高三数学一轮复习精品学案8:§2.9 函数的应用
高考数学一轮配套学案讲解:《函数的应用》(苏教版)

§2.9函数的应用1.几类函数模型及其增长差异(1)几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b (a、b为常数,a≠0)反比例函数模型f(x)=kx+b (k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c (a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=b log a x+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数模型f(x)=ax n+b (a,b为常数,a≠0)(2)函数性质y=a x(a>1) y=log a x(a>1) y=x n(n>0) 在(0,+∞) 上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x2.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x 的函数值比y =x 2的函数值大. ( × ) (2)幂函数增长比直线增长更快.( × ) (3)不存在x 0,使0xa <x n 0<0log x a .( × )(4)美缘公司2010年新上市的一种化妆品,由于脱销,在2011年曾提价25%,2014年想要恢复成原价,则应降价25%.( × )(5)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ ) (6)f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,恒有h (x )<f (x )<g (x ).( √ )2.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处. 答案 5解析 由题意得,y 1=k 1x ,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号.3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是________.(填序号)答案 ①解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图象上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的. 4.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是________元. 答案 108解析 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.5.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=e 21k,∴k =2ln 2,∴y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024.题型一 二次函数模型例1 某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板 AB 长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点 h m(h ≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴, CB 为纵轴建立直角坐标系.(1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.思维启迪 (1)可根据抛物线方程的顶点式求跳水曲线所在的抛物线方程; ( 2)利用x =5,x =6时函数值的符号求h 范围.解(1)由题意知最高点为(2+h,4),h≥1,设抛物线方程为y=a[x-(2+h)]2+4,当h=1时,最高点为(3,4),方程为y=a(x-3)2+4,将A(2,3)代入,得3=a(2-3)2+4,解得a=-1.∴当h=1时,跳水曲线所在的抛物线方程为y=-(x-3)2+4.(2)将点A(2,3)代入y=a[x-(2+h)]2+4得ah2=-1,所以a=-1h2.由题意,得方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f(x)=a[x-(2+h)]2+4=-12+4,h2[x-(2+h)]则f(5)=-12+4≥0,且f(6)=-1h2(4-h)2+4≤0.h2(3-h)解得1≤h≤43.达到压水花的训练要求时h的取值范围为[1,43].思维升华实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3 000+20x-0.1x2 (0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是________台.答案150解析设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000 (0<x<240,x∈N*).令f(x)≥0,得x≥150,∴生产者不亏本时的最低产量是150台.题型二指数函数模型例2诺贝尔奖发放方式为每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r =6.24%.资料显示:1999年诺贝尔奖金发放后基金总额约为19 800万美元.设f (x )表示第x (x ∈N *)年诺贝尔奖发放后的基金总额(1999年记为f (1),2000年记为f (2),…,依次类推).(1)用f (1)表示f (2)与f (3),并根据所求结果归纳出函数f (x )的表达式;(2)试根据f (x )的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29=1.32)思维启迪 从所给信息中找出关键词,增长率问题可以建立指数函数模型. 解 (1)由题意知,f (2)=f (1)(1+6.24%)-12f (1)·6.24%=f (1)(1+3.12%),f (3)=f (2)(1+6.24%)-12f (2)·6.24%=f (2)(1+3.12%)=f (1)(1+3.12%)2, ∴f (x )=19 800(1+3.12%)x -1 (x ∈N *). (2)2008年诺贝尔奖发放后基金总额为 f (10)=19 800(1+3.12%)9=26 136,故2009年度诺贝尔奖各项奖金为16·12f (10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.思维升华 此类增长率问题,在实际问题中常可以用指数函数模型y =N (1+p )x (其中N 是基础数,p 为增长率,x 为时间)和幂函数模型y =a (1+x )n (其中a 为基础数,x 为增长率,n 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律:θ=m ·2t+21-t (t ≥0,并且m >0).(1)如果m =2,求经过多少时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. 解 (1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x ≥1,则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立. 令12t =x ,则0<x ≤1,∴m ≥2(x -x 2), 由于x -x 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. 题型三 分段函数模型例3 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =⎩⎨⎧13x 3-80x 2+5 040x ,x ∈[120,144),12x 2-200x +80 000,x ∈[144,500],且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x ∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?思维启迪 题目中月处理成本与月处理量的关系为分段函数关系,项目获利和月处理量的关系也是分段函数关系.解 (1)当x ∈[200,300]时,设该项目获利为S , 则S =200x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+400x -80 000=-12(x -400)2,所以当x ∈[200,300]时,S <0,因此该单位不会获利. 当x =300时,S 取得最大值-5 000,所以国家每月至少补贴5 000元才能使该项目不亏损. (2)由题意,可知二氧化碳的每吨处理成本为y x =⎩⎨⎧13x 2-80x +5 040,x ∈[120,144).12x +80 000x-200,x ∈[144,500].①当x ∈[120,144)时,y x =13x 2-80x +5 040=13(x -120)2+240, 所以当x =120时,yx 取得最小值240.②当x ∈[144,500]时, y x =12x +80 000x-200≥2 12x ×80 000x-200=200, 当且仅当12x =80 000x ,即x =400时,yx取得最小值200.因为200<240,所以当每月的处理量为400吨时,才能使每吨的平均处理成本最低. 思维升华 本题的难点是函数模型是一个分段函数,由于月处理量在不同范围内,处理的成本对应的函数解析式也不同,故此类最值的求解必须先求出每个区间内的最值,然后将这些区间内的最值进行比较确定最值.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x,3x (吨). (1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 解 (1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨时,乙的用水量不超过4吨,即3x ≤4,且5x >4时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8.当乙的用水量超过4吨,即3x >4时,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x 0≤x ≤45,20.4x -4.8, 45<x ≤43,24x -9.6, x >43.(2)由于y =f (x )在各段区间上均单调递增;当x ∈[0,45]时,y ≤f (45)<26.4;当x ∈(45,43]时,y ≤f (43)<26.4;当x ∈(43,+∞)时,令24x -9.6=26.4,解得x =1.5.所以甲户用水量为5x =5×1.5=7.5吨; 付费S 1=4×1.8+3.5×3=17.70(元); 乙户用水量为3x =4.5吨, 付费S 2=4×1.8+0.5×3=8.70(元).函数应用问题典例:(14分)在扶贫活动中,为了尽快脱贫(无债务)致富,企业 甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价 格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并 约定从该店经营的利润中,首先保证企业乙的全体职工每月 最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元) 的关系如图所示;③每月需各种开支2 000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额; (2)企业乙只依靠该店,最早可望在几年后脱贫?思维启迪 (1)认真阅读题干内容,理清数量关系.(2)分析图形提供的信息,从图形可看出函数是分段的.(3)建立函数模型,确定解决模型的方法. 规范解答解 设该店月利润余额为L ,则由题设得L =Q (P -14)×100-3 600-2 000,①由销量图易得Q =⎩⎪⎨⎪⎧-2P +50 (14≤P ≤20),-32P +40 (20<P ≤26),[3分]代入①式得L =⎩⎪⎨⎪⎧(-2P +50)(P -14)×100-5 600 (14≤P ≤20),⎝⎛⎭⎫-32P +40(P -14)×100-5 600 (20<P ≤26),[6分](1)当14≤P ≤20时,L max =450元,此时P =19.5元; 当20<P ≤26时,L max =1 2503元,此时P =613元. 故当P =19.5元时,月利润余额最大,为450元.[10分] (2)设可在n 年后脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.[14分]解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:解模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义.第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.温馨提醒(1)本题经过了三次建模:①根据月销量图建立Q与P的函数关系;②建立利润余额函数;③建立脱贫不等式.(2)本题的函数模型是分段的一次函数和二次函数,在实际问题中,由于在不同的背景下解决的问题发生了变化,因此在不同范围中,建立函数模型也不一样,所以现实生活中分段函数的应用非常广泛.(3)在构造分段函数时,分段不合理、不准确,是易出现的错误.方法与技巧1.认真分析题意,合理选择数学模型是解决应用问题的基础;2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.3.解函数应用题的四个步骤:①审题;②建模;③解模;④还原.失误与防范1.函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学解对实际问题的合理性.A组专项基础训练(时间:40分钟)一、填空题1.拟定从甲地到乙地通话m min 的电话费由f (m )=1.06·(0.5·[m ]+1)(元)决定,其中m >0,[m ]是大于或等于m 的最小整数,如[3]=3,[3.8]=4,[3.1]=4,则从甲地到乙地通话时间为5.5 min 的电话费为________元. 答案 4.24解析 f (5.5)=1.06×(0.5×6+1)=4.24.2.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量(吨)为________. 答案 200解析 依题意,得每吨的成本为y x =x 10+4 000x -30,则yx≥2 x 10·4 000x-30=10, 当且仅当x 10=4 000x ,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.3.某工厂采用高科技改革,在两年内产值的月增长率都是a ,则这两年内第二年某月的产值比第一年相应月产值的增长率为________. 答案 (1+a )12-1解析 不妨设第一年8月份的产值为b ,则9月份的产值为b (1+a ),10月份的产值为b (1+a )2,依次类推,到第二年8月份是第一年8月份后的第12个月,即一个时间间隔是1个月,这里跨过了12个月,故第二年8月份产值是b (1+a )12.又由增长率的概念知,这两年内的第二年某月的产值比第一年相应月产值的增长率为b (1+a )12-bb =(1+a )12-1.4.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式 是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费 s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相 差________元 答案 10解析 设A 种方式对应的函数解析式为s =k 1t +20, B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗, 开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分) 备用,当截取的矩形面积最大时,矩形两边长x 、y 分别为______. 答案 15、12 解析 由三角形相似得24-y24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.6.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________ min ,容器中的沙子只有开始时的八分之一. 答案 16解析 当t =0时,y =a ,当t =8时,y =a e -8b =12a ,∴e -8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.7.如图,A 、B 两只船分别从在东西方向上相距145 km 的甲乙两地开 出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km/h ,B 的速度是16 km/h ,经过________小时,AB 间的距离最短. 答案258解析 设经过x h ,A 、B 相距为y km , 则y =(145-40x )2+(16x )2(0≤x ≤298),求得函数的最小值时x 的值为258.8.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 答案 9解析 设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧9,0<x ≤38+2.15(x -3)+1,3<x ≤88+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9. 二、解答题9.某地上年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)元成反比例.又当x =0.65时,y =0.8. (1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)] 解 (1)∵y 与(x -0.4)成反比例,∴设y =k x -0.4(k ≠0).把x =0.65,y =0.8代入上式, 得0.8=k0.65-0.4,k =0.2.∴y =0.2x -0.4=15x -2,即y 与x 之间的函数关系式为y =15x -2.(2)根据题意,得(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6. 经检验x 1=0.5,x 2=0.6都是所列方程的根. ∵x 的取值范围是0.55~0.75, 故x =0.5不符合题意,应舍去.∴x =0.6.∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.10.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/时) 解 (1)由题意,当0≤x ≤20时,v (x )=60; 当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60, 解得⎩⎨⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x ≤20,13(200-x ), 20<x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x ≤20,13x (200-x ), 20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200; 当20<x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +(200-x )22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间(20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时.B 组 专项能力提升 (时间:35分钟)1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用),下列说法正确的是________.(填序号) ①略有盈利;②略有亏损; ③没有盈利也没有亏损;④无法判断盈亏情况.答案 ②解析 设该股民购这支股票的价格为a ,则经历n 次涨停后的价格为a (1+10%)n =a ×1.1n ,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n =0.99n ·a <a ,故该股民这支股票略有亏损.2.某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额 折扣率 不超过500元的部分 5% 超过500元的部分10%y 关于x 的解析式为 y =⎩⎪⎨⎪⎧0,0<x ≤800,5%(x -800),800<x ≤1 300,10%(x -1 300)+25,x >1 300.若y =30元,则他购物实际所付金额为________元. 答案 1 350解析 若x =1 300元,则y =5%(1 300-800)=25(元)<30(元),因此x >1 300. ∴由10%(x -1 300)+25=30,得x =1 350(元).3.将边长为1 m 的正三角形薄铁皮沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 答案3233解析 如图所示,设剪成的两块中是正三角形的那一块边长为x m ,则梯形的周长为x +(1-x )+(1-x )+1=3-x ,梯形的面积为34-34x 2, ∴s =(3-x )234(1-x 2)=433·x 2-6x +91-x2(0<x <1),对s 求导得s ′=433·-2(3x 2-10x +3)(1-x 2)2.令s ′=0,得x =13或x =3(舍去).∴s min =s (13)=3233.4.某医院为了提高服务质量,对挂号处的排队人数进行了调查,发现:当还未开始挂号时,有N 个人已经在排队等候挂号;开始挂号后排队的人数平均每分钟增加M 人.假定挂号的速度是每个窗口每分钟K 个人,当开放一个窗口时,40分钟后恰好不会出现排队现象;若同时开放两个窗口时,则15分钟后恰好不会出现排队现象.根据以上信息,若要求8分钟后不出现排队现象,则需要同时开放的窗口至少应有________个. 答案 4解析 设要同时开放x 个窗口才能满足要求, 则⎩⎪⎨⎪⎧N +40M =40K , ①N +15M =15K ×2, ②N +8M ≤8Kx . ③由①②,得⎩⎪⎨⎪⎧K =2.5M ,N =60M ,代入③,得60M +8M ≤8×2.5Mx ,解得x ≥3.4. 故至少同时开放4个窗口才能满足要求.5.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________. 答案 20 解析 由题意得,3 860+500+[500(1+x %)+500(1+x %)2]×2≥7 000, 化简得(x %)2+3·x %-0.64≥0,解得x %≥0.2,或x %≤-3.2(舍去).∴x ≥20,即x 的最小值为20.6.某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完. (1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解 (1)当0<x <80,x ∈N *时, L (x )=500×1 000x 10 000-13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N *时,L (x )=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-(x +10 000x),∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80,x ∈N *),1 200-(x +10 000x)(x ≥80,x ∈N *).(2)当0<x <80,x ∈N *时, L (x )=-13(x -60)2+950,∴当x =60时,L (x )取得最大值L (60)=950. 当x ≥80,x ∈N *时,L (x )=1 200-(x +10 000x )≤1 200-2x ·10 000x=1 200-200=1 000, ∴当x =10 000x ,即x =100时,L (x )取得最大值L (100)=1 000>950.综上所述,当x =100时,L (x )取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大.7.经市场调查,某商品在过去100天内的销售量和价格均为时间t (天)的函数,且日销售量近似地满足g (t )=-13t +1123(1≤t ≤100,t ∈N ).前40天价格为f (t )=14t +22(1≤t ≤40,t ∈N ),后60天价格为f (t )=-12t +52(41≤t ≤100,t ∈N ),试求该商品的日销售额S (t )的最大值和最小值.解 当1≤t ≤40,t ∈N 时, S (t )=g (t )f (t )=(-13t +1123)(14t +22)=-112t 2+2t +112×223=-112(t -12)2+2 5003,所以768=S (40)≤S (t )≤S (12)=2 5003.当41≤t ≤100,t ∈N 时,S (t )=g (t )f (t )=(-13t +1123)(-12t +52)=16t 2-36t +112×523=16(t -108)2-83, 所以8=S (100)≤S (t )≤S (41)=1 4912. 综上,S (t )的最大值为2 5003,最小值为8.。
高三数学一轮复习学案:函数的应用

高三数学一轮复习学案:函数的应用一、考试要求: 1、会解与一次函数、二次函数有关的问题,掌握一次函数、二次函数在解决实际问题时的步骤与方法。
2、能构建指数函数、对数函数、幂函数、分段函数模型解决一些简单的实际问题二、知识梳理:2、解函数应用题的一般步骤 :(1) 审题:_______________________(2) 建模:________________________(3) 求模:_________________________(4) 还原:_________________________2.基本程序实际问题---------数学模型实际问题结论-------数学模型的解三、基础检测:1.某宾馆有客房300间,每间房日租为20元,每天都客满。
宾馆欲提高档次 ,并提高租金。
如果每间客房每日增加2元,客房出租数就会减少10间。
若不考虑其它因素,宾馆将房间租金提高到多少时,每天客房的租金总收入最高?A .30元 B.40元 C.50元 D.60元2.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。
假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2tM t M -=,其中M 0为t=0时铯137的含量。
已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)=A.5太贝克B.75In2太贝克C.150In2太贝克D.150太贝克3.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:(1)如一次购物不超过200元,不予以折扣;(2)如一次购物超过200元但不超过500元的,按标价予以九折优惠;(3)如一次购物超过500元的,其中500给与九折优惠,超过500元的部分给与八五折优惠。
某人两次去购物,分别付款176和432元,如果他只去一次购买同样的商品,则应付款( )A.608元B.574.1元C.582.6元D.456.8元4.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价( )A.10%B.20%C.5%D.11.1%5.提高过江大桥的车辆通行能力可改善整个城市的交通状况。
最新高三数学一轮复习精品教案――函数

高三数学一轮复习精品教案――函数(附高考预测)一、考点回顾1.理解函数的概念,了解映射的概念.2. 了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系.4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 7、掌握函数零点的概念,用二分法求函数的近似解,会应用函数知识解决一些实际问题。
二、经典例题剖析考点一:函数的性质与图象例1、(2008广东汕头二模)设集合A={x|x<-1或x>1},B={x|log 2x>0},则A ∩B=( ) A .{x| x>1}B .{x|x>0}C .{x|x<-1}D .{x|x<-1或x>1}【解析】:由集合B 得x>1 ,∴ A ∩B={x| x>1},故选(A ) 。
例2、(2008广东惠州一模) “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是 ( )【解析】:选(B ),在(B )中,乌龟到达终点时,兔子在同一时间的路程比乌龟短。
例3、(2008年广东惠州一模)设 ()11xf x x+=-,又记 ()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2008f x = ( )A B C DA .11x x +-; B .11x x -+; C .x ; D .1x-; 【解析】:本题考查周期函数的运算。
(新人教)高三数学第一轮复习教案2.9.2函数的应用2

一.课题:函数的应用举例(2)二.教学目标:1.要求学生熟悉属于“增长率”、“利息”一类应用问题,并能掌握其解法;2.提高学生根据实际问题建立函数关系的能力。
三.教学重、难点:1.增长率问题;2.复利问题。
四.教学过程:例1.(课本91例2)按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数关系式,如果存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?(“复利”:即把前一期的利息和本金加在一起算作本金,再计算下一期利息).分析:1期后 )1(1r a r a a y +=⨯+= 2期后 22)1(r a y += ……∴ x 期后,本利和为:x r a y )1(+=,将 a = 1000元,r =2.25%,x = 5 代入上式: 550225.11000%)25.21(1000⨯=+⨯=y ,由计算器算得:y = 1117.68(元).说明:在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,可以用公式()1xy N p =+表示,解决平均增长率的问题,要用到这个函数式。
例2.现有某种细胞100个,其中有占总数12的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg 20.301==).分析:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数,1小时后,细胞总数为1131001002100222⨯+⨯⨯=⨯; 2小时后,细胞总数为13139100100210022224⨯⨯+⨯⨯⨯=⨯; 3小时后,细胞总数为191927100100210024248⨯⨯+⨯⨯⨯=⨯; 4小时后,细胞总数为127127811001002100282816⨯⨯+⨯⨯⨯=⨯; 可见,细胞总数y 与时间x (小时)之间的函数关系为: 31002x y ⎛⎫=⨯ ⎪⎝⎭,x N *∈ 由103100102x ⎛⎫⨯> ⎪⎝⎭,得83102x⎛⎫> ⎪⎝⎭,两边取以10为底的对数,得3lg 82x >, ∴8lg 3lg 2x >-, ∵8845.45lg3lg 20.4770.301=≈--, ∴45.45x >.答:经过46小时,细胞总数超过1010个。
高三数学一轮复习学案:函数的实际应用

第18课 函数的实际应用考点解读根据实际问题的情境建立函数的模型,利用计算工具,结合对函数性质的研究,给出问题的解答;利用所学的数学知识分析、研究身边的问题,启发引导学生数学地观察世界、感受世界,引导学生合作交流;培养学生数学地分析问题、探索问题、解决问题的能力。
一、预习1.用长度为24米的材料围一矩形场地,中间加两道平行的隔墙,要使矩形的面积最大,则隔墙的长度为 。
2.已知镭经过100年剩留原来质量的95.76%,设质量为1克的镭经过x 年后剩留量为y ,则x 、y 之间的函数关系式为______________。
3.建造一个容积为8000 m 3,深6 m 的长方体无盖蓄水池,池壁造价为a 元/米2,池底造价为2a 元/米2,把总造价y 元表示为底的一边长x m 的函数,其解析式为___________。
4. 一种产品的年产量原来是a 件,在今后m 年内,计划使年产量平均每年比上一年增加p %,则年产量随经过年数变化的函数关系式为 。
5.某商场用m 元(m 为正整数)购进了一批共n 台(n 为质数)电子产品,其中4台在促销活动中以进价的一半价钱售出,其余的电子产品在商场零售,每台盈利500元,结果这批电子产品使该商场获得利润5000元,则n 的最小值为____ ____。
6.某商场对顾客实行购物优惠活动,规定一次购物付款总额 ①如果不超过200元,则不予优惠,②如果超过200元但不超过500元,则按标价给予9折优惠,③如果超过500元,其中500元按第②条给予优惠,超过500元的部分给予7折优惠,某人两次去购物,分别付款168元和423元,若他一次购买上述同样的商品,则应付款 元二、例题讲解例1.某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件。
现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?例2.根据市场调查,某商场在最近40天内某商品的销售价格()f t 与时间t 满足关系111(020,)()241(2040,)t t t N f t t t t N ⎧+≤<∈⎪=⎨⎪-+≤≤∈⎩,销售量()g t 与时间t 满足143()(040,)33g t t t t N =-+≤≤∈。
(新人教)高三数学第一轮复习教案2.9.3函数的应用3

一.课题:函数的应用举例(3)二.教学目标:1.使学生对分段函数在实际中的应用有进一步的认识;2.能利用分段函数和二次函数解决实际问题,提高在解决实际问题中利用函数进行计算和分析的能力。
三.教学重、难点:1.分段函数的运用;2.正确地进行运算。
四.教学过程:(一)预习题:大气温度()y C o 随着离开地面的高度()x km 增大而降低,到上空11km 为止,大约每上升1km ,气温降低6C o ,而在更高的上空气温却几乎没变(设地面温度为22C o )。
求:(1)y 与x 的函数关系; (2) 3.5x km =以及12x km =处的气温。
解:(1)由题意,011x ≤≤时,226y x =-,所以当11x =时,2261144y =-⨯=-,从而当11x >时,44y =-。
综上,所求函数关系为[]226,0,1144,(11,)x x y x ⎧-∈⎪=⎨-∈+∞⎪⎩; (2)由(1)知, 3.5x km =处的气温为226 3.51y =-⨯=C o ,12x km =处的气温为44C -o.(二)例题分析:例1.我国是水资源比较贫乏的国家之一,各地采用价格调控手段以达到节约用水的目的。
某市用水收费方法是:水费=基本费+超额费+损耗费。
该市规定:(1)若每户每月用水量不超过最低限量m 立方米时,只付基本费9元和每月的定额损耗费a 元;(2)若每户每月用水量超过m 立方米时,除了付基本费和损耗费外,超过部分每立方米付n 元的超额费;(3)每户每月的损耗费不超过5元。
(Ⅰ)求每户月水费y (元)与月用水量x (立方米)的函数关系;(Ⅱ)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示,试分析一、二、三各月份的用水量是否超过最低限量,并求,,m n a 的值。
解: ()9,0059,a x m y a x m n a x m +<≤⎧⎪=<≤⎨+-+>⎪⎩其中; (Ⅱ)∵05a <≤,∴9914a <+≤,由表知,一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米,将4x =和5x =分别代入y 的解析式,得()()18942695m n a m n a =+-+⎧⎪⎨=+-+⎪⎩ 由 ②-①得8n =,从而823a m =- ③, 又三月份用水量为2.5立方米,若2.5m >,将 2.5x =代入()9y x m n a =+-+得()10982.5m a =+-+,得819,a m =-这与③矛盾,∴2.5m ≤,即三月份用水量2.5立方米没有超过最低限量。
高三数学一轮复习精品教案9:2.9 函数的应用教学设计

2.9 函数的应用课型复习课教法讲练结合教学目标(知识、能力、教育)1.通过复习学生能掌握解函数应用题来解题的一般方法和步骤2.会综合运用函数、方程、几何等知识解决与函数有关的综合题以及函数应用问题。
教学重点函数应用题的审题和分析问题能力教学难点函数应用题的审题和分析问题能力。
教学媒体教案教学过程一『课前预习』(一):『知识梳理』1.解决函数应用性问题的思路面→点→线。
首先要全面理解题意,迅速接受概念,此为“面”;透过长篇叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,建立函数模型,此为“线”。
如此将应用性问题转化为纯数学问题。
2.解决函数应用性问题的步骤(1)建模:它是解答应用题的关键步骤,就是在阅读材料,理解题意的基础上,把实际问题的本质抽象转化为数学问题。
(2)解模:即运用所学的知识和方法对函数模型进行分析、运用、,解答纯数学问题,最后检验所得的解,写出实际问题的结论。
(注意:①在求解过程和结果都必须符合实际问题的要求;②数量单位要统一。
)3.综合运用函数知识,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,运用二次函数的性质,选取适当的变量,建立目标函数。
求该目标函数的最值,但要注意:①变量的取值范围;②求最值时,宜用配方法。
(二)『课前练习』1.下列函数中,随x(x>0)的增大,增长速度最快的是()A.y=1,x∈Z B.y=xC.y=2x D.y=e x2.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲、乙车的速度曲线分别为v 甲和v 乙,如图所示,那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .t 1时刻后,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面3.某学校开展研究性学习活动,某组同学获得了下面的一组实验数据:x 1.99 3 4 5.1 6.12 y1.54.047.51218.01现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A .y =2x -2B .y =⎝⎛⎭⎫12xC .y =log 2xD .y =12(x 2-1)4.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价,该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时) 高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时) 低谷电价(单位:元/千瓦时)50及以下部分 0.56850及以下部分 0.288超过50至200的部分 0.598 超过50至200的部分 0.318超过200的部分0.668 超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付电费为 元(用数字作答).5.(2014·武昌高三调研)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q (单位:元/100kg )与上市时间t (单位:天)的数据如下表:时间t 60 100 180 种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求:(1)西红柿种植成本最低时的上市天数是__________; (2)最低种植成本是____________元/100kg .二『经典考题剖析』1.根据统计,一名工人组装第x 件某产品所用的时间(单位:min)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,162.已知A 、B 两地相距150 km ,某人开汽车以60 km /h 的速度从A 地到达B 地,在B 地停留1 h 后再以50 km /h 的速度返回A 地.把汽车离A 地的距离x (km )表示为时间t (h )的函数表达式是( )A .x =60tB .x =60t +50tC .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5,150-50t ,t >3.5D .x =⎩⎪⎨⎪⎧60t ,0≤t ≤2.5,150,2.5<t ≤3.5,150-50(t -3.5),3.5<t ≤6.53.(2014·陕西)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A.y=12x3-12x2-x B.y=12x3+12x2-3xC.y=14x3-x D.y=14x3+12x2-2x4.如图所示,已知边长为8米的正方形钢板有一个角(阴影三角形)被锈蚀,其中AE=4米,CD=6米.为了合理利用这块钢板,将在五边形ABCDE内截取一个矩形块BNPM,使点P在边DE上.(1)设MP=x米,PN=y米,将y表示成x的函数,并求该函数的定义域.(2)求矩形BNPM面积的最大值.5.有一家公司准备裁减人员.已知这家公司现有职员2m(160<2m<630,且m为偶数)人,每人每年可创利n(n>0)万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.02n万元,但公司需付下岗职员每人每年0.8n万元的生活费,并且该公司正常运转所需人数不得少于现有职员的34.为获得最大的经济效益,该公司应裁员多少人?三『课后训练』几名大学毕业生合作开设3D打印店,生产并销售某种3D产品.已知该店每月生产的产品当月都能销售完,每件产品的生产成本为34元,该店的月总成本由两部分组成:第一部分是月销售产品的生产成本,第二部分是其它固定支出20000元.假设该产品的月销售量t(x)(件)与销售价格x(元/件)(x∈N*)之间满足如下关系:①当34≤x≤60时,t(x)=-a(x+5)2+10050;②当60≤x≤70时,t(x)=-100x+7600.设该店月利润为M(元),月利润=月销售总额-月总成本.(1)求M关于销售价格x的函数关系式;(2)求该打印店月利润M的最大值及此时产品的销售价格.(参考数据:461≈21.47)四:『课后小结』布置作业教后记答案(二)『课前练习』 1.『解析』指数函数模型增长速度最快,并且e >2,因而y =e x 增长速度最快,故选D. 2.『解析』由图象可知,曲线v 甲比v 乙在0~t 0,0~t 1与t 轴所围成的图形面积大,则在t 0,t 1时刻,甲车均在乙车前面.故选A. 3.『解析』通过描点可知,y =12(x 2-1)最符合要求.故选D .4.『解析』高峰时段电费a =50×0.568+(200-50)×0.598=118.1(元);低谷时段电费b =50×0.288+(100-50)×0.318=30.3(元).故该家庭本月应付的电费为a +b =148.4(元).故填148.4. 5.『解析』∵随着时间的增加,种植成本先减少后增加,而且当t =60和t =180时种植成本相等,再结合题中给出的四种函数关系可知,种植成本与上市时间的变化关系应该用二次函数Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎪⎨⎪⎧a (60-120)2+m =116,a (100-120)2+m =84, 解得⎩⎪⎨⎪⎧a =0.01,m =80, ∴Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100kg .故填120;80.二『经典考题剖析』 1.『解析』由⎩⎪⎨⎪⎧f (4)=30,f (A )=15,即⎩⎨⎧c2=30,cA =15,解得⎩⎪⎨⎪⎧c =60,A =16.故选D.2.『解析』∵15060=2.5,∴当0≤t ≤2.5时,汽车离A 地的距离x =60t ;然后在B 地停留1h ,故当2.5<t ≤3.5时,x =150;又知返回速度为50 km /h ,且15050=3,所以当3.5<t ≤6.5时,x =150-50(t -3.5).故选D. 3.『解析』由题意可知,该三次函数的图象过原点,则其常数项为0,不妨设其解析式为y =f (x )=ax 3+bx 2+cx (a ≠0),则f ′(x )=3ax 2+2bx +c ,∴f ′(0)=-1,f ′(2)=3,可得c =-1,3a +b =1. 又y =ax 3+bx 2+cx 过点(2,0),∴4a +2b =1, ∴a =12,b =-12,c =-1,∴y =f (x )=12x 3-12x 2-x .故选A.4.『解析』(1)如图,作PQ ⊥AF 于Q ,所以PQ =8-y ,EQ =x -4, 在△EDF 中,EQ PQ =EFFD, 即x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝⎛⎭⎫10-x 2=-12(x -10)2+50,(4≤x ≤8) 所以S (x )是关于x 的二次函数,当x ∈『4,8』时S (x )单调递增,所以当x =8米时,矩形BNPM 面积最大,最大值为48平方米.答:矩形BNPM 面积的最大值为48平方米. 5.『解析』设裁员x 人,可获得的经济效益为y 万元, 则y =(2m -x )(n +0.02nx )-0.8nx . 整理得y =-n50『x 2-2(m -45)x 』+2mn ,其图象的对称轴方程为x =m -45. ∵-n50<0,∴当x <m -45时,函数y 是递增的; 当x >m -45时,函数y 是递减的.∵该公司正常运转所需人数不得少于现有职员的34,∴2m -x ≥34×2m ,∴0<x ≤m2.∵m 为偶数,∴m2为整数.又∵160<2m <630,∴80<m <315. (1)当0<m -45≤m2,解得45<m ≤90,∴80<m ≤90时,x =m -45时,y 取最大值. (2)当m -45>m2,即90<m <315时,x =m2时,y 取到最大值.综上所述,当80<m ≤90时,应裁员(m -45)人;当90<m <315时,应裁员m2人,公司才能获得最大的经济效益.三『课后训练』『解析』(1)当x =60时,t (60)=1600, 代入t (x )=-a (x +5)2+10050,解得a =2. M (x )=⎩⎪⎨⎪⎧(-2x 2-20x +10000)(x -34)-20000,34≤x <60,x ∈N *,(-100x +7600)(x -34)-20000,60≤x ≤70,x ∈N *. 即M (x )=⎩⎪⎨⎪⎧-2x 3+48x 2+10680x -360000,34≤x <60,x ∈N *,-100x 2+11000x -278400,60≤x ≤70,x ∈N *. (2)①当34≤x <60时,设g (u )=-2u 3+48u 2+10680u -360000,34≤u <60,u ∈R . 则g ′(u )=-6u 2+96u +10680=-6(u 2-16u -1780). 令g ′(u )=0得u 1=8-2461(舍去),u 2=8+2461≈50.94. 当34<u <50时,g ′(u )>0,g (u )单调递增; 当51<u <60时,g ′(u )<0,g (u )单调递减. ∵x ∈N *,M (50)=44000,M (51)=44226, ∴M (x )的最大值为44226. ②当60≤x ≤70时,M (x )=-100(x 2-110x +2784)单调递减, 故此时M (x )的最大值为M (60)=21600.综上所述,当x =51时,月利润M (x )有最大值44226元.答:该打印店月利润最大为44226元,此时产品的销售价格为51元/件.。
2019-2020学年高考数学第一轮复习 函数的运用学案.doc

2019-2020学年高考数学第一轮复习 函数的运用学案(一)知识归纳:1.对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x 、y 分别表示问题中的变量;2.建立函数模型:将变量y 表示为x 的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;3.求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:(二)学习要点:1、解决函数应用问题应着重培养下面一些能力:⑴.阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等;⑵.建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域;⑶.求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。
2、常见的可用函数思想解决的问题:⑴几何问题:平面几何、立体几何、解析几何; ⑵行程问题; ⑶工程设计问题;⑷营销问题:利润=销售价—进货价;⑸单利问题:设本金为P ,期利率为r ,则n 期后本利和(1)n S P nr =+; ⑹复利问题:设本金为P ,期利率为r ,则n 期后本利和(1)nn S P r =+;⑺变化率问题; ⑻决策问题; ⑼相关学科问题。
3、认识和体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
(三)练习题:1.某市有小灵通与全球通两种手机,小灵通手机的月租费为25元,接听电话不收费,打出电话一次在3 min 以内收费0.2元,超过3 min 的部分为每分钟收费0.1元,不足1 min 按1min 计算(以下同).全球通手机月租费为10元,接听与打出的费用都是每分钟0.2元.若某人打出与接听次数一样多,每次接听与打出的时间在1 min 以内、1到2 min 以内、2到3 min 以内、3到4 min 以内的次数之比为4∶3∶1∶1.问,根据他的通话次数应该选择什么样的手机才能使费用最省?(注:m 到m +1 min 以内指含m min ,而不含m +1 min )解:设小灵通每月的费用为y 1元,全球通的费用为y 2元,分别在1 min 以内、2 min 以内、3 min 以内、4 min 以内的通话次数为4x 、3x 、x 、x ,则y 1=25+(4x +3x +x +x )×0.2+0.1x =25+1.9x ,y 2=10+2(0.2×4x +0.4×3x +0.6x +0.8x )=10+6.8x . 令y 1≥y 2,即25+1.9x ≥10+6.8x ,解得x ≤9.415≈3.06. ∴总次数为(4+3+1+1)×2×3.06=55.1.2.某影院共有1000个座位,票价不分等次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.9 函数的应用考纲展示1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.考点1用函数图象刻画实际问题中两个变量的变化过程自主练透典题1(1)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()A BC D(2)已知正方形ABCD的边长为4,动点P从点B开始沿折线BCDA向点A运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是()A BC D点石成金判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点2应用所给函数模型解决实际问题第1步师生共研典题2某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式y=f(t);(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.点石成金求解已给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.提醒解决实际问题时要注意自变量的取值范围.第2步跟踪训练里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000.此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍.考点3构建函数模型解决实际问题第1步回顾基础一、自读自填1.几类函数模型求解实际问题的两个误区:忽略自变量的取值范围;忽略数学结果的实际合理性.(1)据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车数为x辆次,存车费总收入为y 元,则y关于x的函数关系式是________.(2)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水,假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则最少需安装喷水龙头________个.三、通性通法复利公式.(1)某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.(2)人口的增长、细胞分裂的个数以及存款利率(复利)的计算等问题都可以用________函数模型解决.第2步 多角探明考情聚焦 高考对函数应用的考查,常与二次函数、基本不等式及导数等知识交汇,以解答题为主要形式出现,考查用函数知识解决以社会实际生活为背景的成本最低、利润最高、产量最大、效益最好、用料最省等实际问题. 主要有以下几个命题角度: 角度一 二次函数模型典题3 为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为:y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为100元.则该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?点石成金 二次函数模型问题的三个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题. 角度二 构造分段函数模型典题4 国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75人为止.每团乘飞机,旅行社需付给航空公司包机费15 000元. (1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?点石成金 解决分段函数模型问题的三个注意点(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解; (2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏; (3)分段函数的最值是各段的最大(或最小)值的最大者(最小者). 角度三 构建“对勾”函数f (x )=x +ax(a >0)模型典题5 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.点石成金 应用函数模型y =x +ax的关键点(1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=bx叠加而成的.(2)解决实际问题时一般可以直接建立f (x )=ax +bx 的模型,有时可以将所列函数关系式转化为f (x )=ax +bx的形式.(3)利用模型f (x )=ax +bx 求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件.角度四 构建指、对函数或复杂的分式结构函数模型典题6 已知一容器中有A ,B 两种菌,且在任何时刻A ,B 两种菌的个数乘积为定值1010,为了简单起见,科学家用P A =lg n A 来记录A 菌个数的资料,其中n A 为A 菌的个数,现有以下几种说法: ①P A ≥1;②若今天的P A 值比昨天的P A 值增加1,则今天的A 菌个数比昨天的A 菌个数多10; ③假设科学家将B 菌的个数控制为5万,则此时5<P A <5.5(注:lg 2≈0.3). 则正确的说法为________.(写出所有正确说法的序号)点石成金 一般地,涉及增长率问题、存蓄利息问题、细胞分裂问题等,都可以考虑用指数函数的模型求解.求解时注意指数式与对数式的互化,指数函数的值域的影响以及实际问题中的条件限制. 第3步 课堂归纳方法技巧 解函数应用问题的四步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论; (4)还原:将数学结论还原为实际意义的问题. 以上过程用框图表示如下:易错防范1.解应用题思路的关键是审题,不仅要明白、理解问题讲的是什么,还要特别注意一些关键的字眼(如“几年后”与“第几年后”).2.在解应用题建模后一定要注意定义域,建模的关键是注意寻找量与量之间的相互依赖关系.3.解决完数学模型后,注意转化为实际问题写出总结答案.真题演练集训1.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年D .2021年2.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油 3.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-14.某食品的保鲜时间y (单位:h)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192 h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是________h.——★ 参 考 答 案 ★——考点1 用函数图象刻画实际问题中两个变量的变化过程自主练透典题1 (1)『答案』 B (2)『答案』 D『解析』 依题意知,当0≤x ≤4时,f (x )=2x ;当4<x ≤8时,f (x )=8;当8<x ≤12时,f (x )=24-2x ,观察四个选项知,故选D.考点2 应用所给函数模型解决实际问题第1步 师生共研典题2 解:(1)由题图,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1,当t =1时,由y =4,得k =4, 由⎝⎛⎭⎫121-a=4,得a =3. 所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1.(2)由y ≥0.25,得⎩⎪⎨⎪⎧0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5.因此服药一次后治疗疾病有效的时间是5-116=7916(小时).第2步 跟踪训练 『答案』6 10 000『解析』根据题意,由lg 1 000-lg 0.001=6,得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震的最大振幅为A 9,则lg A 9-lg 0.001=9,解得A 9=106,同理5级地震的最大振幅A 5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.考点3 构建函数模型解决实际问题第1步 回顾基础 一、自读自填2.『答案』递增 递增 y 轴 x 轴 二、易错问题(1)『答案』y =-0.1x +1 200(0≤x ≤4 000,x ∈N )『解析』y =0.2x +(4 000-x )×0.3=-0.1x +1 200(0≤x ≤4 000,x ∈N ),这里不能忽略x 的取值范围,否则函数解析式失去意义. (2)『答案』4『解析』可以将正方形分割成4个全等的正方形,每个小正方形的对角线长为82<12,所以安装4个喷水龙头就可以满足题意.由于是实际问题,不可以这样理解:每个喷水龙头可喷洒的面积为36π平方米,3个喷水龙头即可喷洒的面积为108π平方米,又108π>162,最后得出安装3个就可以,这是错误的. 三、通性通法 复利公式.(1)『答案』y =a (1+r )x (2)『答案』指数典题3 解:设该单位每月获利为S , 则S =100x -y =100x -⎝⎛⎭⎫12x 2-200x +80 000 =-12x 2+300x -80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.典题4 解:(1)设旅行团人数为x ,由题得0<x ≤75(x ∈N *),飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x (1 200-10x )-15 000,30<x ≤75,即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30』上为单调增函数,故当x =30时,S 取最大值12 000元, 又S =-10(x -60)2+21 000在区间(30,75』上, 当x =60时,取得最大值21 000. 故当x =60时,旅行社可获得最大利润.典题5 解:(1)由已知条件得C (0)=8,则k =40, 因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10).(2)f (x )=6x +10+8003x +5-10≥2(6x +10)8003x +5-10=70(万元),当且仅当6x +10=8003x +5,即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元. 典题6 『答案』 ③『解析』 当n A =1时,P A =0,故①错误;若P A =1,则n A =10,若P A =2,则n A =100,故②错误; B 菌的个数为n B =5×104,∴n A =10105×104=2×105,∴P A =lg n A =lg 2+5.又∵lg 2≈0.3,∴5<P A <5.5,故③正确.真题演练集训1.『答案』B『解析』根据题意,知每年投入的研发资金增长的百分率相同,所以,从2015年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B. 2.『答案』D『解析』根据图象所给数据,逐个验证选项.根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A 错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B 错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对. 3.『答案』D『解析』设年平均增长率为x ,原生产总值为a ,则(p +1)(q +1)a =a (1+x )2,解得x =(p +1)(q +1)-1,故选D. 4.『答案』24『解析』由已知条件,得192=e b ,∴ b =ln 192. 又∵48=e 22k +b =e 22k +ln 192=192e 22k =192(e 11k )2,∴e 11k =⎝⎛⎭⎫48192 12=⎝⎛⎭⎫1412 =12.设该食品在33 ℃的保鲜时间是t h ,则t =e 33k+ln 192=192e 33k =192(e 11k )3=192×⎝⎛⎭⎫123=24.。