2016(上)高二第一学期期末数学试卷答案

合集下载

四川省乐山市2016-2017学年高二(上)期末数学试卷(解析版)

四川省乐山市2016-2017学年高二(上)期末数学试卷(解析版)

2016-2017学年四川省乐山市高二(上)期末数学试卷一、选择题:本大题共14小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“m=﹣1”是“直线x+y=0和直线x+my=0互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知F1,F2是定点,|F1F2|=16,动点M满足|MF1|+|MF2|=16,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段3.如果命题“¬(p或q)”为假命题,则()A.p、q均为真命题B.p、q均为假命题C.p、q中至少有一个为真命题 D.p、q中至多有一个为真命题4.如图△A′B′C′是△ABC的直观图,那么△ABC ()A.等腰三角形B.直角三角形C.等腰直角三角形 D.钝角三角形5.关于直线a,b,l以及平面M,N,下面命题中正确的是()A.若a∥M,b∥M,则a∥bB.若a∥M,b⊥a,则b⊥MC.若a⊥M,a∥N,则M⊥ND.若a⊂M,b⊂M,且l⊥a,l⊥b,则l⊥M6.已知抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,则p的值为()A.2 B.1 C.D.7.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为()A.B.4 C.D.8.已知直线l与圆O:x2+y2=1相交于A,B两点,且|AB|=,则•的值是()A.﹣ B.C.﹣ D.09.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN与直线PB的位置关系为()A.相交B.平行C.异面D.重合10.(理)设F1,F2分别是双曲线的左、右焦点,若点P在双曲线上,且,则=()A. B.C.D.11.已知双曲线的左、右焦点分别为F1、F2,P为C的右支上一点,且|PF2|=|F1F2|,则等于()A.24 B.48 C.50 D.5612.如图所示,在斜三棱柱ABC﹣A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在面ABC 上的射影H必在()A.直线AB上B.直线BC上C.直线CA上D.△ABC内部13.如图,已知六棱锥P﹣ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB则下列结论正确的是()A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°14.已知F1,F2是双曲线的左,右焦点,点P在双曲线上且不与顶点重合,过F2作∠F1PF2的角平分线的垂线,垂足为A.若,则该双曲线的离心率为()A.B.1+C.2 D.2+二、填空题:本大题共5小题;每小题5分,共20分.把答案填在题中横线上.15.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为.16.在长方体ABCD﹣A1B1C1D1中,已知DA=DC=2,DD1=1,则异面直线A1B与B1C 所成角的余弦值.17.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为.18.(理)如图在四面体OABC中,OA,OB,OC两两垂直,且OB=OC=3,OA=4,给出如下判断:①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;②存在点D,使得点O在四面体DABC外接球的球面上;③存在唯一的点D使得OD⊥平面ABC;④存在点D,使得四面体DABC是正棱锥;⑤存在无数个点D,使得AD与BC垂直且相等.其中正确命题的序号是(把你认为正确命题的序号填上).19.如图,正方形BCDE的边长为a,已知AB=BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE体积是a3;③V B﹣ACE④平面ABC⊥平面ADC.其中正确的有.(填写你认为正确的序号)三、解答题:本大题共8小题,共70分.解答应写出文字说明、证明过程或推演步骤.20.已知命题p:方程+=1表示焦点在y轴上的椭圆,命题q:双曲线﹣=1的离心率e∈(,),若命题p、q中有且只有一个为真命题,则实数m 的取值范围是.21.已知圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)若直线l过点(0,2)与圆C相交于点A、B,求线段AB的长.22.如图1,在三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.(1)证明:AD⊥BC;(2)求三棱锥D﹣ABC的体积.23.设A、B分别为双曲线的左右顶点,双曲线的实轴长为,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标.24.如图,已知ACDE是直角梯形,且ED∥AC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2,,P是BC的中点.(Ⅰ)求证:DP∥平面EAB;(Ⅱ)求平面EBD与平面ABC所成锐二面角大小的余弦值.25.如图,在四棱锥E﹣ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.(1)求棱锥C﹣ADE的体积;(2)在线段DE上是否存在一点P,使AF∥平面BCE?若存在,求出的值;若不存在,请说明理由.26.(理)已知椭圆的离心率为,且过点.(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若.(i)求的最值;(ii)求四边形ABCD的面积.27.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为.①求四边形APBQ面积的最大值;②设直线PA的斜率为k1,直线PB的斜率为k2,判断k1+k2的值是否为常数,并说明理由.2016-2017学年四川省乐山市高二(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“m=﹣1”是“直线x+y=0和直线x+my=0互相垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】求出直线垂直的充要条件,从而判断出结论即可.【解答】解:若“直线x+y=0和直线x+my=0互相垂直”,则﹣=1,解得:m=﹣1,故“m=﹣1”是“直线x+y=0和直线x+my=0互相垂直”的充要条件,故选:C.2.已知F1,F2是定点,|F1F2|=16,动点M满足|MF1|+|MF2|=16,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【考点】轨迹方程.【分析】根据题意,利用|MF1|+|MF2|=16与|F1F2|=16的长度关系,确定点M在线段F1F2上,即可得答案.【解答】解:根据题意,点M与F1,F2可以构成一个三角形,则必有|MF1|+|MF2|>|F1F2|,而本题中动点M满足|MF1|+|MF2|=|F1F2|=16,点M在线段F1F2上,即动点M的轨迹线段F1F2,故选:D.3.如果命题“¬(p或q)”为假命题,则()A.p、q均为真命题B.p、q均为假命题C.p、q中至少有一个为真命题 D.p、q中至多有一个为真命题【考点】复合命题的真假.【分析】¬(p或q)为假命题既p或q是真命题,由复合命题的真假值来判断.【解答】解:¬(p或q)为假命题,则p或q为真命题所以p,q至少有一个为真命题.故选C.4.如图△A′B′C′是△ABC的直观图,那么△ABC ()A.等腰三角形B.直角三角形C.等腰直角三角形 D.钝角三角形【考点】斜二测法画直观图.【分析】根据斜二侧画法,∠x′O′y′=135°,直接判断△ABC的直观图是直角三角形.【解答】解:由斜二测画法,∠x′O′y′=135°,知△ABC直观图为直角三角形,如图故选B.5.关于直线a,b,l以及平面M,N,下面命题中正确的是()A.若a∥M,b∥M,则a∥bB.若a∥M,b⊥a,则b⊥MC.若a⊥M,a∥N,则M⊥ND.若a⊂M,b⊂M,且l⊥a,l⊥b,则l⊥M【考点】空间中直线与平面之间的位置关系.【分析】A.由线面平行的性质即可判断;B.由线面平行的性质和线面垂直的判定即可判断;C.由线面平行的性质定理和面面垂直的判定定理即可得到;D.运用线面垂直的判定定理即可得到.【解答】解:A.同平行于一个平面的两条直线可平行也可相交或异面,故A错;B.当a∥M,b⊥a时b与M可平行、b⊂M,b⊥M,故B错;C.若a⊥M,a∥N,则过a的平面K∩N=b,则a∥b,即有b⊥M,又b⊂N,故M ⊥N,故C正确;D.根据线面垂直的判定定理,若a⊂M,b⊂M,且a∩b=O且l⊥a,l⊥b,则l⊥M,故D错误.故选C.6.已知抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,则p的值为()A.2 B.1 C.D.【考点】抛物线的简单性质.【分析】求得圆心及半径,由题意可知:抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,丨4+丨=5,解得:p=2.【解答】解:圆x2+y2﹣8x﹣9=0转化为(x﹣4)2+y2=25,圆心(4,0),半径为5,抛物线y2=2px(p>0)的准线为x=﹣,∵抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,∴丨4+丨=5,解得:p=2,∴p的值为2,故选A.7.如图,正三棱柱ABC﹣A1B1C1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为()A.B.4 C.D.【考点】简单空间图形的三视图.【分析】由正视图得到三视图的高,也即其侧视图的高;底面正三角形的高即为侧视图的宽,据以上分析可求出此三棱柱的侧视图的面积.【解答】解:由已知正三棱柱及其正视图可知:其侧视图是一个高与正视图的相同、宽是底面正三角形的高的矩形.由三棱柱的正视图的高为2,可得其侧视图的高也为2.∵底面是边长为2的正三角形,∴其高为.∴此三棱柱侧视图的面积=2×=.故选D.8.已知直线l与圆O:x2+y2=1相交于A,B两点,且|AB|=,则•的值是()A.﹣ B.C.﹣ D.0【考点】平面向量数量积的运算.【分析】直线与圆有两个交点,知道弦长、半径,确定∠AOB的大小,即可求得•的值.【解答】解:依题意可知角∠AOB的一半的正弦值,即sin (∠AOB)=,∴∠AOB=120°,则=1×1×cos120°=﹣,故选:A.9.如图是一正方体的表面展开图,MN和PB是两条面对角线,则在正方体中,直线MN与直线PB的位置关系为()A.相交B.平行C.异面D.重合【考点】空间中直线与直线之间的位置关系.【分析】把正方体的表面展开图还原成正方体,由此能求出直线MN与直线PB的位置关系.【解答】解:把正方体的表面展开图还原成正方体,如图,∵MN∥BD,PB∩BD=B,∴直线MN与直线PB异面.故选:C.10.(理)设F1,F2分别是双曲线的左、右焦点,若点P在双曲线上,且,则=()A. B.C.D.【考点】双曲线的简单性质.【分析】依题意可知a2=9,b2=4,进而求得c,求得F1F2,令PF1=p,PF2=q,由勾股定理得p2+q2=|F1F2|2,求得p2+q2的值,由双曲线定义:|p﹣q|=2a两边平方,把p2+q2代入即可求得pq即可得到结论.【解答】解:依题意可知a2=9,b2=4所以c2=13,F1F2=2c=2令PF1=p,PF2=q由双曲线定义:|p﹣q|=2a=6平方得:p2﹣2pq+q2=36∠F1PF2=90°,由勾股定理得:p2+q2=|F1F2|2=52所以pq=8即|PF1|+|PF2|=2故选B.11.已知双曲线的左、右焦点分别为F1、F2,P为C的右支上一点,且|PF2|=|F1F2|,则等于()A.24 B.48 C.50 D.56【考点】双曲线的简单性质.【分析】设点P的坐标为(m,n),其中m>2,根据点P在双曲线上且|PF2|=|F1F2|,建立关于m、n的方程组,解之得m、n的值,从而得到向量、的坐标,利用向量数量积的坐标公式,可算出的值.【解答】解:根据双曲线方程,得a2=4,b2=5,c==3,所以双曲线的焦点分别为F1(﹣3,0)、F2(3,0),设点P的坐标为(m,n),其中m>2,则∵点P 在双曲线上,且|PF 2|=|F 1F 2|,∴,解之得m=,n=±∵=(﹣3﹣m ,﹣n ),=(3﹣m ,﹣n )∴=(﹣3﹣m )(3﹣m )+(﹣n )(﹣n )=m 2﹣9+n 2=﹣9+=50故选C12.如图所示,在斜三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,BC 1⊥AC ,则C 1在面ABC 上的射影H 必在( )A .直线AB 上 B .直线BC 上 C .直线CA 上D .△ABC 内部 【考点】平面与平面垂直的判定;棱柱的结构特征.【分析】如图,C 1在面ABC 上的射影H 必在两个相互垂直平面的交线上,所以证明面ABC ⊥面ABC 1就可以了.【解答】解: ⇒CA ⊥面ABC 1⇒面ABC ⊥面ABC 1,∴过C 1在面ABC 内作垂直于平面ABC , 垂线在面ABC 1内,也在面ABC 内, ∴点H 在两面的交线上,即H ∈AB . 故选A13.如图,已知六棱锥P ﹣ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA=2AB 则下列结论正确的是( )A.PB⊥ADB.平面PAB⊥平面PBCC.直线BC∥平面PAED.直线PD与平面ABC所成的角为45°【考点】直线与平面所成的角;直线与平面垂直的性质.【分析】利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【解答】解:∵AD与PB在平面的射影AB不垂直,所以A不成立,又,平面PAB⊥平面PAE,所以平面PAB⊥平面PBC也不成立;BC∥AD∥平面PAD,∴直线BC∥平面PAE也不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故选D.14.已知F1,F2是双曲线的左,右焦点,点P在双曲线上且不与顶点重合,过F2作∠F1PF2的角平分线的垂线,垂足为A.若,则该双曲线的离心率为()A.B.1+C.2 D.2+【考点】双曲线的简单性质.【分析】由题意可知:丨PQ丨=丨PF2丨,则丨丨PF1丨﹣丨PF2丨丨=2a,丨PF1丨﹣丨PQ丨=丨QF1丨=2a,由OA是△F2F1Q的中位线,丨QF1丨=2a=2丨OA丨=b,a=,c=a,双曲线的离心率e==.【解答】解:∵F1,F2是双曲线的左右焦点,延长F2A交PF1于Q,∵PA是∠F1PF2的角平分线,∴丨PQ丨=丨PF2丨,∵P在双曲线上,则丨丨PF1丨﹣丨PF2丨丨=2a,∴丨PF1丨﹣丨PQ丨=丨QF1丨=2a,∵O是F1F2中点,A是F2Q中点,∴OA是△F2F1Q的中位线,∴丨QF1丨=2a=2丨OA丨=b,∴a=,c==a,∴双曲线的离心率e==.故选A.二、填空题:本大题共5小题;每小题5分,共20分.把答案填在题中横线上.15.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为16.【考点】椭圆的简单性质.【分析】由椭圆的方程知,长半轴a=4,利用椭圆的定义知,△ABF2的周长为4a,从而可得答案.【解答】解:椭圆+=1中a=4.又过焦点F1的直线与椭圆交于A,B两点,A,B与椭圆的另一个焦点F2构成△ABF2,则△ABF2的周长l=|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=2a+2a=4a=16.故答案为:16.16.在长方体ABCD﹣A1B1C1D1中,已知DA=DC=2,DD1=1,则异面直线A1B与B1C所成角的余弦值.【考点】异面直线及其所成的角.【分析】建立空间直角坐标系,利用向量夹角公式即可得出.【解答】解:如图所示,B(2,2,0),A1(2,0,1),C(0,2,0),B1(2,2,1),=(0,2,﹣1),=(﹣2,0,﹣1),cos===.故答案为:.17.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为y2=3x..【考点】抛物线的标准方程.【分析】根据过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A、B,作AM、BN垂直准线于点M、N,根据|BC|=2|BF|,且|AF|=3,和抛物线的定义,可得∠NCB=30°,设A(x1,y1),B(x2,y2),|BF|=x,而,,且,,可求得p的值,即求得抛物线的方程.【解答】解:设A(x1,y1),B(x2,y2),作AM、BN垂直准线于点M、N,则|BN|=|BF|,又|BC|=2|BF|,得|BC|=2|BN|,∴∠NCB=30°,有|AC|=2|AM|=6,设|BF|=x,则2x+x+3=6⇒x=1,而,,由直线AB:y=k(x﹣),代入抛物线的方程可得,k2x2﹣(pk2+2p)x+k2p2=0,即有,∴,得y2=3x.故答案为:y2=3x.18.(理)如图在四面体OABC中,OA,OB,OC两两垂直,且OB=OC=3,OA=4,给出如下判断:①存在点D(O点除外),使得四面体DABC有三个面是直角三角形;②存在点D,使得点O在四面体DABC外接球的球面上;③存在唯一的点D使得OD⊥平面ABC;④存在点D,使得四面体DABC是正棱锥;⑤存在无数个点D,使得AD与BC垂直且相等.其中正确命题的序号是①②④⑤(把你认为正确命题的序号填上).【考点】空间中直线与平面之间的位置关系.【分析】①,取D为长方体的一个顶点,使得A,B,C是与D相邻的三个顶点,则可使四面体ABCD有3个面是直角三角形;②,取同①的点D,使得点O与D为相对的两个长方体的顶点,利用长方体一定有外接球即可得出;③,过O可以作一条直线与面ABC垂直,点D可以是该直线上任意点;④,作△CBD为正三角形,使得AD=DB,则点D使四面体ABCD是正三棱锥.⑤过点A作BC的垂面,垂面内过AD的每一条都垂直BC,;【解答】解:对于①,取D为长方体的一个顶点,使得A,B,C是与D相邻的三个顶点,则可使四面体ABCD有3个面是直角三角形,故正确;对于②,∵二面角C﹣OA﹣B为直二面角,∴∠BOC=Rt∠,再取同①的点D,使得点O与D为相对的两个长方体的顶点,则点O在四面体ABCD的外接球球面上,故正确;对于③,过O可以作一条直线与面ABC垂直,点D可以是该直线上任意点,故错④作△CBD为正三角形,使得AD=DB,则点D使四面体ABCD是正三棱锥,故正确.⑤过点A作BC的垂面,垂面内过AD的每一条都垂直BC,故正确;故答案为:①②④⑤19.如图,正方形BCDE的边长为a,已知AB=BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE体积是a3;③V B﹣ACE④平面ABC⊥平面ADC.其中正确的有①③④.(填写你认为正确的序号)【考点】棱柱、棱锥、棱台的体积.【分析】作出直观图,逐项进行分析判断.【解答】解:作出折叠后的几何体直观图如图所示:∵AB=a,BE=a,∴AE=.∴AD=.∴AC=.在△ABC中,cos∠ABC===.∴sin∠ABC==.∴tan∠ABC==.∵BC∥DE,∴∠ABC是异面直线AB,DE所成的角,故①正确.连结BD,CE,则CE⊥BD,又AD⊥平面BCDE,CE⊂平面BCDE,∴CE⊥AD,又BD∩AD=D,BD⊂平面ABD,AD⊂平面ABD,∴CE⊥平面ABD,又AB⊂平面ABD,∴CE⊥AB.故②错误.三棱锥B﹣ACE的体积V===,故③正确.∵AD⊥平面BCDE,BC⊂平面BCDE,∴BC⊥AD,又BC⊥CD,∴BC⊥平面ACD,∵BC⊂平面ABC,∴平面ABC⊥平面ACD.故答案为①③④.三、解答题:本大题共8小题,共70分.解答应写出文字说明、证明过程或推演步骤.20.已知命题p:方程+=1表示焦点在y轴上的椭圆,命题q:双曲线﹣=1的离心率e∈(,),若命题p、q中有且只有一个为真命题,则实数m的取值范围是0<m≤,或3≤m<5.【考点】命题的真假判断与应用;复合命题的真假.【分析】根据椭圆的性质,可求出命题p:方程+=1表示焦点在y轴上的椭圆为真命题时,实数m的取值范围;根据双曲线的性质,可得命题q:双曲线﹣=1的离心率e∈(,)为真命题时,实数m的取值范围;进而结合命题p、q中有且只有一个为真命题,得到答案.【解答】解:若命题p:方程+=1表示焦点在y轴上的椭圆为真命题;则9﹣m>2m>0,解得0<m<3,则命题p为假命题时,m≤0,或m≥3,若命题q:双曲线﹣=1的离心率e∈(,)为真命题;则∈(,),即∈(,2),即<m<5,则命题q为假命题时,m≤,或m≥5,∵命题p、q中有且只有一个为真命题,当p真q假时,0<m≤,当p假q真时,3≤m<5,综上所述,实数m的取值范围是:0<m≤,或3≤m<5.故答案为:0<m≤,或3≤m<521.已知圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)若直线l过点(0,2)与圆C相交于点A、B,求线段AB的长.【考点】直线与圆的位置关系.【分析】(1)直线l与圆C相切,则=2,解得a值;(2)若直线l过点(0,2)即x﹣y+2=0,代入圆的弦长公式,可得答案.【解答】解:将圆C的方程x2+y2﹣8y+12=0化为标准方程x2+(y﹣4)2=4,则此圆的圆心为(0,4),半径为2.…(1)若直线l与圆C相切,则有=2.…解得a=﹣.…(2)直线l的方程为:,即x﹣y+2=0,…圆心(0,4)到l的距离为,…则…22.如图1,在三棱锥P﹣ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.(1)证明:AD⊥BC;(2)求三棱锥D﹣ABC的体积.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】(1)先证明BC⊥平面PAC,再证明AD⊥平面PBC,进而可得AD⊥BC;(2)三棱锥D﹣ABC的体积即为三棱锥B﹣ADC的体积,进而得到答案.【解答】解:(1)证明:因为PA⊥平面ABC,所以PA⊥BC,又AC⊥BC,所以BC⊥平面PAC,所以BC⊥AD.…由三视图可得,在△PAC中,PA=AC=4,D为PC中点,所以AD⊥PC,所以AD⊥平面PBC又因为BC⊂面PBC,故AD⊥BC…(2)由三视图可得BC=4,由(1)知∠ADC=90°,BC⊥平面PAC…又三棱锥D﹣ABC的体积即为三棱锥B﹣ADC的体积,所以,所求三棱锥的体积…23.设A、B分别为双曲线的左右顶点,双曲线的实轴长为,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线与双曲线的右支交于M、N两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标.【考点】直线与圆锥曲线的关系;双曲线的标准方程.【分析】(1)由实轴长可得a值,由焦点到渐近线的距离可得b,c的方程,再由a,b,c间的平方关系即可求得b;(2)设M(x1,y1),N(x2,y2),D(x0,y0),则x1+x2=tx0,y1+y2=ty0,则x1+x2=tx0,y1+y2=ty0,联立直线方程与双曲线方程消掉y得x的二次方程,由韦达定理可得x1+x2,进而求得y1+y2,从而可得,再由点D在双曲线上得一方程,联立方程组即可求得D点坐标,从而求得t值;【解答】解:(1)由实轴长为,得,渐近线方程为x,即bx﹣2y=0,∵焦点到渐近线的距离为,∴,又c2=b2+a2,∴b2=3,∴双曲线方程为:;(2)设M(x1,y1),N(x2,y2),D(x0,y0),则x1+x2=tx0,y1+y2=ty0,由,∴y1+y2=﹣4=12,∴,解得,∴t=4,∴,t=4.24.如图,已知ACDE是直角梯形,且ED∥AC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2,,P是BC的中点.(Ⅰ)求证:DP∥平面EAB;(Ⅱ)求平面EBD与平面ABC所成锐二面角大小的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)取AB的中点F,连接PF,EF.利用三角形的中位线定理可得.再利用已知条件和平行四边形的判定定理可得四边形EFPD是平行四边形,可得PD∥EF.利用线面平行的判定定理即可得出;(II)通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得出二面角.【解答】(I)证明:取AB的中点F,连接PF,EF.又∵P是BC的中点,∴.∵,ED∥AC,∴,∴四边形EFPD是平行四边形,∴PD∥EF.而EF⊂平面EAB,PD⊄平面EAB,∴PD∥平面EAB.(II)∵∠BAC=90°,平面ACDE⊥平面ABC,∴BA⊥平面ACDE.以点A为坐标原点,直线AB为x轴,AC为y轴,建立如图所示的空间直角坐标系,则z轴在平面EACD内.则A(0,0,),B(2,0,0),,.∴,.设平面EBD的法向量,由,得,取z=2,则,y=0.∴.可取作为平面ABC的一个法向量,∴===.即平面EBD与平面ABC所成锐二面角大小的余弦值为.25.如图,在四棱锥E﹣ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.(1)求棱锥C﹣ADE的体积;(2)在线段DE上是否存在一点P,使AF∥平面BCE?若存在,求出的值;若不存在,请说明理由.【考点】直线与平面平行的判定.=AE•DE.由于CD⊥平面【分析】(1)在Rt△ADE中,AE=,可得S△ADE=CD•S△ADE.ADE,可得V C﹣ADE(2)在线段DE上存在一点F,使AF∥平面BCE,=,设F为线段DE上的一点,过F作FM∥CD交CE于点M,由线面垂直的性质可得:CD∥AB.可得四边形ABMF 是平行四边形,于是AF∥BM,即可证明AF∥平面BCE【解答】解:(1)在Rt△ADE中,AE==3,=AE•DE=×3×3=,∴S△ADE=CD•S△ADE=×6×=9,∵CD⊥平面ADE,∴V C﹣ADE在线段DE上存在一点F,使AF∥平面BCE,=,下面给出证明:设F为线段DE上的一点,且=,过F作FM∥CD交CE于点M,则FM=,∵CD⊥平面ADE,AB⊥平面ADE,∴CD∥AB.又CD=3AB,∴MF∥AB,MF=AB,∴四边形ABMF是平行四边形,∴AF∥BM,又AF⊄平面BCE,BM⊂平面BCE.∴AF∥平面BCE.26.(理)已知椭圆的离心率为,且过点.(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若.(i)求的最值;(ii)求四边形ABCD的面积.【考点】椭圆的简单性质.【分析】(1)与已知列关于a,b,c的方程组,求解方程组可得a,b的值,则椭圆的标准方程可求;(2)设直线AB的方程为y=kx+m,联立直线方程和椭圆方程,由可得k与m的关系.(i)由数量积的坐标运算把化为含有k的代数式求得最值;(ii)首先求出△AOB的面积,乘以4即可求得四边形ABCD的面积.【解答】解:(1)由题意,,又a2=b2+c2,解得:a2=8,b2=4,∴椭圆的标准方程为;(2)设直线AB的方程为y=kx+m,再设A(x1,y1),B(x2,y2),联立,得(1+2k2)x2+4kmx+2m2﹣8=0.△=(4m)2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0…①,∵,∴,∴,=,∴,得4k2+2=m2.(i)=.∴﹣2=2﹣4.当k=0(此时m2=2满足①式),即直线AB平行于x轴时,的最小值为﹣2.又直线AB的斜率不存在时,,∴的最大值为2;(ii)设原点到直线AB的距离为d,则==.∴.27.已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为.①求四边形APBQ面积的最大值;②设直线PA的斜率为k1,直线PB的斜率为k2,判断k1+k2的值是否为常数,并说明理由.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)设椭圆C的方程为,由短轴长可得b值,根据离心率为及a2=b2+c2,得a值;(Ⅱ)①设A(x1,y1),B(x2,y2),直线AB的方程为y=x+t,代入得x的二次方程,四边形APBQ的面积S==.,而|PQ|易求,代入韦达定理即可求得S的表达式,由表达式即可求得S的最大值;②直线PA的斜率,直线PB的斜率,代入韦达定理即可求得k1+k2的值;【解答】解:(Ⅰ)设椭圆C的方程为.第31页(共31页)由已知b=2,离心率e=,a 2=b 2+c 2,得a=4,所以,椭圆C 的方程为. (Ⅱ)①由(Ⅰ)可求得点P 、Q 的坐标为P (2,3),Q (2,﹣3),则|PQ |=6, 设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y=x +t ,代入, 得:x 2+tx +t 2﹣12=0.由△>0,解得﹣4<t <4,由根与系数的关系得, 四边形APBQ 的面积, 故当t=0时,;②由题意知,直线PA 的斜率,直线PB 的斜率, 则==,由①知可得,所以k 1+k 2的值为常数0.。

2016-2017年四川省绵阳市高二(上)期末数学试卷(理科)及答案

2016-2017年四川省绵阳市高二(上)期末数学试卷(理科)及答案

2016-2017学年四川省绵阳市高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.(4分)直线x+y+1=0的倾斜角为()A.150°B.120°C.60°D.30°2.(4分)高二年级有男生560人,女生420人,为了解学生职业规划,现用分层抽样的方法从该年级全体学生中抽取一个容量为280人的样本,则此样本中男生人数为()A.120B.160C.280D.4003.(4分)如果直线l1:x+ax+1=0和直线l2:ax+y+1=0垂直,则实数a的值为()A.±1B.1C.﹣1D.04.(4分)已知抛物线C:y2=2x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=()A.1B.2C.4D.85.(4分)天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0﹣9之间整数值的随机数,并制定用1,2,3,4,5表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989则这三天中恰有两天下雨的概率近似为()A.B.C.D.6.(4分)甲乙两个竞赛队都参加了6场比赛,比赛得分情况的经营如图如图(单位:分)),其中乙队的一个得分数字被污损,那么估计乙队的平均得分大于甲队的平均得分的概率为()A.B.C.D.7.(4分)已知两个圆O1和O2,它们的半径分别是2和4,且|O1O2|=8,若动圆M与圆O1内切,又与O2外切,则动圆圆心M的轨迹方程是()A.圆B.椭圆C.双曲线一支D.抛物线8.(4分)执行如图的程序框图.输出的x的值是()A.2B.14C.11D.89.(4分)某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的2×2列联表:附K2=根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?()A.99%以上B.97.5%以上C.95%以上D.85%以上10.(4分)已知圆C1:x2+y2=4和圆2:(x﹣a)2+y2=4,其中a是在区间(0,6)上任意取得一个实数,那么圆C1和圆C2相交且公共弦长小于2的概率为()A.B.C.D.11.(4分)若关于x的方程=mx+m﹣1有两个不同的实数根,则实数m的取值范围是()A.(0,)B.[,)C.(,)D.[,)12.(4分)已知F1,F2为双曲线C:﹣=1(a>0)的左右焦点,点A在双曲线的右支上,点P(7,2)是平面内一定点,若对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,则|AP|+|AF2|的最小值为()A.2﹣6B.10﹣3C.8﹣D.2﹣2二、填空题(共4小题,每小题3分,满分12分)13.(3分)空间直角坐标系中,设A(﹣1,2,﹣3),B(﹣1,0,2),点M和点A关于y轴对称,则|BM|=.14.(3分)如图算法最后输出的结果是.15.(3分)已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆外存在一点P,满足•=0,则椭圆C的离心率e的取值范围是 .16.(3分)设点M (3,t ),若在圆O :x 2+y 2=6上存在两点A ,B ,使得∠AMB=90°,则t 的取值范围是 .三、解答题(共4小题,满分40分,解答时应写出文字说明、证明过程或演算步骤)17.(10分)某模具长新接一批新模型制作的订单,为给订购方回复出货时间,需确定制作该批模型所花费的时间,为此进行了5次试验,收集数据如下:(1)请根据以上数据,求关于x 的线性回归方程=x +;(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间. (注:回归方程=x +中斜率和截距最小二乘估计公式分别为=,=﹣,参考数据:x i y i =12050,x =5500)18.(10分)某学习小组20名学生一次数学考试成绩(单位:分)频率直方图如图所示,已知前三个矩形框垂直于横轴的高度成等差数列.(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[80,90)中的学生人数;(3)从成绩在[50,60)与[80,90)中的学生中人选2人,求此2人的成绩相差20分以上的概率.19.(10分)已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x﹣8y﹣9=0被圆M截得的弦长为,且圆心M在直线l的右下方.(1)求圆M的标准方程;(2)直线mx+y﹣m+1=0与圆M交于A,B两点,动点P满足|PO|=|PM|(O 为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.20.(10分)已知椭圆中心在原点,焦点在x轴上,离心率e=,顺次连接椭圆四个顶点所得四边形的面积为2.(1)求椭圆的标准方程;(2)已知直线l与椭圆相交于M,N两点,O为原点,若点O在以MN为直径的圆上,试求点O到直线l的距离.2016-2017学年四川省绵阳市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一个是符合题目要求的)1.(4分)直线x+y+1=0的倾斜角为()A.150°B.120°C.60°D.30°【分析】直接利用倾斜角的正切值等于斜率求解.【解答】解:设直线的倾斜角为α(0°<α<180°),则tanα=.所以α=150°.故选:A.2.(4分)高二年级有男生560人,女生420人,为了解学生职业规划,现用分层抽样的方法从该年级全体学生中抽取一个容量为280人的样本,则此样本中男生人数为()A.120B.160C.280D.400【分析】先根据男生和女生的人数做出年纪大总人数,用要抽取得人数除以总人数得到每个个体被抽到的概率,用男生人数乘以概率,得到结果.【解答】解:∵有男生560人,女生420人,∴年级共有560+420=980,∵用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,∴每个个体被抽到的概率是=,∴要从男生中抽取560×=160,故选:B.3.(4分)如果直线l1:x+ax+1=0和直线l2:ax+y+1=0垂直,则实数a的值为()A.±1B.1C.﹣1D.0【分析】利用两条直线相互垂直的充要条件即可得出.【解答】解:∵l1⊥l2,则a+a=0解得a=0.故选:D.4.(4分)已知抛物线C:y2=2x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=()A.1B.2C.4D.8【分析】求出抛物线的准线方程,由抛物线的定义,解方程,即可得到所求值.【解答】解:抛物线方程为y2=2x,准线方程为x=﹣,由抛物线的定义,可得|AF|=x0+=x0,解得,x0=1.故选:A.5.(4分)天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0﹣9之间整数值的随机数,并制定用1,2,3,4,5表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989则这三天中恰有两天下雨的概率近似为()A.B.C.D.【分析】由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有可以通过列举得到共5组随机数,根据概率公式,得到结果.【解答】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,所求概率为=,故选:B.6.(4分)甲乙两个竞赛队都参加了6场比赛,比赛得分情况的经营如图如图(单位:分)),其中乙队的一个得分数字被污损,那么估计乙队的平均得分大于甲队的平均得分的概率为()A.B.C.D.【分析】设乙队的一个得分数字被污损的数学为x,求出甲队平均分为45.乙队平均分为,由x的可能取值的个数是10个,满足>45的x的个数有4个,由此能估计乙队的平均得分大于甲队的平均得分的概率.【解答】解:设乙队的一个得分数字被污损的数学为x,甲队平均分为:=(38+41+44+46+49+52)=45.乙队平均分为:=(31+47+40+x+42+51+54)=,∵x的可能取值的个数是10个,满足>45的x的个数有4个,∴估计乙队的平均得分大于甲队的平均得分的概率p=.故选:C.7.(4分)已知两个圆O1和O2,它们的半径分别是2和4,且|O1O2|=8,若动圆M与圆O1内切,又与O2外切,则动圆圆心M的轨迹方程是()A.圆B.椭圆C.双曲线一支D.抛物线【分析】由两个圆相内切和外切的条件,写出动圆圆心满足的关系式,由双曲线的定义确定其轨迹即可.【解答】解:设动圆圆心为M,半径为R,由题意|MO1|=R﹣2,|MO2|=R+4,所以|MO2|﹣|MO1|=6(常数)且6<8=|O1O2|故M点的轨迹为以,O1O2为焦点的双曲线的一支.故选:C.8.(4分)执行如图的程序框图.输出的x的值是()A.2B.14C.11D.8【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量x的值,模拟程序的运行过程,可得答案.【解答】解:当x=2,y=1时,满足进行循环的条件,x=5,y=2,n=2,当x=5,y=2时,满足进行循环的条件,x=8,y=4,n=3,当x=8,y=4时,满足进行循环的条件,x=11,y=9,n=4,当x=11,y=9时,满足进行循环的条件,x=14,y=23,n=5,当x=14,y=23时,不满足进行循环的条件,故输出的x值为14,故选:B.9.(4分)某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的2×2列联表:附K2=根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?()A.99%以上B.97.5%以上C.95%以上D.85%以上【分析】利用公式求得K2,与临界值比较,即可得到结论.【解答】解:K2==4>3.841,∴该数学兴趣小组有95%以上把握认为“喜爱该食品与性别有关”.故选:C.10.(4分)已知圆C1:x2+y2=4和圆2:(x﹣a)2+y2=4,其中a是在区间(0,6)上任意取得一个实数,那么圆C1和圆C2相交且公共弦长小于2的概率为()A.B.C.D.【分析】求出满足条件的a的范围,根据区间长度之比求出满足条件的概率即可.【解答】解:a=2时,C1:x2+y2=4,C2:(x﹣2)2+y2=4,那么圆C1和圆C2相交且公共弦长是2,故满足条件的a的范围是:2<a<4,区间长度是2,故在区间(0,6)上任意取得一个实数,a在(2,4)的概率是p==,故选:D.11.(4分)若关于x的方程=mx+m﹣1有两个不同的实数根,则实数m的取值范围是()A.(0,)B.[,)C.(,)D.[,)【分析】构造函数g(x)=mx+m﹣1,f(x)=,在同一坐标系中作出二函数的图象,数形结合即可求得实数m的取值范围.【解答】解:令g(x)=mx+m﹣1,f(x)=,∵方程mx+3m=有两个不同的实数解,∴g(x)=mx+m﹣1与f(x)=有两个不同的交点,在同一坐标系中作图如下:∵g(x)=mx+m﹣1为过定点(﹣1,﹣1)的直线,当直线g(x)=mx+m﹣1经过(1,0),即m=时,显然g(x)=mx+m﹣1与f(x)=有两个不同的交点;当直线g(x)=mx+m﹣1与曲线f(x)=相切时,,解得m=或m=0(舍),∴m∈[,),故选:B.12.(4分)已知F1,F2为双曲线C:﹣=1(a>0)的左右焦点,点A在双曲线的右支上,点P(7,2)是平面内一定点,若对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,则|AP|+|AF2|的最小值为()A.2﹣6B.10﹣3C.8﹣D.2﹣2【分析】利用对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,得出直线4x+3y+m=0与双曲线的渐近线方程为y=±x,重合或平行,求出a,再利用双曲线的定义进行转化,即可得出结论.【解答】解:∵双曲线C:﹣=1(a>0),∴双曲线的渐近线方程为y=±x,∵对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,∴直线4x+3y+m=0与双曲线的渐近线方程为y=±x,重合或平行,∴a=3,∴c=5,∴F1为(﹣5,0),∵P(7,2),∴|PF1|==2,∴|AP|+|AF2|=|AP|+|AF1|﹣6≥|PF1|﹣6=2﹣6∴|AP|+|AF2|的最小值为2﹣6,故选:A.二、填空题(共4小题,每小题3分,满分12分)13.(3分)空间直角坐标系中,设A(﹣1,2,﹣3),B(﹣1,0,2),点M和点A关于y轴对称,则|BM|=3.【分析】先求出点M(1,2,3),由此利用两点间距离公式能求出|BM|的值.【解答】解:∵空间直角坐标系中,设A(﹣1,2,﹣3),B(﹣1,0,2),点M和点A关于y轴对称,∴M(1,2,3),|BM|==3.故答案为:3.14.(3分)如图算法最后输出的结果是67.【分析】根据已知中的程序语句可得,该程序的功能是计算并输出变量S的值,模拟程序的运行过程,可得答案.【解答】解:当i=7时,满足进行循环的条件,S=5,i=5,当i=5时,满足进行循环的条件,S=23,i=3,当i=3时,满足进行循环的条件,S=67,i=1,当i=1时,不满足进行循环的条件,故输出的S值为67,故答案为:6715.(3分)已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆外存在一点P,满足•=0,则椭圆C的离心率e的取值范围是(,1).【分析】由题意可知:△PF1F2是以P为直角顶点的直角三角形,则丨丨2+丨丨2=丨丨2,由(丨丨+丨丨)2≤2(丨丨2+丨丨2)=2丨丨2=8c2,e==≥=,由0<e<1,即可求得椭圆C的离心率e的取值范围.【解答】解:椭圆上存在点使•=0,∴⊥,∴△PF1F2是以P为直角顶点的直角三角形,∵丨丨+丨丨=2a,丨丨=2c,椭圆的离心率e==,由(丨丨+丨丨)2≤2(丨丨2+丨丨2)=2丨丨2=8c2,∴e==>=,由0<e<1∴该椭圆的离心率的取值范围是(,1),故答案为(,1).16.(3分)设点M(3,t),若在圆O:x2+y2=6上存在两点A,B,使得∠AMB=90°,则t 的取值范围是﹣≤t≤.【分析】由题意MA,MB是圆的切线时,|OM|=2,则9+t2≤12,即可求出t 的取值范围.【解答】解:由题意MA,MB是圆的切线时,|OM|=2,∴9+t 2≤12,∴﹣≤t≤,故答案为﹣≤t≤.三、解答题(共4小题,满分40分,解答时应写出文字说明、证明过程或演算步骤)17.(10分)某模具长新接一批新模型制作的订单,为给订购方回复出货时间,需确定制作该批模型所花费的时间,为此进行了5次试验,收集数据如下:(1)请根据以上数据,求关于x的线性回归方程=x+;(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间.(注:回归方程=x+中斜率和截距最小二乘估计公式分别为=,=﹣,参考数据:x i y i=12050,x=5500)【分析】(1)求出回归系数,可得关于x的线性回归方程=x+;(2)当x=60时,=0.65×60+56.5=95.5分钟,即可得出结论.【解答】解:(1)由数据得,=(10+20+30+40+50)=30,=(64+69+75+82+90)=76,∴回归直线过样本中心点(30,76),∵x i y i=12050,x=5500,∴=0.65,=56.5,∴y关于x的线性回归方程为=0.65x+56.5.…(8分)(2)当x=60时,=0.65×60+56.5=95.5分钟因此可以预测制作60个这种模型需要花费95.5分钟…(10分)18.(10分)某学习小组20名学生一次数学考试成绩(单位:分)频率直方图如图所示,已知前三个矩形框垂直于横轴的高度成等差数列.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[80,90)中的学生人数;(3)从成绩在[50,60)与[80,90)中的学生中人选2人,求此2人的成绩相差20分以上的概率.【分析】(1)由已知前三个长方形的高成等差数列知,第三个长方形的高为8a,再由频率分布直方图能求出a.(2)由频率分布直方图,能求出成绩落在[50,60)与[80,90)中的学生人数.(3)记成绩落在中的2人为A1,A2,成绩落在中的3人为B1,B2,B3,利用列举法能求出这2人的成绩相差20分以上的概率.【解答】解:(1)由已知前三个长方形的高成等差数列知,第三个长方形的高为8a,于是由频率分布直方图得(2a+5a+8a+3a+2a)×10=1,解得a═0.005.…(2分)(2)由频率分布直方图,知:成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[80,90)中的学生人数为3×0.005×10×20=3.…(4分)(3)记成绩落在中的2人为A1,A2,成绩落在中的3人为B1,B2,B3,则从成绩在与中任选2人的基本事件共有10个:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),…(7分)其中2人的成绩相差20分以上的基本事件有6个:(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),故这2人的成绩相差20分以上的概率P=.…(10分)19.(10分)已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x﹣8y﹣9=0被圆M截得的弦长为,且圆心M在直线l的右下方.(1)求圆M的标准方程;(2)直线mx+y﹣m+1=0与圆M交于A,B两点,动点P满足|PO|=|PM|(O 为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.【分析】(1)利用直线l:6x﹣8y﹣9=0被圆M截得的弦长为,且圆心M在直线l的右下方,求出圆心坐标,即可求圆M的标准方程;(2)要使△PAB的面积最大,点P到直线AB的距离d最大,利用P点在以(2,﹣2)为圆心,2为半径的圆上,即可得出结论.【解答】解:(1)由已知可设圆心M(a,﹣a),圆心到直线l的距离为d,则d==,…(1分)于是,整理得|14a﹣9|=5,解得a=1,或a=.…(3分)∵圆心M在直线l的右下方,∴圆心M是(1,﹣1),∴圆M的标准方程为(x﹣1)2+(y+1)2=1.…(4分)(2)直线mx+y﹣m+1=0可变形为m(x﹣1)+y+1=0,即过定点(1,﹣1),∴动直线mx+y﹣m+1=0恰好过圆M的圆心,∴|AB|=2.…(5分)设P(x,y),则由|PO|=|PM|,可得x2+y2=2[(x﹣1)2+(y+1)2],整理得(x﹣2)2+(y+2)2=4,即P点在以(2,﹣2)为圆心,2为半径的圆上,…(7分)设此圆圆心为N,则N(2,﹣2).∴要使△PAB的面积最大,点P到直线AB的距离d最大,d max=|PM|=+2=+2,∴△PAB面积的最大值为=.…(8分)∵MN的方程为y=﹣x,…(9分)代入方程(x﹣2)2+(y+2)2=4中,可解得x=4,或0 (舍去),∴此时P(4,﹣4).…(10分)20.(10分)已知椭圆中心在原点,焦点在x轴上,离心率e=,顺次连接椭圆四个顶点所得四边形的面积为2.(1)求椭圆的标准方程;(2)已知直线l与椭圆相交于M,N两点,O为原点,若点O在以MN为直径的圆上,试求点O到直线l的距离.【分析】(1)由题意可知:e==,得a=c,2ab=2,a2﹣c2=b2,即可求得a和b的值,求得椭圆的标准方程;(2)当直线l的斜率不存在时,点O在以MN为直径的圆上,OM⊥ON.求得M和N的坐标,即可求得原点O到直线l的距离为,当直线l的斜率存在时,设直线l的方程为y=kx+m,代入椭圆方程,由韦达定理求得x1x2=,y1y2=,由•=0,则x1x2+y1y2═0,求得m2=,原点O到直线l的距离为d,则d===.【解答】解:(1)设椭圆方程为(a>b>0),焦距为2c.由e==,得a=c,①∵椭圆顶点连线四边形面积为2,即2ab=2,②又∵a2﹣c2=b2,③联立①②③解得c=1,a=,b=1.故椭圆的方程为:;…(4分)(2)当直线l的斜率不存在时,点O在以MN为直径的圆上,∴OM⊥ON.根据椭圆的对称性,可知直线OM、ON的方程分别为y=x,y=﹣x,可求得M(,),N(,﹣)或M(﹣,﹣),N(﹣,),此时,原点O到直线l的距离为.…(6分)当直线l的斜率存在时,设直线l的方程为y=kx+m,点M(x1,y1),N(x2,y2),由,整理得(2k2+1)x2+4kmx+2m2﹣2=0,∴x1+x2=﹣,x1x2=,…(8分)∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•﹣km(﹣)+m2=.∵OM⊥ON,∴•=0,即x1x2+y1y2═+==0,即3m2﹣2k2﹣2=0,变形得m2=.设原点O到直线l的距离为d,则d====.综上,原点O到直线l的距离为定值.…(10分)。

上海市2016-2017学年高二上期末数学试卷含答案解析

上海市2016-2017学年高二上期末数学试卷含答案解析

上海市2016-2017学年高二上期末数学试卷含答案解析高二(上)期末数学试卷一、填空题(本大题满分48分)本大题共有12题,考生应在答题卷的相应编号的空格内直接填写结果,每题填对得4分,否则一律得零分。

1.椭圆x^2/25 + y^2/6.25 = 1的长轴长为10.2.已知直线l的一个方向向量的坐标是(3.4.-5),则直线l的倾斜角为53.13°。

3.已知二元一次方程组2x + 3y = 1.4x + ky = 2的增广矩阵是[2 3 1.4 k 2],则此方程组的解是x = (2 - 3k)/(2k - 12),y = (4 - 2x)/k。

4.行列式中-3的代数余子式的值为-1.5.已知△ABC的三个顶点分别为A(1.2),B(4.1),C(3.6),则AC边上的中线BM所在直线的方程为x + 2y = 5.6.已知直线l1的方程为3x - y + 1 = 0,直线l2的方程为2x + y - 3 = 0,则两直线l1与l2的夹角是45°。

7.用数学归纳法证明“1 + 2 + … + n < n(n+1)/2(n∈N*,n>1)”时,由n=k(k>1)不等式成立,推证n=k+1时,左边应增加的项数是k+1.8.执行如图所示的程序框图,若输入p的值是6,则输出S的值是12.9.若圆C的方程为x^2 + y^2 - 2ax - 1 = 0,且A(-1.2),B(2.1)两点中的一点在圆C的内部,另一点在圆C的外部,则a的取值范围是(1.2)。

10.若x^2 + 2ax + 1 = 0,且存在y,使得y^2 + 2ay + 1 = 0,则实数a的取值范围是(-∞。

-1)∪(-1.0)∪(0.+∞)。

11.已知直线l1过点P(1.4)且与x轴交于A点,直线l2过点Q(3.-1)且与y轴交于B点,若l1⊥l2,且PA = QB,则点M的轨迹方程为x^2 + y^2 - 4x + 6y - 7 = 0.12.如图所示,△ABC是边长为4的等边三角形,点P是以点C为圆心、3为半径的圆上的任意一点,则∠APB的取值范围是(90°。

5—16学年上学期高二期末考试数学(扫描版)(附答案)

5—16学年上学期高二期末考试数学(扫描版)(附答案)

2015~2016学年度第一学期期末质量调研测试高二数学评分标准一、填空题1. 22.03. 14. 65. 46. 137. 2 8.y x =± 9. 11 10. 11 11.-9]∞(, 12. 2 13.[1,3]- 14.314提示:设,OM m ON n ==,则22111m n+=, 所以2222222114(4)()PN m n m n m n =+=++下略 二、解答题15.(1)1581641681681701711791821708x +++++++==………………………4分 (2) 甲班的样本方差为()()()22221[(158170)1641701681701681708-+-+-+- ()()()()2222170170171170179170182170]=51.75+-+-+-+- ……………………9分 (3)设抽中的两名同学中至少有1人身高超过176cm 的事件为A ;从乙班8名同学中抽中两名身高不低于173cm 的同学有:(181,173) (181,176) (181,178) (181,179) (179,173) (179,176) (179,178) (178,173) (178, 176) (176,173)共10个基本事件,而事件A 含有9个基本事件;所以109)(=A P ;…………………………………………………………………………13分 故抽中的两名同学中至少有1人身高超过176cm 的概率为109…………………………14分 16.(1)椭圆C 的标准方程为221167x y += ………………………………………………6分 (2)1212221281436PF PF PF PF PF PF +=⎫⇒⋅=⎬+=⎭…………………………………………10分 所以12PF F ∆的面积为12172S PF PF =⋅=……………………………………………14分 17.(1)若q 为真命题,则231030a a -+<,133a ∴<<……………………………5分 (2)若p 为真命题,则2(1,),'()3210x f x x ax ∀∈+∞=-+≥即1(1,),3+20x x a x ∀∈+∞-≥ 令1()32g x x a x =+-,由于21'()30g x x=->在(1,+∞)上恒成立 所以1()32g x x a x=+-在(1,+∞)上递增,从而()42g x a >- 所以4202a a -≥⇒≤……………………………………………………………11分 因为“p 且q ”为真命题, 所以123a <≤………………………………………………………………………14分 18.(1)'()2cos (2cos )f x x x x x x =+=+ ……………………………………4分 2cos 0x +> ,'()00,'()00f x x f x x ∴>⇒><⇒<所以单调增区间为(0,)+∞,单调减区间为(,0)-∞…………………………6分(2)由(1)可知随着x 的变化,'(),()f x f x 的变化如下:当x →+∞或x →-∞时,()f x →+∞(如无说明,也不扣分)...........所以曲线()y f x =与直线y b =有两个不同交点时,b 的取值范围为(1,)+∞………………………………………………………11分(3)不等式可化为2()1()f x f ππ>-=因为()f x 是偶函数,故由(2)中表格可知不等式的解集为(,)(,)ππ-∞-+∞ ………………16分19.(1)设椭圆的方程为22221(0)x y a b a b+=>>,(,)Q Q Q x y ,代入椭圆方程整理得 22222Q Q b y b x a -=-,所以222122212Q Q Q Q Q Q y b y b y b b k k x x x a -+-===-=- 所以222a b =………………………………………………………………4分又24,2c c =∴=,从而222248a b b a =-=∴=故椭圆C 的方程为22184x y += ………………………………………6分(2)椭圆C 的左准线方程为4,x =-所以点P 的坐标(4,0)-,显然直线l 的斜率k 存在,所以直线l 的方程为(4)y k x =+。

2016-2017学年山东省潍坊市高二(上)期末数学试卷与解析word(理科)

2016-2017学年山东省潍坊市高二(上)期末数学试卷与解析word(理科)

2016-2017学年山东省潍坊市高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)命题p:“∃x∈R,x2+2<0”,则¬p为()A.∀x∈R,x2+2≥0 B.∀x∉R,x2+2<0 C.∃x∈R,x2+2≥0 D.∀x∈R,x2+2>02.(5分)抛物线x2=4y的焦点坐标为()A.(1,0) B.(﹣1,0)C.(0,1) D.(0,﹣1)3.(5分)已知等差数列{a n}的前n项和为S n,且a3+a4+a5+a6+a7=20,则S9=()A.18 B.36 C.60 D.724.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足a=2bcosC,则△ABC的形状为()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形5.(5分)已知原命题“若a>b>0,则<”,则原命题,逆命题,否命题,逆否命题中真命题个数为()A.0 B.1 C.2 D.46.(5分)如图,正四面体ABCD的棱长为1,点E是棱CD的中点,则•=()A.﹣ B.﹣ C.D.7.(5分)如图,为测量塔高AB,选取与塔底B在同一水平面内的两点C、D,在C、D两点处测得塔顶A的仰角分别为45°,30°,又测得∠CBD=30°,CD=50米,则塔高AB=()A.50米B.25米C.25米D.50米8.(5分)已知命题p:可表示焦点在x轴上的双曲线;命题q:若实数a,b满足a>b,则a2>b2.则下列命题中:①p∨q②p∧q③(¬p)∨q④(¬p)∧(¬q)真命题的序号为()A.①B.③④C.①③D.①②③9.(5分)已知抛物线C的顶点在原点,焦点为F(﹣3,0),C上一点P到焦点F的距离为9,则点P的一个坐标为()A.(﹣3,6)B.(﹣3,6)C.(﹣6,6)D.(﹣6,6)10.(5分)已知实数x,y满足不等式组,则z=3x﹣y的最大值为()A.1 B.﹣C.﹣2 D.不存在11.(5分)已知函数f(x)=x+a,g(x)=x+,若∀x1∈[1,3],∃x2∈[1,4],使得f(x1)≥g(x2),则实数a的取值范围为()A.a≥1 B.a≥2 C.a≥3 D.a≥412.(5分)已知双曲线C的两焦点为F1,F2,离心率为,抛物线y2=16x的准线过双曲线C的一个焦点,若以线段F1F2为直径的圆与双曲线交于四个点P i(i=1,2,3,4),|P i F1|•|P i F2|=()A.0 B.7 C.14 D.21二、填空题(共4小题,每小题5分,满分20分)13.(5分)双曲线﹣=1的渐近线方程是.14.(5分)“∀x∈[1,2],x2﹣a≥0“是真命题,则实数a的最大值为.15.(5分)已知圆O:x2+y2=16上任意一点P,过P作x轴的垂线段PA,A为垂足,当点P在圆上运动时,线段PA的中点M的轨迹记为曲线C,则曲线C的离心率为.16.(5分)《九章算术》是我国古代一部重要的数学著作,书中给出了如下问题:“今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增一十三里.驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢?”其大意为:“现有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是1125里.良马第一天行103里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇?”在这个问题中两马从出发到相遇的天数为.三、解答题(共6小题,满分70分)17.(10分)已知向量=(1,0,1),=(0,1,1),向量﹣k与垂直,k 为实数.(I)求实数k的值;(II)记=k,求向量﹣与﹣的夹角.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知2bcosC=acosC+ccosA.(I)求角C的大小;(II)若b=2,c=,求a及△ABC的面积.19.(12分)设p:集合A={x|x2﹣(3a+1)x+2a(a+1)<0},q:集合B={x|<0}.(I)求集合A;(II)当a<1时,¬q是¬p的充分不必要条件,求实数a的取值范围.20.(12分)已知数列{a n}的前n项和S n=n2﹣n(n∈N*).正项等比数列{b n}的首项b1=1,且3a2是b2,b3的等差中项.(I)求数列{a n},{b n}的通项公式;(II)若c n=,求数列{c n}的前n项和T n.21.(12分)近年来,某地雾霾污染指数达到重度污染级别.经环保部门调查,该地工厂废气排放污染是形成雾霾的主要原因.某科研单位进行了科技攻关,将工业废气中的某些成分转化为一中可利用的化工产品.已知该项目每年投入资金3000万元,设每年处理工厂废气量为x万升,每万升工厂废气处理后得到可利用的化工产品价值为c(x)万元,其中c(x)=.设该单位的年利润为f(x)(万元).(I)求年利润f(x)(万元)关于处理量x(万升)的函数表达式;(II)该单位年处理工厂废气量为多少万升时,所获得的利润最大,并求出最大利润?22.(12分)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为E,过F1于x轴垂直的直线与椭圆C相交,其中一个交点为M(﹣,).(I)求椭圆C的方程;(II)设直线l与椭圆C交于不同的两点A,B.(i)若直线l过定点(1,0),直线AE,BE的斜率为k1,k2(k1≠0,k2≠0),证明:k1•k2为定值;(ii)若直线l的垂直平分线与x轴交于一点P,求点P的横坐标x p的取值范围.2016-2017学年山东省潍坊市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)命题p:“∃x∈R,x2+2<0”,则¬p为()A.∀x∈R,x2+2≥0 B.∀x∉R,x2+2<0 C.∃x∈R,x2+2≥0 D.∀x∈R,x2+2>0【解答】解:命题是特称命题,则命题的否定是全称命题,即∀x∈R,x2+2≥0,故选:A2.(5分)抛物线x2=4y的焦点坐标为()A.(1,0) B.(﹣1,0)C.(0,1) D.(0,﹣1)【解答】解:∵抛物线x2 =4y 中,p=2,=1,焦点在y轴上,开口向上,∴焦点坐标为(0,1 ),故选C.3.(5分)已知等差数列{a n}的前n项和为S n,且a3+a4+a5+a6+a7=20,则S9=()A.18 B.36 C.60 D.72【解答】解:∵等差数列{a n}的前n项和为S n,且a3+a4+a5+a6+a7=20,∴a3+a4+a5+a6+a7=5a5=20,解得a5=4,∴S9==36.故选:B.4.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足a=2bcosC,则△ABC的形状为()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【解答】解:a=2bcosC,由正弦定理可知,sinA=2sinBcosC,因为A+B+C=π,所以sin(B+C)=2sinBcosC,所以sinBcosC+cosBsinC=2sinBcosC,sin(B﹣C)=0,B﹣C=kπ,k∈Z,因为A、B、C是三角形内角,所以B=C.三角形是等腰三角形.故选:A.5.(5分)已知原命题“若a>b>0,则<”,则原命题,逆命题,否命题,逆否命题中真命题个数为()A.0 B.1 C.2 D.4【解答】解:若a>b>0,则<成立,则原命题为真命题,则逆否命题为真命题,命题的逆命题为若<,则a>b>0,为假命题,当a<0,b>0时,结论就不成立,则逆命题为假命题,否命题也为假命题,故真命题的个数为2个,故选:C6.(5分)如图,正四面体ABCD的棱长为1,点E是棱CD的中点,则•=()A.﹣ B.﹣ C.D.【解答】解:∵正四面体ABCD的棱长为1,点E是棱CD的中点,∴•=(+)•=•+•=×1×1×+×1×1×=,故选:D.7.(5分)如图,为测量塔高AB,选取与塔底B在同一水平面内的两点C、D,在C、D两点处测得塔顶A的仰角分别为45°,30°,又测得∠CBD=30°,CD=50米,则塔高AB=()A.50米B.25米C.25米D.50米【解答】解:设AB=am,则BC=am,BD=am,∵∠CBD=30°,CD=50米,∴2500=a2+3a2﹣2a,∴a=50m.故选A.8.(5分)已知命题p:可表示焦点在x轴上的双曲线;命题q:若实数a,b满足a>b,则a2>b2.则下列命题中:①p∨q②p∧q③(¬p)∨q④(¬p)∧(¬q)真命题的序号为()A.①B.③④C.①③D.①②③【解答】解:对于命题p:若可表示焦点在x轴上的双曲线,则3﹣a>0,a﹣5>0,a不存在,故命题p是假命题;对于命题q:若实数a,b满足a>b,则a2>b2或a2=b2或a2<b2,命题q为假命题;①p∨q为假,②p∧q为假,③(¬p)∨q为真,④(¬p)∧(¬q)为真;故选:B.9.(5分)已知抛物线C的顶点在原点,焦点为F(﹣3,0),C上一点P到焦点F的距离为9,则点P的一个坐标为()A.(﹣3,6)B.(﹣3,6)C.(﹣6,6)D.(﹣6,6)【解答】解:抛物线C的顶点在原点,焦点为F(﹣3,0),准线方程为:x=3,C上一点P到焦点F的距离为9,设P(x,y)可得﹣x+3=9,解得x=﹣6,则=9,可得y=.故选:D.10.(5分)已知实数x,y满足不等式组,则z=3x﹣y的最大值为()A.1 B.﹣C.﹣2 D.不存在【解答】解:不等式组表示的平面区域如图:目标函数z=3x﹣y变形为y=3x﹣z,此直线在y轴截距最小时,z最大,由区域可知,直线经过图中A(0,2)时,z取最大值为﹣2;故选C11.(5分)已知函数f(x)=x+a,g(x)=x+,若∀x1∈[1,3],∃x2∈[1,4],使得f(x1)≥g(x2),则实数a的取值范围为()A.a≥1 B.a≥2 C.a≥3 D.a≥4【解答】解:当x 1∈[1,3]时,由f(x)=x+a递增,f(1)=1+a是函数的最小值,当x2∈[1,4]时,g(x)=x+,在[1,2)为减函数,在(2,4]为增函数,∴g(2)=4是函数的最小值,若∀x 1∈[1,3],∃x2∈[1,4],使得f(x1)≥g(x2),可得f(x)在x1∈[1,3]的最小值不小于g(x)在x2∈[1,4]的最小值,即1+a≥4,解得:a∈[3,+∞),故选:C.12.(5分)已知双曲线C的两焦点为F1,F2,离心率为,抛物线y2=16x的准线过双曲线C的一个焦点,若以线段F1F2为直径的圆与双曲线交于四个点P i(i=1,2,3,4),|P i F1|•|P i F2|=()A.0 B.7 C.14 D.21【解答】解:由题意,c=4,a=3,b=,双曲线的方程为=1,与圆x2+y2=16,可得|y|=,∴|P i F1|•|P i F2|==14,故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)双曲线﹣=1的渐近线方程是y=±x.【解答】解:∵双曲线方程为﹣=1的,则渐近线方程为线﹣=0,即y=±,故答案为y=±.14.(5分)“∀x∈[1,2],x2﹣a≥0“是真命题,则实数a的最大值为1.【解答】解:“∀x∈[1,2],x2﹣a≥0“是真命题⇔x∈[1,2]时,x2﹣a≥0恒成立⇔a≤(x2)min,又∵x∈[1,2]时(x2)min=1,∴a≤1,则实数a的最大值为1故答案为:1.15.(5分)已知圆O:x2+y2=16上任意一点P,过P作x轴的垂线段PA,A为垂足,当点P在圆上运动时,线段PA的中点M的轨迹记为曲线C,则曲线C的离心率为.【解答】解:设M(x,y),则P(x,2y),代入圆的方程并化简得:,解得a=4,b=2,c=.椭圆的离心率为:.故答案为:.16.(5分)《九章算术》是我国古代一部重要的数学著作,书中给出了如下问题:“今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增一十三里.驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢?”其大意为:“现有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是1125里.良马第一天行103里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇?”在这个问题中两马从出发到相遇的天数为9.【解答】解:由题意知,良马每日行的距离成等差数列,记为{a n},其中a1=103,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+a m+b1+b2+…+b m=103m+×13+97m+×(﹣0.5)=200m+×12.5≥2×1125,化为m2+31m﹣360≥0,解得m,取m=9.故答案为:9三、解答题(共6小题,满分70分)17.(10分)已知向量=(1,0,1),=(0,1,1),向量﹣k与垂直,k 为实数.(I)求实数k的值;(II)记=k,求向量﹣与﹣的夹角.【解答】解:(Ⅰ)∵;∴;∵与垂直;∴;∴k=2;(Ⅱ)由(Ⅰ),;∴,;记向量与的夹角为θ,则:;∵0≤θ≤π;∴.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知2bcosC=acosC+ccosA.(I)求角C的大小;(II)若b=2,c=,求a及△ABC的面积.【解答】(本题满分为12分)解:(I)∵2bcosC=acosC+ccosA,∴由正弦定理可得:2sinBcosC=sinAcosC+cosAsinC,可得:2sinBcosC=sin(A+C)=sinB,∵sinB>0,∴cosC=,∵C∈(0,C),∴C=…6分(II)∵b=2,c=,C=,∴由余弦定理可得:7=a2+4﹣2×,整理可得:a2﹣2a﹣3=0,∴解得:a=3或﹣1(舍去),∴△ABC的面积S=absinC==…12分19.(12分)设p:集合A={x|x2﹣(3a+1)x+2a(a+1)<0},q:集合B={x|<0}.(I)求集合A;(II)当a<1时,¬q是¬p的充分不必要条件,求实数a的取值范围.【解答】解:(Ⅰ)由x2﹣(3a+1)x+2a(a+1)<0得(x﹣2a)[x﹣(a+1)]<0,①若2a<a+1,即a<1时,2a<x<a+1,此时A=(2a,a+1),②若2a=a+1,即a=1时,不等式无解,此时A=∅,③若2a>a+1,即a>1时,a+1<x<2a,此时A=(a+1,2a).(Ⅱ)由(Ⅰ)知,当a<1时,A=(2a,a+1),B={x|<0}={x|﹣1<x<3}=(﹣1,3),若¬q是¬p的充分不必要条件,即p是q的充分不必要条件,即A⊊B,则,即,则﹣≤a≤2,∵a<1,∴﹣≤a<1,则实数a的取值范围是[﹣,1).20.(12分)已知数列{a n}的前n项和S n=n2﹣n(n∈N*).正项等比数列{b n}的首项b1=1,且3a2是b2,b3的等差中项.(I)求数列{a n},{b n}的通项公式;(II)若c n=,求数列{c n}的前n项和T n.【解答】解:(I)数列{a n}的前n项和s n=n2﹣n,当n=1时,a1=s1=0;当n≥2时,a n=s n﹣s n﹣1=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1时上式也成立,∴a n=2n﹣2.设正项等比数列{b n}的公比为q,则,b2=q,b3=q2,3a2=6,∵3a2是b2,b3的等差中项,∴2×6=q+q2,得q=3或q=﹣4(舍去),∴b n=3n﹣1 .(Ⅱ)由(Ⅰ)知c n==,∴数列{c n}的前n项和T n=…①.T n=…②①﹣②得T n==2×=1﹣.∴T n=.21.(12分)近年来,某地雾霾污染指数达到重度污染级别.经环保部门调查,该地工厂废气排放污染是形成雾霾的主要原因.某科研单位进行了科技攻关,将工业废气中的某些成分转化为一中可利用的化工产品.已知该项目每年投入资金3000万元,设每年处理工厂废气量为x万升,每万升工厂废气处理后得到可利用的化工产品价值为c(x)万元,其中c(x)=.设该单位的年利润为f(x)(万元).(I)求年利润f(x)(万元)关于处理量x(万升)的函数表达式;(II)该单位年处理工厂废气量为多少万升时,所获得的利润最大,并求出最大利润?【解答】解:(I)0<x≤50时,f(x)=xc(x)﹣3000=﹣3x2+192x﹣2980,x>50时,f(x)=xc(x)﹣3000=﹣﹣2x+640,∴f(x)=;(II)0<x≤50时,f(x)=xc(x)﹣3000=﹣3x2+192x﹣2980,x=32时,f(x)=f(32)=92;maxx>50时,f(x)=xc(x)﹣3000=﹣﹣2x+640=640﹣(2x+)≤400,当且仅当2x=,即x=60时,f(x)max=f(60)=400,∵400>92,∴该单位年处理工厂废气量为60万升时,所获得的利润最大,最大利润为400万元.22.(12分)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为E,过F1于x轴垂直的直线与椭圆C相交,其中一个交点为M(﹣,).(I)求椭圆C的方程;(II)设直线l与椭圆C交于不同的两点A,B.(i)若直线l过定点(1,0),直线AE,BE的斜率为k1,k2(k1≠0,k2≠0),证明:k1•k2为定值;(ii)若直线l的垂直平分线与x轴交于一点P,求点P的横坐标x p的取值范围.【解答】解:(I)由已知中过F1于x轴垂直的直线与椭圆C相交,其中一个交点为M(﹣,).可得:c=,=,a2﹣b2=c2,解得:a=2,b=1,∴椭圆C的方程为:;…3分(II)设A(x1,y1),B(x2,y2)证明:(i)∵直线l过定点(1,0),设x=my+1,由得:(m2+4)y2+2my﹣3=0,…5分∴y1+y2=,y1y2=,∵右顶点为E(2,0),∴k1•k2=•====﹣,∴k1•k2为定值;…8分(ii)将A(x1,y1),B(x2,y2)代入椭圆方程得:,两式相减得:(x1﹣x2)(x1+x2)=﹣(y1﹣y2)(y1+y2)∵直线l的垂直平分线与x轴交于一点P,∴y1+y2≠0,x1﹣x2≠0,∴﹣•==k AB,设AB的中点H(x0,y0),则k AB=﹣•,故直线l的垂直平分线方程为:y﹣y0=(x﹣x0),令y=0,得P点横坐标为:…10分,由H(x0,y0)在椭圆内部,可得:x0∈(﹣2,2),故∈(﹣,)…12分赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

5—16学年上学期高二期末考试数学(理)试题(附答案)

5—16学年上学期高二期末考试数学(理)试题(附答案)

扶余市第一中学2015—2016学年度上学期期末考试高二数学(理)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。

共150分,考试时间120分钟。

第I 卷(选择题共60分)注意事项:1、答第I 卷前,考生务必将自己的姓名、考号用铅笔涂写在答题卡上。

2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。

一、选择题(每小题5分,共60分) 1. 下列说法中,正确的是A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“存在2,0x R x x ∈->”的否定是:“任意2,0x R x x ∈-≤”C .命题“p 或q”为真命题,则命题“p”和命题“q”均为真命题D .已知x R ∈,则“1x >”是“2x >”的充分不必要条件2. 已知121,,,8a a -成等差数列,1231,,,,4b b b --成等比数列,那么122a ab 的值为 A .5- B .5 C .52-D . 523. 已知ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b c bc =+-,4bc =,则ABC ∆的面积为A.12B. 1C.D. 24. 已知不等式()91≥⎪⎪⎭⎫ ⎝⎛++y a x y x 对任意正实数y x ,恒成立,则正实数a 的最小值为A. 4B. 1C. 5D. 35. 已知b a ,是实数,则“1=a 且2=b ”是“054222=+--+b a b a ”的 A . 充分而不必要条件 B . 必要而不充分条件 C . 充要条件D . 既不充分也不必要条件6. 已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为A B. 15 C. D. 357. 已知双曲线222211x y a a-=-(0)a >a 的值为A.12B.C.13D.8. 已知抛物线:C x y 42=的焦点为F ,直线1)y x =-与C 交于,(A B A 在x 轴上方)两点. 若AF mFB =,则m 的值为A.B.32C. 2D. 39. 已知椭圆)0(12222>>=+b a by a x 上有一点A,它关于原点的对称点为B ,点F 为椭圆的右焦点,且满足AF BF ⊥,设ABF α∠=,且,126ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围为 A .]23,213[- B .]36,213[- C .]36,13[- D .]23,13[-10. 在四棱锥P ABCD 中,底面ABCD 是正方形,侧棱PD ⊥平面ABCD,AB=PD=a.点E 为侧棱PC 的中点,又作DF ⊥PB 交PB 于点F.则PB 与平面EFD 所成角为 A. 30° B. 45° C. 60°D. 90°11. 已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,顶角为120°,则E 的离心率为 A .B .2C .D .12. 已知点P 是双曲线()22221,0,0x y a b a b-=>> 右支上一点,12,F F 分别是双曲线的左、右焦点,I 为12PF F ∆ 的内心,若121212IPF IPF IF F S S S ∆∆∆=+ 成立,则双曲线的离心率为 A .4 B .25C .2D .53第II 卷二 填空题:(本大题共4小题,每小题5分,共20分)13. 已知双曲线的两条渐近线的夹角为60°,则其离心率为 .14. 若抛物线x y 42=上一点M 到焦点的距离为3,则点M 到y轴的距离为 . 15. 在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AB 、CC 1的中点,则异面直线EF 与A 1C 1所成角的大小是_______.16. 若椭圆22221x y a b+=过抛物线28y x =的焦点, 且与双曲线221x y -=有相同的焦点,则该椭圆的标准方程是_______.三.解答题: (解答应写出文字说明、证明过程或演算步骤) 17. (本题满分10分)过椭圆x 216+y 24=1内点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线的方程.18. (本题满分12分)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线半实轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求△F 1PF 2的面积.19. (本题满分12分)设F 1,F 2分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过1F 的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列. (1)求|AB|;(2)若直线l 的斜率为1,求实数b 的值. 20.(本题满分12分)已知数列{}n a 中,11a =,其前n 项的和为n S ,且满足2221n n n S a S =-2()n ≥. ⑴ 求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; ⑵ 证明:当2n ≥时,1231113 (232)n S S S S n ++++<. 21. (本题满分12分)如图,三棱锥P ﹣ABC 中,PC ⊥平面ABC ,PC=3,∠ACB=.D ,E 分别为线段AB ,BC 上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE ⊥平面PCD(Ⅱ)求锐二面角A ﹣PD ﹣C 的余弦值.B22 (本题满分12分)如图,已知椭圆22221(0)x y a b a b+=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =; (Ⅲ)探究11AB CD+是否是个定值,若是,求出这个定值;若不是,请说明理由.扶余市第一中学2015—2016学年度上学期期末考试高二数学(理)参考答案1—12BACAC CBDCD DC13. 2或14. 2 15. 30° 16. 22142x y += 17.解:设直线与椭圆的交点为A (x 1,y 1)、B (x 2,y 2),M (2,1)为AB 的中点. ∴x 1+x 2=4,y 1+y 2=2.又A 、B 两点在椭圆上,则x 21+4y 21=16,x 22+4y 22=16. 两式相减得(x 21-x 22)+4(y 21-y 22)=0.于是(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0. ∴y 1-y 2x 1-x 2=-x 1+x 2y 1+y 2=-12,即k AB =-12.故所求直线方程为x +2y -4=0.18.解: (1)设椭圆方程为x 2a 2+y 2b 2=1,双曲线方程为x 2m 2-y 2n 2=1(a ,b ,m ,n>0,且a>b),则⎩⎪⎨⎪⎧a -m =47·13a =3·13m ,解得:a =7,m =3,∴b =6,n =2, ∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左、右焦点,P 是第一象限的一个交点,则PF 1+PF 2=14,PF 1-PF 2=6,∴PF 1=10,PF 2=4,∴cos ∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=45,∴sin ∠F 1PF 2=35.∴S △F 1PF 2=12PF 1·PF 2sin ∠F 1PF 2=12·10·4·35=12.19. (1)由椭圆定义知|AF 2|+|AB|+|BF 2|=4, 又2|AB|=|AF 2|+|BF 2|,得|AB|=43(2)因为左焦点1(,0)F c -,设l 的方程为y =x +c,其中c 设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩化简,得(1+b 2)x 2+2cx +1-2b 2=0.则2121222212,11c b x x x x b b --+==++. 因为直线AB 的斜率为1,所以21AB x =-.即2143x =-. 则()22221212222282128()449111c b b x x x x b b b --⎛⎫=+-=-⨯= ⎪++⎝⎭+,解得2b =.20. 解:(1)当2n ≥时,21221nn n n S S S S --=-,112n n n n S S S S ---=1112n n S S --=,从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,2为公差的等差数列. (6分)(2)由(1)可知,111(1)221n n n S S =+-⨯=-,121n S n ∴=- ∴当2n ≥时,11111111()(21)(22)2(1)21n S n n n n n n n n n=<=⋅=----- 从而123111111111313...1(1)2322231222n S S S S n n n n ++++<+-+-++-<-<-.21. (Ⅰ)由已知条件易得PC ⊥DE ,CD ⊥DE ,由线面垂直的判定定理可得; (Ⅱ)以C 为原点,分别以,,的方向为xyz 轴的正方向建立空间直角坐标系,易得,,的坐标,可求平面PAD 的法向量,平面PCD 的法向量可取,由向量的夹角公式可得.试题解析:(Ⅰ)证明:∵PC ⊥平面ABC ,DE ?平面ABC ,∴PC ⊥DE , ∵CE=2,CD=DE=,∴△CDE 为等腰直角三角形,∴CD ⊥DE ,∵PC∩CD=C ,DE 垂直于平面PCD 内的两条相交直线, ∴DE ⊥平面PCD(Ⅱ)由(Ⅰ)知△CDE 为等腰直角三角形,∠DCE=,过点D 作DF 垂直CE 于F ,易知DF=FC=FE=1,又由已知EB=1,故FB=2,由∠ACB=得DF ∥AC ,,故AC=DF=,以C 为原点,分别以,,的方向为xyz 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A (,0,0),E (0,2,0),D (1,1,0), ∴=(1,﹣1,0),=(﹣1,﹣1,3),=(,﹣1,0),设平面PAD 的法向量=(x ,y ,z ),由,故可取=(2,1,1),由(Ⅰ)知DE ⊥平面PCD ,故平面PCD 的法向量可取=(1,﹣1,0),∴两法向量夹角的余弦值cos <,>==∴二面角A ﹣PD ﹣C 的余弦值为.22. 解:(Ⅰ)设椭圆的半焦距为c ,由题意知:2c a,2a+2c=4)所以c=2,又2a =22b c +,因此b=2。

2016-2017学年高二数学上学期期末试卷含答案)

2016-2017学年高二数学上学期期末试卷含答案)

2016-2017学年高二数学上学期期末试卷(含答案)kj.co荆州中学2016~2017学年度上学期期末考试卷年级:高二科目:数学(理科)本试题卷共4页,三大题22小题.全卷满分150分,考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.某单位员工按年龄分为A、B、c三个等级,其人数之比为,现用分层抽样的方法从总体中抽取一个容量为20的样本,则从c等级组中应抽取的样本数为A.2B.4c.8D.102.下列有关命题的说法错误的是A.若“”为假命题,则均为假命题B.“”是“”的充分不必要条件c.“”的必要不充分条件是“”D.若命题:,则命题:3.若向量,,则A.B.c.D.4.如右图表示甲、乙两名运动员每场比赛得分的茎叶图.则甲得分的中位数与乙得分的中位数之和为A.分B.分c.分D.分5.已知变量与负相关,且由观测数据计算得样本平均数,则由该观测数据算得的线性回归方程可能是A.B.c.D.6.执行如图所示的程序框图,输出的等于A.B.c.D.7.圆柱挖去两个全等的圆锥所得几何体的三视图如图所示,则其表面积为A.B.c.D.8.函数图象上的动点P到直线的距离为,点P到y轴的距离为,则A.B.c.D.不确定的正数9.如果实数满足条件,则的最大值为()A.B.c.D.10.椭圆的长轴为,短轴为,将椭圆沿y轴折成一个二面角,使得点在平面上的射影恰好为椭圆的右焦点,则该二面角的大小为A.75°B.60° c.45° D.30°11.如图,在正方体ABcD-A1B1c1D1中,P是侧面BB1c1c 内一动点,若P到直线Bc与直线c1D1的距离相等,则动点P的轨迹所在的曲线是A.直线B.圆c.双曲线D.抛物线12.过双曲线的一个焦点作平行于渐近线的两条直线,与双曲线分别交于、两点,若,则双曲线离心率的值所在区间是A.B.c.D.二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.已知椭圆x210-+y2-2=1,长轴在y轴上,若焦距为4,则=________.14.下列各数、、中最小的数是___________.15.已知函数,其中实数随机选自区间,对的概率是_________.16.已知的三边长分别为,,,是边上的点,是平面外一点.给出下列四个命题:①若平面,且是边中点,则有;②若,平面,则面积的最小值为;③若,平面,则三棱锥的外接球体积为;④若,在平面上的射影是内切圆的圆心,则三棱锥的体积为;其中正确命题的序号是(把你认为正确命题的序号都填上).三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)设是实数,有下列两个命题:空间两点与的距离.抛物线上的点到其焦点的距离.已知“”和“”都为假命题,求的取值范围.18.(本小题满分12分)已知圆过点,,且圆心在直线上.(1)求圆的方程;(2)若点在圆上,求的最大值.19.(本题满分12分)某校从参加高二年级数学竞赛考试的学生中抽出60名学生,将其成绩(均为整数,满分100分)分成六段[40,50),[50,60)…,[80,90),[90,100],然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率以及频率分布直方图中第四小矩形的高;(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;(3)把从[80,90)分数段选取的最高分的两人组成B组,[90,100]分数段的学生组成c组,现从B,c两组中选两人参加科普知识竞赛,求这两个学生都来自c组的概率.20.(本题满分12分)在直角梯形PBcD中,∠D=∠c=,Bc=cD=2,PD=4,A为PD的中点,如图1.将△PAB 沿AB折到△SAB的位置,使SB⊥Bc,点E在SD上,且,如图2.(1)求证:SA⊥平面ABcD;(2)求二面角E-Ac-D的正切值;(3)在线段Bc上是否存在点F,使SF∥平面EAc?若存在,确定F的位置,若不存在,请说明理由.21.(本题满分12分)已知直线经过椭圆:的一个焦点和一个顶点.(1)求椭圆的方程;(2)如图,分别是椭圆的顶点,过坐标原点的直线交椭圆于两点,其中在第一象限,过作轴的垂线,垂足为,连接,并延长交椭圆于点,设直线的斜率为.①若直线平分线段,求的值;②对任意,求证:.22.(本题满分10分)已知平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线方程为;的参数方程为(为参数).(Ⅰ)写出曲线的直角坐标方程和的普通方程;(Ⅱ)设点为曲线上的任意一点,求点到曲线距离的取值范围.荆州中学2016~2017学年度上学期期末考试卷年级:高二科目:数学(理科)命题人:冯钢审题人:冯启安参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案AcDBccDBBBDc12【解析】选c设为左焦点,由双曲线的对称性,不妨设点的纵坐标为,则由得,又∵直线的方程为,∴,即,又∵,∴,两边同除以,得,即,令,∵,,∴双曲线离心率的值所在区间是.二、填空题(本大题共4小题,每小题5分,共20分.)13.814.15.16.①④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.解答:和都是假命题,为真命题,为假命题.………………2分,;…………………………………………6分又抛物线的准线为,为假命题,,.…………………………………10分故所求的取值范围为.………………………………12分18.解答:(1)设圆心坐标为,则解得:,故圆的方程为:……………6分(2)因为z=x+y,即,当这条直线与圆相切时,它在y轴上的截距最大或最小,即可求出的最大和最小值.将代入圆的方程,令,或者利用圆心到直线的距离等于半径可求得最大值为:……………………………………12分 19.解答:(1)第四小组分数在[70,80)内的频率为:1-(0.005+0.01+0.015+0.015+0.025)10=0.30第四个小矩形的高为=0.03……4分(2)由题意60分以上的各组频率和为:(0.015+0.03+0.025+0.005)×10=0.75,故这次考试的及格率约为75%,………………6分由45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,得本次考试中的平均分约为71:………………8分(3)由已知可得c组共有学生60×10×0.005=3人,则从B,c两组共5人中选两人参加科普知识竞赛,设5人分别为,共有等10种不同情况,其中这两个学生都来自c组有3种不同情况,∴这两个学生都来自c组的概率.……………………………………12分20.解法一:(1)证明:在题图1中,由题意可知,BA⊥PD,ABcD为正方形,所以在题图2中,SA⊥AB,SA=2,四边形ABcD是边长为2的正方形,因为SB⊥Bc,AB⊥Bc,所以Bc⊥平面SAB,又SA⊂平面SAB,所以Bc⊥SA,又SA ⊥AB,所以SA⊥平面ABcD,……………………4分(2)在AD上取一点o,使,连接Eo.因为,所以Eo∥SA 所以Eo⊥平面ABcD,过o作oH⊥Ac交Ac于H,连接EH,则Ac⊥平面EoH,所以Ac⊥EH.所以∠EHo为二面角E-Ac-D的平面角,.在Rt△AHo中,,,即二面角E-Ac-D的正切值为.……………………8分(3)当F为Bc中点时,SF∥平面EAc理由如下:取Bc的中点F,连接DF交Ac于,连接E,AD ∥Fc,所以,又由题意,即SF∥E,所以SF∥平面EAc,即当F为Bc的中点时,SF∥平面EAc...............12分解法二:(1)同方法一 (4)(2)如图,以A为原点建立直角坐标系,A(0,0,0),B(2,0,0),c(2,2,0),D(0,2,0),S(0,0,2),E 易知平面AcD的法向为设平面EAc的法向量为,由所以,可取所以所以即二面角E-Ac-D的正切值为.………………………………8分(3)设存在F∈Bc,所以SF∥平面EAc,设F(2,a,0)所以,由SF∥平面EAc,所以,所以4-2a-2=0,即a=1,即F(2,1,0)为Bc的中点.……………………………………12分21.解:(1)在直线中令x=0得y=1;令y=0得x=-1,由题意得c=b=1,∴,则椭圆方程为.…………………………3分(2)①由,,的中点坐标为,所以.……………………………………………6分②解法一:将直线PA方程代入,解得,记,则,于是,故直线的方程为,代入椭圆方程得,由,因此,………………………………………………9分∴,,∴,∴,故.…………12分解法二:由题意设,,,则,∵三点共线,∴,……………………………………8分又因为点在椭圆上,∴,两式相减得:, (10)分∴,∴.……………………………………………………12分 22.解:(I)曲线方程为,可得,可得∴的直角坐标方程:,的参数方程为,消去参数可得:的普通方程:.………………………………5分(II)由(I)知,为以(0,1)为圆心,为半径的圆,的圆心(0,1)到的距离为,则与相交,到曲线距离最小值为0,最大值为,则点到曲线距离的取值范围为.…………………10分kj.co。

2016-2017年河南省洛阳市高二(上)期末数学试卷(理科)及答案

2016-2017年河南省洛阳市高二(上)期末数学试卷(理科)及答案

2016-2017学年河南省洛阳市高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若集合A={x|x2﹣x﹣2<0},且A∪B=A,则集合B可能是()A.{0,1}B.{x|x<2}C.{x|﹣2<x<1}D.R2.(5分)如果a<b<0,则下列不等式成立的是()A.B.ac2<bc2C.a2<b2D.a3<b33.(5分)命题“∃x0∈R,x02﹣x0>0”的否定是()A.∀x∈R,x2﹣x>0B.C.∀x∈R,x2﹣x≤0D.4.(5分)设等比数列{a n}的前n项和为S n,若a3=4,S3=7,则S6的值为()A.31B.32C.63或D.645.(5分)抛物线的准线方程是()A.B.y=1C.D.y=﹣16.(5分)在下列各函数中,最小值等于2的函数是()A.y=x+B.y=cosx+(0<x<)C.y=D.y=7.(5分)“m=5,n=4”是“椭圆的离心率为”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为45°,若E 是PB的中点,则异面直线DE与PA所成角的余弦值为()A.B.C.D.9.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l 与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.10.(5分)在△ABC中,a,b,c分别是A,B,C的对边,,且1+2cos(B+C)=0,则BC边上的高等于()A.B.C.D.11.(5分)设数列{a n}的通项公式,其前n项和为S n,则S2016=()A.2016B.1680C.1344D.100812.(5分)过抛物线y2=2px(p>0)的焦点F作两条相互垂直的射线,分别与抛物线相交于点M,N,过弦MN的中点P作抛物线准线的垂线PQ,垂足为Q,则的最大值为()A.1B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知命题“若{a n}是常数列,则{a n}是等差数列”,在其逆命题、否命题和逆否命题中,假命题的个数是.14.(5分)若实数x,y满足不等式,则的取值范围为.15.(5分)在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,若E为AB的中点,则点E到面ACD1的距离是.16.(5分)设F1,F2分别是双曲线的左、右焦点,A 为双曲线的左顶点,以线段F1,F2为直径的圆O与双曲线的一个交点为P,与y轴交于B,D两点,且与双曲线的一条渐近线交于M,N两点,则下列命题正确的是.(写出所有正确的命题编号)①线段BD是双曲线的虚轴;②△PF1F2的面积为b2;③若∠MAN=120°,则双曲线C的离心率为;④△PF1F2的内切圆的圆心到y轴的距离为a.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)设命题p:“∀x∈R,x2+2x>m”;命题q:“∃x0∈R,使”.如果命题p∨q为真,命题p∧q为假,求实数m的取值范围.18.(12分)已知点F为抛物线y2=2px(p>0)的焦点,点M(2,m)在抛物线E上,且|MF|=3.(1)求抛物线E的方程;(2)过x轴正半轴上一点N(a,0)的直线与抛物线E交于A,B两点,若OA ⊥OB,求a的值.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2csinC=(2b+a)sinB+(2a﹣3b)sinA.(1)求角C的大小;(2)若c=4,求a+b的取值范围.20.(12分)各项均为正数的数列{a n}中,a1=1,S n是数列{a n}的前n项和,对任意.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.21.(12分)如图,在四棱锥S﹣ABCD中,平面ABCD⊥平面SAB,侧面SAB为等边三角形,底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=12,CD=BC=6.(1)求证:AB⊥DS;(2)求平面SAD与平面SBC所成锐二面角的余弦值.22.(12分)已知P(0,﹣1)是椭圆C的下顶点,F是椭圆C的右焦点,直线PF与椭圆C的另一个交点为Q,满足.(1)求椭圆C的标准方程;(2)如图,过左顶点A作斜率为k(k>0)的直线l交椭圆C于点D,交y轴于点B.已知M为AD的中点,是否存在定点N,使得对于任意的k(k>0)都有OM⊥BN,若存在,求出点N的坐标,若不存在,说明理由.2016-2017学年河南省洛阳市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)若集合A={x|x2﹣x﹣2<0},且A∪B=A,则集合B可能是()A.{0,1}B.{x|x<2}C.{x|﹣2<x<1}D.R【分析】化简集合A,根据集合的基本运算A∪B=A,即可求B.【解答】解:集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},∵A∪B=A,∴B⊆A.考查各选项,{0,1}⊆A.故选:A.2.(5分)如果a<b<0,则下列不等式成立的是()A.B.ac2<bc2C.a2<b2D.a3<b3【分析】根据a、b的范围,取特殊值带入判断即可.【解答】解:∵a<b<0,不妨令a=﹣2,b=﹣1,显然A、B、C不成立,D成立,故选:D.3.(5分)命题“∃x0∈R,x02﹣x0>0”的否定是()A.∀x∈R,x2﹣x>0B.C.∀x∈R,x2﹣x≤0D.【分析】利用特称命题的否定是全称命题,写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃x0∈R,x02﹣x0>0”的否定是∀x∈R,x2﹣x≤0.故选:C.4.(5分)设等比数列{a n}的前n项和为S n,若a3=4,S3=7,则S6的值为()A.31B.32C.63或D.64【分析】设等比数列{a n}的公比为q,由a3=4,S3=7,可得=4,=7,解得a1,q.再利用等比数列的求和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a3=4,S3=7,∴=4,=7,解得a1=1,q=2,或q=,a1=9.当a1=1,q=2时,则S6==63.当q=,a1=9时,S6==.∴S6=63或,故选:C.5.(5分)抛物线的准线方程是()A.B.y=1C.D.y=﹣1【分析】由抛物线x2=4y的焦点在y轴上,开口向下,且2p=4,即可得到抛物线的焦点坐标.【解答】解:抛物线,即抛物线x2=﹣4y的焦点在y轴上,开口向下,且2p=4,∴=1∴抛物线的准线方程是y=1,故选:B.6.(5分)在下列各函数中,最小值等于2的函数是()A.y=x+B.y=cosx+(0<x<)C.y=D.y=【分析】通过取x<0时,A显然不满足条件.对于B:y=cosx+≥2,当cosx=1时取等号,但0<x<,故cosx≠1,B 显然不满足条件.对于C:不能保证=,故错;对于D:.∵e x>0,∴e x+﹣2≥2 ﹣2=2,从而得出正确选项.【解答】解:对于选项A:当x<0时,A显然不满足条件.选项B:y=cosx+≥2,当cosx=1时取等号,但0<x<,故cosx≠1,B 显然不满足条件.对于C:不能保证=,故错;对于D:.∵e x>0,∴e x+﹣2≥2 ﹣2=2,故只有D 满足条件,故选:D.7.(5分)“m=5,n=4”是“椭圆的离心率为”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据椭圆离心率的定义结合充分条件和必要条件的定义进行判断即可.【解答】解:若m=5,n=4,则椭圆方程为+=1,则a=5,b=4,c=3,则题意的离心率e=,即充分性成立,反之在中,无法确定a,b的值,则无法求出m,n的值,即必要性不成立,即“m=5,n=4”是“椭圆的离心率为”的充分不必要条件,故选:A.8.(5分)在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为45°,若E 是PB的中点,则异面直线DE与PA所成角的余弦值为()A.B.C.D.【分析】取AB的中点F,连接EF,DF,则EF∥PA.从而∠DEF为异面直线DE 与PA所成角(或补角).由此能求出异面直线DE与PA所成角的余弦值.【解答】解:取AB的中点F,连接EF,DF,∵E为PB中点,∴EF∥PA.∴∠DEF为异面直线DE与PA所成角(或补角).又∵∠PBO=45°,BO=1,∴PO=1,PB=在Rt△AOB中,AO=AB•cos30°=,OP=1,∴在Rt△POA中,PA=2,∴EF=1.∵四边形ABCD为菱形,且∠DAB=60°,∴△ABD为正三角形.∴DF=,∵PB=PD=,BD=2,∴△PBD为等腰直角三角形,∴DE==,∴cos∠DEF==.即异面直线DE与PA所成角的余弦值为.故选:B.9.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而k==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选:B.10.(5分)在△ABC中,a,b,c分别是A,B,C的对边,,且1+2cos(B+C)=0,则BC边上的高等于()A.B.C.D.【分析】由1+2cos(B+C)=0可得B+C=120°,A=60°,由余弦定理求得c值,利用△ABC的面积公式,可求BC边上的高.【解答】解::△ABC中,由1+2cos(B+C)=0可得cos(B+C)=﹣,∴B+C=120°,∴A=60°.∵,由余弦定理可得a2=b2+c2﹣2bc•cosA,即12=8+c2﹣2×2×c×,解得c=+.由△ABC的面积等于bc•sinA=ah,(h为BC边上的高),∴•2•3•=•2•h,h=1+,故选:C.11.(5分)设数列{a n}的通项公式,其前n项和为S n,则S2016=()A.2016B.1680C.1344D.1008【分析】分别求出a1+a2+a3+a4+a5+a6=﹣1﹣3﹣2++6=3,得到数列的规律,即可求出答案.【解答】解:∵a n=ncos,∴a1=1×cos=1×=,a2=2cos=2×(﹣)=﹣1,a3=3cosπ=﹣3,a4=4cos=4×(﹣)=﹣2,a5=5cos=5×=,a6=6cos2π=6×1=6,∴a1+a2+a3+a4+a5+a6=﹣1﹣3﹣2++6=3,同理可得a7+a8+a9+a10+a11+a12=3,故S2016=×3=1008,故选:D.12.(5分)过抛物线y2=2px(p>0)的焦点F作两条相互垂直的射线,分别与抛物线相交于点M,N,过弦MN的中点P作抛物线准线的垂线PQ,垂足为Q,则的最大值为()A.1B.C.D.【分析】设|MF|=a,|NF|=b,由抛物线定义,2|PQ|=a+b.再由勾股定理可得|MN|2=a2+b2,进而根据基本不等式,求得|MN|的范围,即可得到答案.【解答】解:设|MF|=a,|NF|=b.由抛物线定义,结合梯形中位线定理可得2|PQ|=a+b,由勾股定理得,|MN|2=a2+b2配方得,|MN|2=(a+b)2﹣2ab,又ab≤,∴(a+b)2﹣2ab≥(a+b)2﹣2,得到|MN|≥(a+b).∴≤=,即的最大值为.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知命题“若{a n}是常数列,则{a n}是等差数列”,在其逆命题、否命题和逆否命题中,假命题的个数是2.【分析】根据四种命题真假关系进行判断即可.【解答】解:若{a n}是常数列,则{a n}是等差数列正确,即原命题正确,则逆否命题也正确,命题的否命题为若{a n}是等差数列,则{a n}是常数列为假命题,当公差d≠0时,{a n}不是等差数列,故逆命题为假命题,则否命题为假命题,故假命题的个数为2个,故答案为:214.(5分)若实数x,y满足不等式,则的取值范围为[,] .【分析】作出不等式组对应的平面区域,利用目标函数斜率的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域,的几何意义是区域内的点到D(﹣2,1)的斜率,由图象知AD的斜率最大,OD的斜率最小,由得,即A(2,2),则AD的斜率k==,OD的斜率k=,即≤≤,故答案为:[,].15.(5分)在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,若E为AB的中点,则点E到面ACD1的距离是.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出点E到面ACD1的距离.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,E(1,1,0),A(1,0,0),C(0,2,0),D1(0,0,1),=(﹣1,2,0),=(﹣1,0,1),=(0,1,0),设平面ACD1的法向量=(x,y,z),则,取y=1,得=(2,1,2),∴点E到面ACD1的距离:d==.故答案为:.16.(5分)设F1,F2分别是双曲线的左、右焦点,A为双曲线的左顶点,以线段F1,F2为直径的圆O与双曲线的一个交点为P,与y轴交于B,D两点,且与双曲线的一条渐近线交于M,N两点,则下列命题正确的是②③④.(写出所有正确的命题编号)①线段BD是双曲线的虚轴;②△PF1F2的面积为b2;③若∠MAN=120°,则双曲线C的离心率为;④△PF1F2的内切圆的圆心到y轴的距离为a.【分析】根据双曲线的性质分别进行求解判断即可.【解答】解:①以线段F1,F2为直径的圆O的半径R=c,则B(0,c),D(0,﹣c),则线段BD不是双曲线的虚轴;故①错误,②∵三角形PF1F2是直角三角形,∴PF12+PF22=4c2,又PF1﹣PF2=2a,则平方得PF12+PF22﹣2PF1PF2=4a2,即4c2﹣2PF1PF2=4a2,则PF1PF2=2c2﹣2a2=2b2,则△PF1F2的面积为S=PF1PF2=2b2=b2,故②正确,③由得或,即M(a,b),N(﹣a,﹣b),则AN⊥x轴,若∠MAN=120°,则∠MAx=30°,则tan30°==,平方得=,即=,则双曲线C的离心率e=====;故③正确,④设内切圆与x轴的切点是点H,PF1、PF2分与内切圆的切点分别为M1、N1,由双曲线的定义可得|PF1|﹣|PF2|=2a,由圆的切线长定理知,|PM1|=|PN1|,故|M1F1|﹣|N1F2 |=2a,即|HF1|﹣|HF2|=2a,设内切圆的圆心横坐标为x,则点H的横坐标为x,故(x+c)﹣(c﹣x)=2a,∴x=a.即△PF1F2的内切圆的圆心到y轴的距离为a.故④正确,故答案为:②③④三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(10分)设命题p:“∀x∈R,x2+2x>m”;命题q:“∃x0∈R,使”.如果命题p∨q为真,命题p∧q为假,求实数m的取值范围.【分析】若“p∨q”为真,“p∧q”为假,则p,q一真一假,进而可得实数m的取值范围.【解答】解:当P真时,∀x∈R,x2+2x>m,有△=4+4m<0,解得m<﹣1.…..(2分)当q真时,∃x0∈R,使,所以△=4m2﹣4(2﹣m)≥0,解得m≤﹣2,或m≥1 …..(4分)又因为“p∨q”为真,“p∧q”为假,所以p,q一真一假,…..(6分)当p真q假时,﹣2<m<﹣1…..(8分)当p假q真时,m≥1…..(10分)所以实数m的取值范围是(﹣2,﹣1)∪[1,+∞).…..(12分)18.(12分)已知点F为抛物线y2=2px(p>0)的焦点,点M(2,m)在抛物线E上,且|MF|=3.(1)求抛物线E的方程;(2)过x轴正半轴上一点N(a,0)的直线与抛物线E交于A,B两点,若OA⊥OB,求a的值.【分析】(1)利用抛物线的定义,求出p,即可求抛物线E的方程;(2)设直线AB的方程为x=ty+a,与抛物线方程联立,利用x1x2+y1y2=0求解即可.【解答】解:(1)由题意,2+=3,∴p=2,∴抛物线E的方程为y2=4x;(2)设直线AB的方程为x=ty+a.A(x1,y1)、B(x2,y2),联立抛物线方程得y2﹣4ty﹣4a=0,y1+y2=4t,y1•y2=﹣4a∵OA⊥OB,∴x1x2+y1y2=0,∴a2﹣4a=0∵a>0,∴a=4.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且2csinC=(2b+a)sinB+(2a﹣3b)sinA.(1)求角C的大小;(2)若c=4,求a+b的取值范围.【分析】(1)利用正弦定理化简已知等式可得a2+b2﹣c2=ab,利用余弦定理可求cosC=,结合范围C∈(0,π),可求C的值.(2)由(1)及余弦定理,基本不等式可求16≥(a+b)2﹣,解得a+b ≤8,利用两边之和大于第三边可求a+b>c=4,即可得解a+b的取值范围.【解答】(本题满分为12分)解:(1)∵2csinC=(2b+a)sinB+(2a﹣3b)sinA.∴2c2=(2b+a)b+(2a﹣3b)a,整理可得:a2+b2﹣c2=ab,…3分∴cosC==,∵C∈(0,π),∴C=…6分(2)由c=4及(1)可得:16=a2+b2﹣ab=(a+b)2﹣3ab≥(a+b)2﹣, (8)分∴解得:a+b≤8,…10分又∵a+b>c=4,∴a+b∈(4,8]…12分20.(12分)各项均为正数的数列{a n}中,a1=1,S n是数列{a n}的前n项和,对任意.(1)求数列{a n}的通项公式;(2)记,求数列{b n}的前n项和T n.【分析】(1)由已知条件推导出(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,从而得到数列{a n}是首项为1,公差为3的等差数列,由此能求出数列{a n}的通项公式.(2)由S n=,b n=n•2n,由此利用错位相减法能求出数列{b n}的前n项和T n.【解答】解:(1)由6S n=a n2+3a n+2①得6S n﹣1=a n﹣12+3a n﹣1+2②①﹣②得(a n+a n﹣1)(a n﹣a n﹣1﹣3)=0,∵各项均为正数的数列{a n}∴a n﹣a n﹣1=3,∴数列{a n}是首项为1,公差为3的等差数列,∴数列{a n}的通项公式是a n=3n﹣2(2)S n=,∴=n•2n,∴T n=1×21+2×22+…+n•2n,③2T n=1×22+2×23+…+n×2n+1,④③﹣④,得﹣T n=21+22+23+…+2n﹣n×2n+1=﹣n×2n+1=(1﹣n)2n+1﹣2,∴T n=(n﹣1)2n+1+2.21.(12分)如图,在四棱锥S﹣ABCD中,平面ABCD⊥平面SAB,侧面SAB为等边三角形,底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=12,CD=BC=6.(1)求证:AB⊥DS;(2)求平面SAD与平面SBC所成锐二面角的余弦值.【分析】(1)取AB的中点O,连结OD,OS,推导出AB⊥OS,AB⊥OD,由此能证明AB⊥SD.(2)推导出OS⊥平面ABCD,以O为原点,建立空间直角坐标系,利用向量法能求出平面SAD与平面SBC所成锐二面角的余弦值.【解答】证明:(1)取AB的中点O,连结OD,OS,∵△SAB是正三角形,∴AB⊥OS,∵四边形ABCD是直角梯形,DC=,AB∥CD,∴四边形OBCD是矩形,∴AB⊥OD,又OS∩OD=O,∴AB⊥平面SOD,∴AB⊥SD.解:(2)∵平面ABCD⊥平面SAB,AB⊥OS,平面ABCD∩平面ABE=AB,∴OS⊥平面ABCD,如图,以O为原点,建立空间直角坐标系,则A(0,6,0),B(0,﹣6,0),D(6,0,0),C(6,﹣6,0),S(0,0,6),=(﹣6,0,6),=(6,﹣6,0),设平面SAD的法向量=(x,y,z),则,取z=1,得,同理,得平面SBC的一个法向量=(0,﹣,1),则cosθ==.∴平面SAD与平面SBC所成锐二面角的余弦值为.22.(12分)已知P(0,﹣1)是椭圆C的下顶点,F是椭圆C的右焦点,直线PF与椭圆C的另一个交点为Q,满足.(1)求椭圆C的标准方程;(2)如图,过左顶点A作斜率为k(k>0)的直线l交椭圆C于点D,交y轴于点B.已知M为AD的中点,是否存在定点N,使得对于任意的k(k>0)都有OM⊥BN,若存在,求出点N的坐标,若不存在,说明理由.【分析】(1)P(0,﹣1)是椭圆C的下顶点,可设椭圆的标准方程为:+y2=1.右焦点F(c,0).由,可得Q,代入椭圆C的方程可得:+=1,又b2=a2﹣c2=1,解得a即可得出.(2)直线l的方程为:y=k(x+2),与椭圆方程联立化为:(x+2)[4k2(x+2)+(x﹣2)]=0,可得D(,).可得AD的中点M,可得k OM.直线l的方程为:y=k(x+2),可得B(0,2k).假设存在定点N(m,n)(m≠0),使得OM⊥BN,则k OM•k BN=﹣1,化简即可得出.(1)∵P(0,﹣1)是椭圆C的下顶点,可设椭圆的标准方程为:+y2=1.【解答】解:右焦点F(c,0).由,可得Q,代入椭圆C的方程可得:+=1,∴4c2=3a2,又b2=a2﹣c2=1,解得a=2.∴椭圆C的标准方程为=1.(2)直线l的方程为:y=k(x+2),联立,消去y化为:(x+2)[4k2(x+2)+(x﹣2)]=0,∴x1=﹣2,x2=.由x D=,可得y D=k(x D+2)=.∴D(,).由点M为AD的中点,可得M,可得k OM=﹣.直线l的方程为:y=k(x+2),令x=0,解得y=2k,可得B(0,2k).假设存在定点N(m,n)(m≠0),使得OM⊥BN,则k OM•k BN=﹣1,∴=﹣1,化为(4m+2)k﹣n=0恒成立,由,解得,因此存在定点N.使得对于任意的k(k>0)都有OM⊥BN.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青浦一中2016学年第一学期高二年级期终测试数学学科一、填空题(每小题3分,满分36分)1.复数(13)z i i =-的虚部是____1 _______2.计算:201711+⎛⎫= ⎪-⎝⎭i i __ _______i 3.复数iai -+21为纯虚数,则实数=a ____2 ___ 4.与向量(3,4)a = 垂直的一个单位向量0a = .43,55⎛⎫- ⎪⎝⎭或其它形式 5.方程组2321x y y x ⎧-=⎨+=⎩的增广矩阵是 123121⎛⎫- ⎪⎝⎭ 6.三阶行列式fe d c ba 111中,元素c 的代数余子式为 e d 11- 7. 已知,x y 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+03232y x y x y x ,则x y +的最大值为 2 .8. )2,3(),3,2(B A -,若直线02=++y ax 与线段AB 有交点,则a 的范围是 . 45(,][,)32-∞-⋃+∞9. 已知点(1,6),(5,2),(1,)A B C k -,若C 点在以AB 为直径的圆外,则k 的取值范围是_____. (,2)(6,)-∞⋃+∞10.已知矩阵1012A ⎛⎫= ⎪-⎝⎭,向量a →=11⎛⎫ ⎪-⎝⎭,b →=1x ⎛⎫ ⎪⎝⎭,若向量A a →与A b →的夹角为135o ,则x = .2311.过直线0543=-+y x 上的一点P 向圆4)4()3(22=-+-y x 作两条切线21,l l .设1l 与2l 的夹角为θ,则tan θ的最大值为 .12.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.在双曲线右支上存在点P ,满足212PF FF =,且2F 到直线1PF 的距离等于双曲线的实轴长,则a b=_________ . 34二、选择题(每小题3分,满分12分)13. 复数z=22i i-+(i 为虚数单位)在复平面内对应的点所在象限为 ( D ) (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限 14. 如果直线4=+by ax 与圆C :422=+y x 有两个不同的交点,那么P ()b a ,与圆C 的位置关系是--------------------------------------------------------------------------------------------( A )A . 点P 在圆C 外B . 点P 在圆C 上 C . 点P 在圆C 内D .不确定15. 已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅ ,其中λ为常数,则动点M 的轨迹不可能是………………( D )A.圆 B .椭圆 C. 双曲线 D. 抛物线16.如图,两个椭圆221259x y +=,221259y x +=内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,给出下列三个判断:① P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值;② 曲线C 关于直线y x =、y x =-均对称;③ 曲线C 所围区域面积必小于36.上述判断中正确命题的个数为( B )(A )3个 (B )2个 (C ) 1个 (D )0个第16题图三.解答题 (本大题满分52分)本大题共有5题,解答下列各题必须写出必要步骤.17.(本题满分8分)解关于x 、y 的二元一次方程组,并对解的情况进行讨论:⎩⎨⎧=-+=--+.0,024m my x m y mx 解:42mx y m x my m +=+⎧⎨+=⎩ 244(2)(2)1m D m m m m==-=+- ……1 24(2)x m D m m m m +==- ……2 2(1)(2)1y m m D m m m+==+- ^……3 (1) 当2m ≠±时,0D ≠, 原方程组有唯一解 212m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩.......5 (2)当2=-m 时,0D =,80x D =≠ 原方程组无解 . ^ (6)(3)当2m =时,0x y D D D ===, 方程组有无穷多组解,22x t t y =⎧⎪⎨-=⎪⎩()t R ∈ ……8 18.(本题满分8分) 本题共有2个小题,第1小题满分4分,第2小题满分4分. 已知ABC ∆的三个顶点分别为(1,2)A ,(4,1)B ,(2,5)C -,D 是BC 的中点.(1)求直线AD 的方程;(2)求ABC ∆的面积.解:(1)(3,2)D -,………………………………………………1分)4,2(-= ………………………………………………………………2分 所以,直线AD 的方程是4223-+=-y x ……………………………… 4分【其它形式参照给分】(252=…………………………………………………………5分直线AD 的方程是042=-+y x ,点C 到直线AD 的距离为5=d …………………………7分所以||10ABC S AD d ∆==……………………………………………………8分(其它做法参考给分)19.(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.已知向量(6,2)a = ,(3,)b k =- .(1)若()a a b ⊥- ,求k 的值;(2)若a 与所成角θ是钝角,求k 的取值范围.19. (1)由题意知: )2,9(k -=- ………………………2分于是: ()0a b a -⋅= …………………………4分解得:29=k …………………………6分 (2)10a b cos a bθ⋅-<=<⋅ …………………………8分得10-<< …………………………9分解得9,1k k <≠-(不写1k ≠-扣2分) …………………………12分其它方法参照给分20.(本题满分10分)本题共有2个小题,第1小题满分5分,第2小题满分5分.已知z =1+i ,约定(cos sin ),(0,02)θθθπ∆==+>≤<z z r i r(1)设w =z 2+3z -4,求w 及∆w ;(2)如果2211++=--+z az b i z z ,求实数a ,b 的值. .解:(1)由z =1+i ,有w =(1+i )2+3(1-i )-4=-1-i , (2)所以∆w =2(cos ππ45sin 45i +) ^ (5)(2)由z =1+i , 有ii a b a i i b i a i z z b az z )2()(1)1()1()1()1(12222+++=++-+++++=+-++ =(a +2)-(a +b )i (8)由题设条件知,(a +2)-(a +b )i =1-i .根据复数相等的定义,得⎩⎨⎧-=+-=+1)(12b a a (9)解得⎩⎨⎧=-=21b a 所以实数a ,b 的值分别为-1,2. (10)评述:本题考查了共轭复数、复数的三角形式等基础知识及运算能力.21.(本题满分14分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分6分.设抛物线2:2(0)C y px p =>的焦点为F ,经过点F 的动直线l 交抛物线C 于11(,),A x y 22(,)B x y 两点,且124y y =-.(1)求抛物线C 的方程;(2)若2()OE OA OB =+ (O 为坐标原点),且点E 在抛物线C 上,求直线l 的倾斜角;(3)若点M 是抛物线C 的准线上的一点,直线,,MF MA MB 的斜率分别为012,,k k k .求证:当0k 为定值时,12k k +也为定值.解:(1)设直线l 的方程为2p x ay =+,代入22y px =,可得 2220y pay p --= (*)由11(,),A x y 22(,)B x y 是直线l 与抛物线的两交点,故12,y y 是方程(*)的两个实根, ……………………2分∴212y y p =-,又124y y =-,所以24p -=-,又0>p ,可得2p =所以抛物线C 的方程为24y x =. ……………………4分【另法提示:分直线l 斜率存在与不存在两种情形,斜率存在时设直线l 方程为点斜式】(2)由(1)可知1224y y pa a +==,∵2()OE OA OB =+,∴122()8E y y y a =+= 21212122()2(11)2()484E x x x ay ay a y y a =+=+++=++=+ ………………………6分 又点E 在抛物线C 上,故24E E y x =,即22643216a a =+,可得212a =,即a =, 设直线l 的倾斜角为α,则1tan a α==[0,)απ∈, 故直线l的倾斜角为π- ………………………8分【另法提示:设直线l 方程为点斜式】(3)012M M M y y k x ==--,可得02M y k =-, …………………………………10分 由(2)知124,y y a +=又124y y =-, ∴1020102012121222221122y k y k y k y k k k x x ay ay +++++=+=+++++ 120121202121222()2()82()4a y y k a y y yy ka y y a y y +++++=+++ 22000022288888(1)24844(1)a k a a k k a k a a a -++++===-+++,………………………………13分 又0k 为定值,所以12k k +也为定值. ………………………………………………………………14分【另法提示:分直线l 斜率存在与不存在两种情形讨论,斜率存在时设直线l 方程为点斜式】。

相关文档
最新文档