2015-2016年信号与系统期末试题A卷

合集下载

《信号与系统》期末试题A卷

《信号与系统》期末试题A卷

云南大学2014至2015学年下学期 信息学院电子信息科学与技术、电子信息工程、通信工程专业2013级《信号与系统》期末试卷A (闭卷) 满分:100分 考试时间:120分钟 任课教师:梁虹 普园媛 尉洪 周浩 专业: 学号: 姓名:分)1、连续时间信号与系统的基本分析方法有 分析法, 分析法和 分析法。

2、离散时间信号)k (f 作用于单位序列响应为)k (h 的系统,其零状态响应为 。

3、连续时间系统单位阶跃响应)t (g 与单位冲激响应)t (h 的关系是 。

4、由频率响应分别为)j (H 1ω和)j (H 2ω的两子系统串联而成的系统频率响应)j (H ω= 。

5、若连续时间系统的激励信号为)(t f ,零状态响应为)t (y zs ,则系统无失真传输的频域条件为 。

6、周期信号频谱的特点为 、谐波性和收敛性。

7、t t f 0cos )(ω=,其傅里叶变换为 。

8、信号)( )cos()(0 t t et f tεωα-=的拉普拉斯变换为 。

9、sT e Z =建立了s 平面与z 平面之间的映射关系,由此,s 平面的 对应于z 平面的单位圆内,s 平面的 对应于z 平面的单位圆,s 平面的 对应于z平面的单位圆外。

10、描述某离散时间系统的差分方程为()()()())1k (f 2k f 2k y 611k y 61k y -+=----,则该系统的系统函数)z (H = ,该系统的频率响应函数)e (H j θ= 。

二、简述题(共20 分,每题5分)1、给出三个常用信号的傅里叶变换对。

2、介绍傅里叶变换的频移特性及其应用意义。

3、简述连续时间系统的单位冲激响应h(t),系统频率响应H(jw),系统函数H(s)的概念及其相互关系。

4、简述傅里叶变换的时域卷积定理和频域卷积定理。

三、分析作图题(每小题10 分,共20分)1、某一有限频带信号)t 6cos()t 3cos(35)t (f ππ++=,用π15w s =的冲激函数序列进行取样,(1)画出)t (f 及取样信号)t (f s 在频率区间)23,23(ππ-的频谱图,分析该信号采样时的奈奎斯特频率?(2)若希望由)t (f s 恢复原信号)t (f ,请设计恢复系统,并给出对应理想低通滤波器的相关参数。

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题(有答案的)信号与系统期末考试试题一、选择题(共 10 题,每题 3 分,共 30 分,每题给出四个答案,其中只有一个正确的)1、卷积 f 1(k+5)*f 2(k-3) 等于。

(A ) f 1(k)*f 2(k) ( B ) f 1(k)*f 2(k-8) ( C )f 1(k)*f 2(k+8) ( D ) f 1(k+3)*f 2(k-3)2、积分(t 2) (1 2t )dt 等于。

(A ) 1.25( B ) 2.5( C ) 3(D ) 53、序列 f(k)=-u(-k) 的 z 变换等于。

(A )z( B ) -z(C )1( D )1z 1 z1 z 1z14、若 y(t)=f(t)*h(t), 则 f(2t)*h(2t) 等于。

(A )1y(2t ) ( B ) 1 y( 2t ) (C ) 1 y(4t) ( D ) 1 y( 4t ) 4 2 42 5、已知一个线性时不变系统的阶跃相应g(t)=2e-2tu(t)+ (t ) ,当输入 f(t)=3e—tu(t)时,系统的零状态响应y f (t)等于(A )(-9e -t+12e -2t)u(t)(B ) (3-9e -t +12e -2t)u(t)( C ) (t ) +(-6e -t +8e-2t)u(t)( D )3 (t ) +(-9e -t +12e-2t)u(t)6、连续周期信号的频谱具有(A )连续性、周期性(B )连续性、收敛性( C )离散性、周期性(D )离散性、收敛性7、周期序列 2 COS (1.5 k45 0) 的周期 N 等于(A ) 1( B ) 2( C )3( D ) 48、序列和kk 1 等于( A )1 (B) ∞ (C) u k1 (D) ku k 19、单边拉普拉斯变换F s2s1e 2 s的愿函数等于s 2A tu tB tu t 2C t 2 u tD t 2 u t 210、信号 f tte 3tu t 2 的单边拉氏变换 F s 等于A 2s 7 e s 32 s 3e 2s2B2s 3C se2 s 3D e 2s33 2s s3s二、填空题(共9 小题,每空 3 分,共 30 分)1、卷积和 [( 0.5)k+1u(k+1)]*(1 k) =________________________、单边z 变换F(z)=z的原序列 f(k)=______________________22z1,则函数 y(t)=3e -2t·f(3t) 的单、已知函数f(t)的单边拉普拉斯变换F(s)=s31s边拉普拉斯变换 Y(s)=_________________________4、频谱函数 F(j)=2u(1-)的傅里叶逆变换 f(t)=__________________5、单边拉普拉斯变换 F (s)s23s 1的原函数s2sf(t)=__________________________6、已知某离散系统的差分方程为2 y(k )y( k1) y(k2) f (k ) 2 f (k1),则系统的单位序列响应h(k)=_______________________t27、已知信号 f(t) 的单边拉氏变换是 F(s),则信号y(t) f (x)dx 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为y '' t 2 y ' t5y tf ' t f t该系统的冲激响应h(t)=、,22t k9 写出拉氏变换的结果66u t三、(8 分)四、( 10 分)如图所示信号 f t ,其傅里叶变换F jw F f t,求(1) F 0 (2) F jw dw六、( 10 分)某LTI 系统的系统函数H ss2,已知初始状态22ss1y 00, y 02, 激励 f t u t , 求该系统的完全响应。

《信号与系统》期末试卷与答案

《信号与系统》期末试卷与答案

《信号与系统》期末试卷与答案第 2 页 共 14 页《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。

A.非周期序列B.周期3=NC.周期8/3=N D. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。

A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定第 3 页 共 14 页4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。

A.实且偶 B.实且为奇 C.纯虚且偶 D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。

A.tt 22sin B.tt π2sin C.tt 44sin D.ttπ4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。

A.∑∞-∞=-k k )52(52πωδπB.∑∞-∞=-k k)52(25πωδπC. ∑∞-∞=-k k )10(10πωδπ D.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。

第 4 页 共 14 页A. )}(Re{ωj e X jB.)}(Re{ωj e X C.)}(Im{ωj e X jD.)}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。

A. 500B. 1000C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x et g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 。

《信号与系统》期末试卷A卷与答案.pptx

《信号与系统》期末试卷A卷与答案.pptx
2、(8 分)
0
y(t)
1 t2 2
Tt
1 T2
1
2 t Tt
2
3T2
2
2
0
t 0 0t T
T t 2T 2T t 3T 3T t
3、(3×4 分=12 分)
j dX ( j / 2)
(1)
tx(2t) 2
d
(1t)x(1t) x(1t) tx(1t)
(2) X ( j)e j j d [X ( j)e j] jX ' ( j)e j d
(3)
t
dx(t) dt
X ( j)
dX ( j) d
第 页 4共 6 页
学海无 涯
4、(5 分)解 :
s2
1 2s 2
s2 2s 2
s2 2s 2
F (s) es 2(s 1) es (s 1)2 1
f (t) (t 1) 2e(t 1) cos(t 1)u(t 1)
学海无涯
《信号与系统》期末试卷 A 卷
班级:
学号:
姓名:
_ 成绩:
一. 选择题(共 10 题,20 分)
j( 2 )n
j( 4 )n
1、 x[n] e 3 e 3 ,该序列是
A.非周期序列 B.周期 N 3
D。
C.周期 N 3/ 8
CDCC
D. 周期 N 24
2、一连续时间系统y(t)= x(sint),该系统是
3
3
(b)若系统因果,则Re{s} 2,h(t) 1 e2tu(t)-1 et u(t) 4分
3
3
(c)若系统非稳定非因果,则Re{s} -1,h(t) 1 e2t u(t) 1 et u(t) 4分

精编《信号与系统》期末考试试卷a答案

精编《信号与系统》期末考试试卷a答案

西南交通大学2014-2015学年第(1)学期考试试卷阅卷教师签字: 一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。

每小题所给答案中只有一个是正确的。

1.信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( B )A.2B.2)2(-t δC. 3)2(-t δD. 5)2(-t δ 2.已知)(t f ,为求)(0at t f - 则下列运算正确的是(其中a t ,0为正数)( B ) A .)(at f - 左移0t B . )(at f - 右移 at 0C . )(at f 左移 0tD . )(at f 右移at 03.某系统的输入-输出关系)1(t )(y 2-=t x t ,该系统是( C ) A .线性时不变系统 B .非线性时不变系统 C .线性时变系统 D .非线性时变系统4.一个因果稳定的LTI 系统的响应可分为自由响应与受迫响应两部分,其自由响应的形式完全取决于( A ) A.系统的特性 B.系统的激励 C.系统的初始状态D.以上三者的综合 5.信号)2()1(2)(-+--t r t r t r 的拉氏变换的收敛域为 ( C )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在 6.理想低通滤波器是( C )A .因果系统 B. 物理可实现系统C. 非因果系统D. 响应不超前于激励发生的系统 7.时域是实偶函数,其傅氏变换一定是( A )A .实偶函数 B.纯虚函数 C.任意复函数 D.任意实函数班 级 学 号 姓 名密封装订线 密封装订线 密封装订线8.信号)100()(t Sa t f =,其最低取样频率s f 为(A )A.π100B.π200C.100π D. 200π 9.已知信号)(t f 的傅氏变换为),(ωj F 则)3-2-(t f 的傅氏变换为( C ) A .ωω2)3(3j e j F - B.ωω2)3(3j e j F -- C .ωω6)3(3j e j F - D.ωω6)3(3j e j F -- 10.已知Z 变换Z 11[()]10.5x n z-=-,收敛域0.5z >,求逆变换得x (n )为( A ) A .0.5()n u n B. 0.5(1)n u n --- C. 0.5()n u n -- D. 0.5(1)n u n ---- 二、(14分)画图题1.已知)21(t f -波形如图所示,画出)(t f 的波形。

大学信号与系统考题及答案

大学信号与系统考题及答案

华侨大学信息科学与工程学院《信号与系统》期末考试试卷(A 卷)题 目 一 总 分 核分人 复查人 得分题目部分,(卷面共有100题,100分,各大题标有题量和总分)评卷人 得分一、解答题(100小题,共100分)1.画出下列各复合函数的波形。

(1)21()(4)f t U t =- (2)22()sgn(1)f t t =- (3)3()sgn[cos()]f t t π=2.分别判断题图所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?3.若输入信号为0cos()t ω,为使输出信号中分别包含以下频率成分:(1)0cos(2)t ω (2)0cos(3)t ω (3)直流请你分别设计相应的系统(尽可能简单)满足此要求,给出系统输出与输入的约束关系式。

讨论这三种要求有何共同性、相应的系统有何共同性。

4.电容1C 与2C 串联,以阶跃电压源()()t Eu t υ=串联接入,试分别写出回路中的电流()i t 及每个电容两端电压1()C t υ、2()C t υ的表示式。

5.求图所示电路中,流过电阻R 中的稳态电流i(t)恒为零时激励电压0sin ()t U t ω中的ω值。

6.已知12,2()0,2t t f t t ⎧-≤⎪=⎨>⎪⎩,2()(5)(5)f t t t δδ=++-,3()(1)(1)f t t t δδ=++-,画出下列各卷积的波形。

(1)112()()()s t f t f t =* (2)2122()()()()s t f t f t f t =** (3)313()()()s t f t f t =*7.如图所示电路,激励信号()sin ()e t U t =电感起始电流为零,求响应0()u t ,指出其自由响应和强迫响应分量,大致画出波形。

8.求下图所示系统的单位冲激响应()h t 。

9.已知1()1p H p p-=+,()()te t e U t =-求零状态响应并粗略画出输入输出波形。

信号与系统期末考试A试卷及答案

信号与系统期末考试A试卷及答案

《信号与系统》考核试卷
专业班级:电子、通信工程考核方式:闭卷考试时量:120 分钟试卷类型: A
第2页共 8 页第1页共 8 页
图:
域模型图:
)的表达式:
第3页共 8 页第4页共 8 页
(a)
(b) (c) (d)
A 、
B 、
C 、
D 、
Y(w):
5、已知离散系统的差分方程为)(2)2(2)1(3)(n f n y n y n y =-+-+,求该
系统的系统函数)(z H 、单位响应)(n h 以及当激励信号)(2)(n n f n ε=时,
系统的零状态响应)(n y 。

(13分)
利用z 变换的移位特性,将差分方程变换为零状态下的z 域方程:
)(2)(2)(3)(21z F z Y z z Y z z Y =++--
2
322312)()()
(2221++=
++==--z z z z z z F z Y z H
2
412232)(22+++-=++=z z
z z z z z z H )(])2(4)1(2{)(n n h n n ε+--=∴
当激励信号)(2)(n n f n ε=时,2
)(-=
z z
z F 22)()()(3
2==z z z z H z F z Y 2
2
-
z
z 第5页 共 8 页
④由于该系统函数的所有极点均在
所以该系统是稳定系统。

第7页共页第8页共页第9页共页第10页共页
第7页共 8 页第8页共 8 页。

信号与系统期末考试-A卷-答案

信号与系统期末考试-A卷-答案

120 信号与系统期末试题答案一、填空题(4小题,每空2分,共20分)1.线性 时变 因果 稳定2. 离散性 谐波性 收敛性3.)()(0t t k t h -=δ 0)()()(ωωϕωωj j j Ke e e H -==j H4.)()(11nT t f t f n T -∑+∞-∞=或二、简答题(5小题,共 25 分)1、解:该方程的一项系数是y(t)的函数,而y(2t)将使系统随时间变化,故描述的系统是非线性时变系统。

(每个知识点1分)(4分)2、解:当脉冲持续时间τ不变,周期T 变大时,谱线间的间隔减小,同频率分量的振幅减小(2分);当脉冲持续时间τ变小,周期T 不变时,谱线间的间隔不变,同频率分量的振幅减小(3分)。

(5分)3、解:信号通过线性系统不产生失真时,)()(0t t k t h -=δ0)()()(ωωϕωωj j j Ke e e H -==j H (每个知识点2分)(4分)4、解: 由于是二阶系统,所以系统的稳定性只需要其特征多项式的各系数大于零。

则本系统稳定的条件为:K-5>0(3分)和3K+1>0(3分).解之可得K>5(2分)。

(8分)5、解:香农取样定理:为了能从抽样信号 f s(t)中恢复原信号 f (t),必须满足两个条件:(1)被抽样的信号f (t)必须是有限频带信号,其频谱在|ω|>ωm 时为零。

(1分)(2)抽样频率 ωs ≥2ωm 或抽样间隔 mm S f T ωπ=≤21(1分) 。

其最低允许抽样频率m s f f 2=或m ωω2=称为奈奎斯特频率(1分),其最大允许抽样间隔mm N f T ωπ==21 (1分)称为奈奎斯特抽样间隔。

(每个知识点1分)(4分) 三.简单计算(5小题,5分/题,共25分)1.(5分)解:cos(101)t +的基波周期为15π, sin(41)t -的基波周期为12π 二者的最小公倍数为π,故())14sin()110cos(2--+=t t t f 的基波周期为π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诚信保证
本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场
规则,诚实做人。
本人签字:
编号:
西北工业大学考试试题(A卷)
20 15 --20 16学年第一学期
开课学院电子信息学院课程信号与系统64学时
考试日期2016年1月15日考试时间2小时考试形式闭卷
题号





总分
得分
阅卷人
考生班级
学号
图3
五.(本题满分15分)已知线性时不变系统的信号流图如图4所示,(1)写出系统矩阵形式的状态方程和输出方程;(2)求系统函数矩阵;(3)求系统的单位冲激响应矩阵。
图4
姓名
一、(本题满分40分,每小题4分)填空题:
1.已知像函数 ,则其原函数 的初始值 ();
2.线性时不变零状态系统的输入输出关系为 ,则系统的单位冲激响应 ();
3. ();
4.信号 ,则其能量 ();
5.已知频谱函数 ,则其原函数 ();
6.某离散因果系统的系统函数 ,则使系统稳定的常数 的取值范围是();
图1
三.(本题满分15分)某线性时不变因果系统的信号流如图2所示,(1)求系统的系统函数 ;(2)求系统的单位冲激响应 ;(3)若激励 时求系统的稳态响应 。
图2
四.(本题满分15分)在图3所示系统中,已知 , , 。求:(1)总系统的单位序列响应 ;(2)当系统激励 时的零状态响应 。【要求用时域分析法求解】
7.某线性时不变离散系统的状态转移矩阵为 ,则其系统矩阵 ;
8.信号 的 变换 ();
9. 的周期为();
10.描述某线性时不变离散系统的差分方程为 ,全响应的初始值为 ,则系统的初始状态 分别为();
二.(本题满分15分)图1所示系统,已知 、 ,系统 的幅频特性如图示。相频特性 。
(求频谱函数 、 ;(2)求响应 。
相关文档
最新文档