∴AD⊥平面BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)∴V A﹣BCD设f(x)=(x3﹣6x2+9x)x∈(0,3),∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数∴当x=1时,函数f(x)取最大值∴当BD=1时,三棱锥A﹣BCD的体积最大;(2)以D为原点,建立如图直角坐标系D﹣xyz,由(1)知,三棱锥A﹣BCD的体积最大时,BD=1,AD=CD=2∴D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E (,1,0),且=(﹣1,1,1)设N(0,λ,0),则=(﹣,λ﹣1,0)∵EN⊥BM,∴•=0即(﹣1,1,1)•(﹣,λ﹣1,0)=+λ﹣1=0,∴λ=,∴N(0,,0)∴当DN=时,EN⊥BM设平面BMN的一个法向量为=(x,y,z),由及=(﹣1,,0)得,取=(1,2,﹣1)设EN与平面BMN所成角为θ,则=(﹣,﹣,0)sinθ=|cos<,>|=||==∴θ=60°∴EN与平面BMN所成角的大小为60°20.(12分)(2012•湖北)根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:降水量X X<300300≤X<700700≤X<900X≥900工期延误天数02610Y历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:(I)工期延误天数Y的均值与方差;(Ⅱ)在降水量X至少是300的条件下,工期延误不超过6天的概率.【分析】(I)由题意,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,结合某程施工期间的降水量对工期的影响,可求相应的概率,进而可得期延误天数Y的均值与方差;(Ⅱ)利用概率的加法公式可得P(X≥300)=1﹣P(X<300)=0.7,P(300≤X <900)=P(X<900)﹣P(X<300)=0.9﹣0.3=0.6,利用条件概率,即可得到结论【解答】(I)由题意,P(X<300)=0.3,P(300≤X<700)=P(X<700)﹣P(X <300)=0.7﹣0.3=0.4,P(700≤X<900)=P(X<900)﹣P(X<700)=0.9﹣0.7=0.2,P(X≥900)=1﹣0.9=0.1Y的分布列为Y02610P0.30.40.20.1∴E(Y)=0×0.3+2×0.4+6×0.2+10×0.1=3D(Y)=(0﹣3)2×0.3+(2﹣3)2×0.4+(6﹣3)2×0.2+(10﹣3)2×0.1=9.8∴工期延误天数Y的均值为3,方差为9.8;(Ⅱ)P(X≥300)=1﹣P(X<300)=0.7,P(300≤X<900)=P(X<900)﹣P (X<300)=0.9﹣0.3=0.6由条件概率可得P(Y≤6|X≥300)=.21.(13分)(2012•湖北)设A是单位圆x2+y2=1上的任意一点,l是过点A与x 轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m 丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.【分析】(I)设M(x,y),A(x0,y0),根据丨DM丨=m丨DA丨,确定坐标之间的关系x0=x,|y0|=|y|,利用点A在圆上运动即得所求曲线C的方程;根据m∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;(Ⅱ)∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),利用P,H两点在椭圆C上,可得,从而可得可得.利用Q,N,H三点共线,及PQ⊥PH,即可求得结论.【解答】解:(I)如图1,设M(x,y),A(x0,y0)∵丨DM丨=m丨DA丨,∴x=x0,|y|=m|y0|∴x0=x,|y0|=|y|①∵点A在圆上运动,∴②①代入②即得所求曲线C的方程为∵m∈(0,1)∪(1,+∞),∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(),m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(﹣x1,﹣y1),N(0,y1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴k QN=k QH,∴∴k PQ•k PH=∵PQ⊥PH,∴k PQ•k PH=﹣1∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH22.(14分)(2012•湖北)(I)已知函数f(x)=rx﹣x r+(1﹣r)(x>0),其中r 为有理数,且0<r<1.求f(x)的最小值;(II)试用(I)的结果证明如下命题:设a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;(III)请将(II)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(xα)r=αxα﹣1.【分析】(I)求导函数,令f′(x)=0,解得x=1;确定函数在(0,1)上是减函数;在(0,1)上是增函数,从而可求f(x)的最小值;(II)由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r),分类讨论:若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,,可得a1b1a2b2≤a1b1+a2b2成立(III)(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;用数学归纳法证明:(1)当n=1时,b1=1,a1≤a1,推广命题成立;(2)假设当n=k时,推广命题成立,证明当n=k+1时,利用a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1,结合归纳假设,即可得到结论.【解答】(I)解:求导函数可得:f′(x)=r(1﹣x r﹣1),令f′(x)=0,解得x=1;当0<x<1时,f′(x)<0,所以f(x)在(0,1)上是减函数;当x>1时,f′(x)>0,所以f(x)在(0,1)上是增函数所以f(x)在x=1处取得最小值f(1)=0;(II)解:由(I)知,x∈(0,+∞)时,有f(x)≥f(1)=0,即x r≤rx+(1﹣r)①若a1,a2中有一个为0,则a1b1a2b2≤a1b1+a2b2成立;若a1,a2均不为0,∵b1+b2=1,∴b2=1﹣b1,∴①中令,可得a1b1a2b2≤a1b1+a2b2成立综上,对a1≥0,a2≥0,b1,b2为正有理数,若b1+b2=1,则a1b1a2b2≤a1b1+a2b2;②(III)解:(II)中的命题推广到一般形式为:设a1≥0,a2≥0,…,a n≥0,b1,b2,…,b n为正有理数,若b1+b2+…+b n=1,则a1b1a2b2…a n bn≤a1b1+a2b2+…a n b n;③用数学归纳法证明(1)当n=1时,b1=1,a1≤a1,③成立(2)假设当n=k时,③成立,即a1≥0,a2≥0,…,a k≥0,b1,b2,…,b k为正有理数,若b1+b2+…+b k=1,则a1b1a2b2…a k bk≤a1b1+a2b2+…a k b k.当n=k+1时,a1≥0,a2≥0,…,a k+1≥0,b1,b2,…,b k+1为正有理数,若b1+b2+…+b k+1=1,>0则1﹣b k+1于是a1b1a2b2…a k bk a k+1bk+1=(a1b1a2b2…a k bk)a k+1bk+1=a k+1bk+1∵++…+=1∴…≤++…+=bk+1≤•(1∴a k+1﹣b k)+a k+1b k+1,+1∴a1b1a2b2…a k b ka k+1bk+1≤a1b1+a2b2+…a k b k+a k+1b k+1.∴当n=k+1时,③成立由(1)(2)可知,对一切正整数,推广的命题成立.。
2012高考湖北理科数学试题及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学理工农医类(湖北卷)本试卷共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程x 2+6x +13=0的一个根是( ) A .-3+2i B .3+2i C .-2+3i D .2+3i2.命题“x 0∈R Q ,30x ∈Q ”的否定是( )A .x 0R Q ,30x ∈Q B .x 0∈R Q ,30x QC .x R Q ,x 3∈QD .x ∈R Q ,x3Q 3.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A .2π5 B .43 C .32 D .π24.已知某几何体的三视图如图所示,则该几何体的体积为( )A .8π3 B .3π C .10π3D .6π 5.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .126.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a b cx y z++=++( )A .14B .13C .12D .347.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A.①②B.③④C.①③D.②④8.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.21π-B.112π-C.2πD.1π9.函数f(x)=x cos x2在区间[0,4]上的零点个数为()A.4 B.5 C.6 D.710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈人们还用过一些类似的近似公式.根据π=3.141 59…判断,下列近似公式中最精确的一个是()A.d≈B.d≈C.d≈D.d≈二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.11.设△ABC的内角A,B,C所对的边分别为a,b,c.若(a+b-c)(a+b+c)=ab,则角C=________.12.阅读如图所示的程序框图,运行相应的程序,输出的结果s=________.13.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N+)位回文数有________个.14.如图,双曲线22221x y a b-=(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则(1)双曲线的离心率e =________;(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值12S S =________. 15. (选修4—1:几何证明选讲)如图,点D 在O 的弦AB 上移动,AB =4,连接OD ,过点D 作OD 的垂线交O 于点C ,则CD 的最大值为________.16.(选修4—4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线π4θ=与曲线21(1)x t y t ⎧⎨⎩=+=-(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,x ω),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1). (1)求函数f (x )的最小正周期; (2)若y =f (x )的图象经过点(π4,0),求函数f (x )在区间[0,3π5]上的取值范围. 18.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 19.如图1,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2所示).图1 图2(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大;(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.20求:(1)工期延误天数Y 的均值与方差;(2)在降水量X 至少是300的条件下,工期延误不超过6天的概率.21.设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.22. (1)已知函数f (x )=rx -x r +(1-r )(x >0),其中r 为有理数,且0<r <1,求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数,若b 1+b 2=1,则a 1b 1a 2b 2≤a 1b 1+a 2b 2; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题.注:当α为正有理数时,有求导公式(x α)′=αx α-1.1. A 由题意可得,∆=62-4×13=-16,故x =64i2-±=-3±2i ,故A 项正确. 2. D 该特称命题的否定为“x ∈R Q ,x 3Q ”.3. B 由图象可得二次函数的解析式为f (x )=-x 2+1,则与x 轴所围图形的面积312114(1)d ()133x S x x x --+=-+=-⎰=.4. B 由三视图画出几何体,如图所示,该几何体的体积V =2π+π=3π.5. D ∵52能被13整除,∴512 012可化为(52-1)2 012,其二项式系数为T r +1=2012C r 522012-r·(-1)r .故(52-1)2 012被13除余数为20122012C (-1)2 012=1,则当a =12时,512 012+12被13整除.6. C ∵由题意可得,22210444x y z ++=, ∴a 2+b 2+c 2+222444x y z ++-ax -by -cz =0, 即(a -2x )2+(b -2y )2+(c -2z)2=0.∴2x a =,2y b =,2z c =.∴122x y za b c x y z x y z ++++==++++. 7.C 设等比数列{a n }的公比为q ,则对于f (x )=x 2,f (a n )=2n a ,由等比数列得,222211()n n n n a a q a a --==,符合题意;而对于f (x )=2x和f (x )=ln|x |,则f (a n )=2a n 和f (a n )=ln|a n |.由等比数列定义得,122n n a a -=2a n -a n -1.1ln ||ln ||n n a a -都不是定值,故不符合题意;而对于f (x )=则f (a n ),==为定值,符合题意.故选C 项.8. A 设OA =OB =2R ,连接AB ,如图所示.由对称性可得,阴影的面积等于直角扇形拱形的面积,S 阴=14π(2R )2-12×(2R )2=(π-2)R 2,S 扇=14π(2R )2=πR 2,故所求的概率是22(π2)21ππR R -=-.9. C 令f (x )=x cos x 2=0可得,x =0或cos x 2=0,故x =0或x 2=k π+π2,k ∈Z .又x ∈[0,4],则x 2∈[0,16],则k =0,1,2,3,4符合题意,故在区间[0,4]上的零点个数为6.10. D 由34π3V R =,得34π()32d V =,整理可得d =π=3.141 59代入,近似得d =. 11.答案:2π3解析:∵由(a +b -c )(a +b +c )=ab ,整理可得,a 2+b 2-c 2=-ab ,∴2221cos 222a b c ab C ab ab +--===-,∴2π3C =.12.答案:9解析:由程序框图依次可得, s =1,a =3;n =2,s =4,a =5; n =3,s =9,a =7; 结束,输出s =9.13.答案:(1)90 (2)9×10n解析:(1)2位回文数均是不为0的自然数,故有9个;而对于3位回文数,首、末均相同且不为0,故有9种,而对于中间一数可含有0,故有10种,因此3位回文数有90种;对于4位回文数,首、末均相同且不为0,故有9种,对于中间两数则可含有0,故有10种,因此也有90种;(2)经归纳可得2n +1位回文数有9×10n 个.14.答案:解析:(1)连接OA .在Rt △B 2OF 2中,∵OA =a ,OB 2=b ,OF 2=c ,∴22B F =由等面积法可得bc a =,两边平方可得,b 2c 2=(b +c )a .①又由b 2=c 2-a 2代入①式可得,c 4-3a 2c 2+a 4=0.同时除以a 4可得,e 4-3e 2+1=0,解得,232e +=,故12e +=. (2)S 1=S 菱形F 1B 1F 2B 2=12×2c ×2b =2cb ,在Rt △OAF 2中,∵OA =a ,OF 2=c ,∴AF 2=b .∴A ab x c =.再由△OAB 2∽△F 2AO 得,22AB OAAO F A=,即22a AB b =,故232A a a a b y b b⨯==,因此,S 2=4x A ·y A =34244ab a a c b bc ⨯⨯=,于是222222144222211(1)2224S cb b c b c e e a S a a a bc===⋅⋅=-⋅=. 15.答案:2 解析:连结OC ,则OD ⊥CD 知,OD 2+CD 2=OC 2.要使CD 最大,则OD 最小;当OD ⊥AB 时,OD 最小,此时CD =2.16.答案:55(,)22解析:由极坐标方程可知,π4θ=表示直线y =x ,而21(1)x t y t ⎧⎨⎩=+,=-表示y =(x -2)2.设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0).联立2(2)y x y x ⎧⎨⎩==-可得,x 2-5x +4=0,可得x 1+x 2=5.即x 0=y 0=12522x x +=,故M 55(,)22. 17.解:(1)因为f (x )=sin 2ωx -cos 2ωx+ωx ·cos ωx +λ=-cos2ωxωx +λ=2sin(2ωx -π6)+λ.由直线x =π是y =f (x )图象的一条对称轴,可得sin(2ωπ-π6)=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即123k ω=+(k ∈Z ). 又ω∈(12,1),k ∈Z ,所以56ω=.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点(π4,0),得f (π4)=0,即5πππ2sin()2sin 6264λ=-⨯-=-=λ=故5π()2sin()36f x x =--由0≤x ≤3π5,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --≤,故函数f (x )在[0,3π5]上的取值范围为[1-.18.解:(1)设等差数列{|a n |}的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得1111333()(2)8.a d a a d a d ⎧⎨⎩+=-,++=解得123a d ⎧⎨⎩==-或14,3.a d -⎧⎨⎩==所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列,不满足条件; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=371,237 3.n n n n ⎧⎨≥⎩-+,=,-,记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =2(2)[2(37)]311510222n n n n -+-+=-+.当n =2时,满足此式.综上,241,31110 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩,,19.解:(1)方法一:在题图1所示的△ABC 中,设BD =x (0<x <3),则CD =3-x .由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x . 由折起前AD ⊥BC 知,折起后(如题图2),AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D . 所以AD ⊥平面BCD . 又∠BDC =90°, 所以S △BCD =12BD ·CD =12x (3-x ).于是V A -BCD =12AD ·S △BCD =13(3-x )·12x (3-x )=112·2x (3-x )(3-x ) ≤312(3)(3)2[]1233x x x +-+-=, 当且仅当2x =3-x ,即x =1时,等号成立,故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.方法二:同方法一,得V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ). 令f (x )=16(x 3-6x 2+9x ),由f ′(x )=12(x -1)(x -3)=0,且0<x <3,解得x =1.当x ∈(0,1)时,f ′(x )>0;当x ∈(1,3)时,f ′(x )<0.所以当x =1时,f (x )取得最大值.故当BD =1时,三棱锥A -BCD 的体积最大.(2)方法一:以D 为原点,建立如图a 所示的空间直角坐标系D -xyz . 由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E (12,1,0),且BM =(-1,1,1).设N (0,λ,0),则EN =(12-,λ-1,0),因为EN ⊥BM 等价于0EN BM ⋅= ,即(12-,λ-1,0)·(-1,1,1)=12+λ-1=0,故12λ=,N (0,12,0).所以当12DN =(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ),由,,BN BM ⎧⊥⎪⎨⊥⎪⎩n n ,及BN =(-1,12,0),得2.y x z x ⎧⎨⎩=,=-可取n =(1,2,-1). 设EN 与平面BMN 所成角的大小为θ,则由11(,,0)22EN =-- ,n =(1,2,-1),可得sin θ=cos(90°-θ)=1|1|||2||||EN EN --⋅==⋅ n n ,即θ=60°. 故EN 与平面BMN 所成角的大小为60°.图a 图b图c 图d方法二:由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=CD=2,如图b,取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图c,延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF.因为MF⊥平面BCD,又EN平面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥平面BMF.又BM平面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当12DN=(即N是CD的靠近点D的一个四等分点),EN⊥BM.连结MN,ME,由计算得NB=NM=EB=EM=2,所以△NMB与△EMB是两个共底边的全等的等腰三角形,如图d所示,取BM的中点G,连接EG,NG,则BM⊥平面EGN.在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN,故∠ENH是EN与平面BMN所成的角.在△EGN中,易得EG=GN=NE=2,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.20.解:(1)由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为:于是,E(Y)=0×0.3+D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y的均值为3,方差为9.8.(2)由概率的加法公式,P(x≥300)=1-P(X<300)=0.7,又P(300≤x<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)=(300900)0.66 (300)0.77 P XP X≤<==≥.故在降水量X至少是300 mm的条件下,工期延误不超过6天的概率是6 7 .21.解:(1)如图1,设M(x,y),A(x0,y0),则由|DM|=m|DA|(m>0,且m≠1),可得x=x0,|y|=m|y0|,所以x0=x,|y0|=1m|y|.①因为A点在单位圆上运动,所以x02+y02=1.②将①式代入②式即得所求曲线C 的方程为x 2+22y m=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(0),,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,),(0.(2)方法一:如图2,3,k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1), 直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得 (m 2+4k 2)x 2+4k 2x 1x +k 2x 12-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得-x 1+x 2=212244k x m k -+,即212224m x x m k =+.因为点H 在直线QN 上,所以y 2-kx 1=2kx 2=212224km x m k+. 于是PQ =(-2x 1,-2kx 1),PH =(x 2-x 1,y 2-kx 1)=(212244k x m k -+,212224km x m k +).而PQ ⊥PH 等价于2221224(2)04m k x PQ PH m k-⋅==+ , 即2-m 2=0.又m >0,所以m =,故存在m =,使得在其对应的椭圆x 2+22y =1上,对任意的k >0,都有PQ ⊥PH.图1 图2(0<m <1) 图3(m >1)方法二:如图2,3,x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1). 因为P ,H 两点在椭圆C 上,所以 222211222222,m x y m m x y m ⎧+=⎪⎨+=⎪⎩,两式相减可得 m 2(x 12-x 22)+(y 12-y 22)=0.③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合. 故(x 1-x 2)(x 1+x 2)≠0,于是由③式可得212121212()()()()y y y y m x x x x -+=--+.④又Q ,N ,H 三点共线,所以k QN =k QH ,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+.而PQ ⊥PH 等价于k PQ ·k PH =-1,即212m -=-. 又m >0,得m =.故存在m =,使得在其对应的椭圆x 2+22y =1上,对任意的k >0,都有PQ ⊥PH .22.解:(1)f ′(x )=r -rx x -1=r (1-x r -1),令f ′(x )=0,解得x =1. 当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数; 当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数. 故函数f (x )在x =1处取得最小值f (1)=0.(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r ≤rx +(1-r ).①若a 1,a 2中有一个为0,则12121122b b a a a b a b ≤+成立;若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1, 于是在①中令12a x a =,r =b 1,可得1111122()(1)b a ab b a a ≤⋅+-, 即111121121(1)bb a a a b a b ≤-+-,亦即12121122b b a a a b a b ≤+.综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 1=1,总有12121122bba a ab a b ≤+.② (3)(2)中命题的推广形式为:设a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数. 若b 1+b 2+…+b n =1,则12121122n bbbn n n a a a a b a b a b ≤…++…+.③用数学归纳法证明如下:(ⅰ)当n =1时,b 1=1,有a 1≤a 2,③成立.(ⅱ)假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则12121122kb bbkk k a a a a b a b a b ≤…++…+.当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即1-b k +1>0,于是()111212121121k k k k b b b b b b b b k k k k a a a a a a a a ++++=……=11211111111121k kk k k k b b b b b b b b k k a a a a +++++----+⎛⎫ ⎪ ⎪⎝⎭…. 因121111111k k k k b b b b b b ++++++=---…,由归纳假设可得 1211111112k k k k b b b b b b kaa a +++---…≤1212111111k k k k k b b b a a a b b b +++⋅+⋅++⋅---…=112211k k k a b a b a b b ++++-…,从而1111211122121111k k k k b bbb bbk k k k k k a b a b a b a a a a a b +++-+++⎛⎫+++≤⋅ ⎪-⎝⎭…….又因(1-b k +1)+b k +1=1,由②得()1111221122111111()111k b b k k k k kk k k k k k a b a b a b a b a b a b a b a b b b +-+++++++++++++≤⋅-+--……=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而121121k b b b k k a a a a ++…≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1.故当n =k +1时,③成立.由(ⅰ)(ⅱ)可知,对一切正整数n ,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n ≥2成立,则后续证明中不需讨论n =1的情况.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试数学试卷(湖北卷)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.方程26130x x ++=的一个根是( )(A )32i -+ (B )32i + (C )23i -+ (D )23i +2.命题“0R x Q ∃∈ð,30x Q ∈”的否定是( )(A )0R x Q ∃∉ð,30x Q ∈ (B )0R x Q ∃∈ð,30x Q ∉(C )R x Q ∀∉ð,3x Q ∈ (D )R x Q ∀∈ð,3x Q ∉3.已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为( )(A )25π(B )43(C )32(D )2π 4.已知某几何体的三视图如图所示,则该几何体的体积为( )(A )83π (B )3π(C )103π(D )6π5.设a Z ∈,且013a ≤<,若201251a +能被13整除,则a =( ) (A )0 (B )1 (C )11 (D )126.设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( ) (A )14 (B )13 (C )12 (D )347.定义在()(),00,-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”。
现有定义在()(),00,-∞+∞上的如下函数:①()2f x x =;②()2x f x =;③()f x =④()ln ||f x x =。
则第3题图O xy其中是“保等比数列函数”的()f x 的序号为( )(A )① ② (B )③ ④ (C )① ③ (D )② ④8.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆。
在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( ) (A )21π-(B )112π-(C )2π (D )1π9.函数()2cos f x x x =在区间[]0,4上的零点个数为( )(A )4 (B )5 (C )6 (D )710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径。
“开立圆术”相当于给出了已知球的体积V ,求其直径d的一个近似公式d ≈人们还用过一些类似的近似公式。
根据 3.14159π=判断,下列近似公式中最精确的一个是( )(A)d (B)d ≈ (C)d ≈ (D)d二.填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分。
请将答案填在答题卡对应题号的位置上。
答错位置,书写不清,模棱两可均不得分。
(一)必考题(11-14题)11.设ABC ∆的内角,,A B C 所对的边分别为,,a b c ,若()()a b c a b c ab +-++=,则角C = 。
12.阅读如图所示的程序框图,运行相应的程序,输出的结果s = 。
13.回文数是指从左到右读与从右到左读都一样的正整数。
如22,121,3443,94249等。
显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…,999。
则⑴4位回文数有 个;⑵()21n n N ++∈位回文数有 个。
14.如图,双曲线()222210,0x y a b a b-=>>的两顶点为12,A A ,虚轴两端点为12,B B ,两焦点为12,F F 。
若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D ,则⑴双曲线的离心率e = ;⑵菱形1122F B F B 的面积1S 与矩形ABCD 的面积2S 的比值12S S = 。
(二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑。
如果全选,则按第15题作答结果计分)15.如图,点D 在O 的弦AB 上移动,4AB =,连接OD ,过点D 作OD 的垂线交O 于点C ,则CD 的最大值为______。
16.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系。
已知射线4πθ=与曲线()211x t y t =+⎧⎪⎨=-⎪⎩(t 为参数)相交于,A B 两点,则线段AB 的中点的直角坐标为 。
三.解答题17.(本小题满分12分)已知向量()cos sin ,sin a x x x ωωω=-,()cos sin b x x x ωωω=--,设函数()()f x a b x R λ=⋅+∈的图象关于直线x π=对称,其中,ωλ为常数,且()12,1ω∈。
⑴求函数()f x 的最小正周期;⑵若()y f x =的图象经过点()4,0π,求函数()f x 在区间[]0,53π上的取值范围。
18.(本小题满分12分)已知等差数列{}n a 前三项的和为3-,前三项的积为8。
⑴求数列{}n a 的通项公式;⑵若231,,a a a 成等比数列,求数列{}||n a 的前n 项和。
19.(本小题满分12分)如图1,045ACB ∠=,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将ABD ∆折起,使090BDC ∠=(如图2)。
⑴当BD 的长为多少时,三棱锥A BCD -的体积最大;⑵当三棱锥A BCD -的体积最大时,设,E M 分别为棱,BC AC的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
20.(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表。
历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9。
求:⑴工期延误天数Y 的均值与方差;⑵在降水量X 至少是300的条件下,工期延误不超过6天的概率。
21.(本小题满分13分)设A 是单位圆221x y +=上的任意一点,l 是过A 与x 轴垂直ODCB A的直线,D 是直线l 与x 轴的交点,M 在直线l 上,且满足()||||01DM m DA m =<≠。
当点A 在圆上运动时,记点M 的轨迹为曲线C 。
⑴求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;⑵过原点且斜率为k 的直线交曲线C 于,P Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H 。
是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由。
22.(本小题满分14分)⑴已知()()10r f x rx x r x =-+->,其中r 为有理数,且01r <<。
求()f x 的最小值;⑵试用⑴的结果证明如下命题:设10a ≥,20a ≥,12,b b 为正有理数,若121b b +=,则12121122bba a ab a b ≤+;⑶请将⑵中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题。
(注:当α为正有理数时,有求导公式()1x xααα-'=)2012年普通高校招生全国统考数学试卷湖北卷解答一.ADBBD CCACD17.解:⑴由题()22sin cos cos cos2f x x x x x x ωωωωλω=-+⋅+=-+22sin 26x x πωλωλ⎛⎫+=-+ ⎪⎝⎭,因x π=是()f x 的对称轴,故sin 216πωπ⎛⎫-=± ⎪⎝⎭,知()262k k Z ππωππ-=+∈,即()123k k Z ω=+∈。
又因为()12,1ω∈,故1k =,56ω=。
所以()f x 的最小正周期为6π;2sin 4π=-=()f x在区间[]0,5π上的取值范围为12⎡-⎣。
18.解:⑴设公差为d,则由题()()111133328a da a d a d+=-⎧⎪⎨++=⎪⎩,解得123ad=⎧⎨=-⎩或143ad=-⎧⎨=⎩。
故53na n=-或37na n=-;⑵当53na n=-时,231,,a a a依次为1,4,2--,不成等比数列;当37na n=-时,231,,a a a依次为1,2,4--,成等比数列,满足条件。
故()()732|||37|373nn na nn n-≤⎧⎪=-=⎨-≥⎪⎩。
记数列{}||na的前n项和为nS,则当1n=时,14S=;当2n=时,25S=;当3n≥时,()()2231120412537523722nn n nS n n--+=+++++-=++-=。
当2n=时满足此式。
所以数列{}||na的前n项和()()()2413112022nnSn n n=⎧⎪=⎨-+≥⎪⎩。
19.解:⑴设()03BD x x=<<,则3CD x=-。
由题知,ADC∆为等腰直角三角形,故3AD CD x==-。
由折起前AD BC⊥知,折起后AD DC⊥,AD BD⊥,且B D D C D=,所以AD⊥平面BCD。
又090BDC∠=,故16A BCDV DA DB DC-=⋅⋅=()()31123323312123x x xx x x+-+-⎛⎫⋅--≤⋅=⎪⎝⎭当且仅当23x x=-,即1x=时取等号。
故当BD的长为1时,三棱锥A BCD-的体积最大;⑵以D为原点,建立如图所示的空间直角坐标系D xyz-。
由⑴知,当三棱锥A BCD-的体积最大时,1BD=,2AD CD==。
于是可得()0,0,0D,()1,0,0B,()0,2,0C,()0,0,2A,()0,1,1M,()12,1,0E,且()1,1,1BM=-。
设()0,,0Nλ,则()12,1,0ENλ=--。
因为EN BM⊥等价于0EN BM⋅=,即1102λ+-=,故12λ=,()0,12,0N。
所以当12DN=(即N是CD的靠近D的一个四等分点)时,EN BM⊥。
NMED CBAzyx设平面BMN 的一个法向量为(),,n x y z =,由n B N n BM ⎧⊥⎪⎨⊥⎪⎩ 及11,,02BN ⎛⎫=- ⎪⎝⎭,得2y xz x=⎧⎨=-⎩。
取1x =得()1,2,1n =-。
设EN 与平面BMN 所成角的大小为θ,则由()12,12,0EN =--,()1,2,1n =-,可得()0sin cos 90θθ=-= 3||2||||n EN n EN ⋅=⋅,即060θ=。