高考数学三角函数试题及解析

高考数学三角函数试题及解析
高考数学三角函数试题及解析

三角函数与解三角形

一.选择题

1.(2014?广西)已知角α的终边经过点(﹣4,3),则cosα=()

A.B.C.﹣D.﹣

2.(2014?广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.

3.(2014?河南)若tanα>0,则()

A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0

4.(2014?河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最

小正周期为π的所有函数为()

A.①②③B.①③④C.②④ D.①③

5.(2014?四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度 B.向右平行移动1个单位长度

C.向左平行移动π个单位长度 D.向右平行移动π个单位长度

6.(2014?陕西)函数f(x)=cos(2x+)的最小正周期是()

A.B.πC.2πD.4π

7.(2014?辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增

C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增

8.(2014?江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()

A.﹣B.C.1 D.

9.(2014?福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法

正确的是()

A.y=f(x)是奇函数 B.y=f(x)的周期为π

C.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称

10.(2014?安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()

A.B.C.D.

二.填空题

11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为_________ .

12.(2014?重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()= _________ .

13.(2014?上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于_________ .14.(2014?陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若?=0,则tanθ= _________ .

15.(2014?山东)函数y=sin2x+cos2x的最小正周期为_________ .

16.(2014?湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B= _________ .17.(2014?福建)在△ABC中,A=60°,AC=2,BC=,则AB等于_________ .

18.(2014?北京)在△ABC中,a=1,b=2,cosC=,则c= _________ ;sinA= _________ .

三.解答题

19.(2014?广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.20.(2014?重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.

(Ⅰ)若a=2,b=,求cosC的值;

(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.

21.(2014?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;

(Ⅱ)求cos(2A﹣)的值.

22.(2014?四川)已知函数f(x)=sin(3x+).

(1)求f(x)的单调递增区间;

(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.

23.(2014?江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ

∈(0,π).

(1)求a,θ的值;

(2)若f()=﹣,α∈(,π),求sin(α+)的值.

24.(2014?湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.

(Ⅰ)求sin∠CED的值;

(Ⅱ)求BE的长.

25.已知函数f(x)=Asin(x+),x∈R,且f()=.

(1)求A的值;

(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).

26.(2014?安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA与a的值.

三角函数与解三角形

一.选择题

1.(2014?广西)已知角α的终边经过点(﹣4,3),则cosα=()

A.B.C.

﹣D.

考点:任意角的三角函数的定义

专题:三角函数的求值.

分析:由条件直接利用任意角的三角函数的定义求得cosα的值.

解答:

解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.

∴cosα===﹣,

故选:D.

点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.

2.(2014?广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.

考点:异面直线及其所成的角

专题:空间角.

分析:由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.

解答:解:如图,

取AD中点F,连接EF,CF,

∵E为AB的中点,

∴EF∥DB,

则∠CEF为异面直线BD与CE所成的角,

∵ABCD为正四面体,E,F分别为AB,AD的中点,

∴CE=CF.

设正四面体的棱长为2a,

则EF=a,

CE=CF=.

在△CEF中,由余弦定理得:

=.

故选:B.

点评:本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.

3.(2014?河南)若tanα>0,则()

A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0

考点:三角函数值的符号

专题:三角函数的求值.

分析:化切为弦,然后利用二倍角的正弦得答案.

解答:解:∵tanα>0,

∴,

则sin2α=2sinαcosα>0.

故选:C.

点评:本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题.

4.(2014?河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期

为π的所有函数为()

A.①②③B.①③④C.②④D.①③

考点:三角函数的周期性及其求法

专题:三角函数的图像与性质.

分析:根据三角函数的周期性,求出各个函数的最小正周期,从而得出结论.

解答:

解:∵函数①y=cos丨2x丨=cos2x,它的最小正周期为=π,

②y=丨cosx丨的最小正周期为=π,

③y=cos(2x+)的最小正周期为=π,

④y=tan(2x﹣)的最小正周期为,

故选:A.

点评:本题主要考查三角函数的周期性及求法,属于基础题.

5.(2014?四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()

A.向左平行移动1个单位长度B.向右平行移动1个单位长度

C.向左平行移动π个单位长度D.向右平行移动π个单位长度

考点:函数y=Asin(ωx+φ)的图象变换

专题:三角函数的图像与性质.

分析:直接利用函数图象的平移法则逐一核对四个选项得答案.

解答:解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,

∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.

点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.

6.(2014?陕西)函数f(x)=cos(2x+)的最小正周期是()

A.B.πC.2πD.4π

考点:三角函数的周期性及其求法

专题:三角函数的图像与性质.

分析:

由题意得ω=2,再代入复合三角函数的周期公式求解.

解答:

解:根据复合三角函数的周期公式得,

函数f(x)=cos(2x+)的最小正周期是π,

故选:B.

点评:

本题考查了三角函数的周期性,以及复合三角函数的周期公式应用,属于基础题.7.(2014?辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()

A.

在区间[,]上单调递减B.

在区间[,]上单调递增

C.

在区间[﹣,]上单调递减D.

在区间[﹣,]上单调递增

考点:函数y=Asin(ωx+φ)的图象变换

专题:三角函数的图像与性质.

分析:直接由函数的图象平移得到平移后的图象所对应的函数解析式,然后利用复合函数的单调性的求法求出函数的增区间,取k=0即可得到函数在区间[,]上单调递增,则答案可求.

解答:

解:把函数y=3sin(2x+)的图象向右平移个单位长度,

得到的图象所对应的函数解析式为:y=3sin[2(x﹣)+].

即y=3sin(2x﹣).

由,得.

取k=0,得.

∴所得图象对应的函数在区间[,]上单调递增.

故选:B.

点评:本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.

8.(2014?江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()

A.

B.C.1 D.

考点:余弦定理;正弦定理

专题:解三角形.

分析:根据正弦定理,将条件进行化简即可得到结论.

解答:

解:∵3a=2b,∴b=,

根据正弦定理可得===,

故选:D.

点评:本题主要考查正弦定理的应用,比较基础.

9.(2014?福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()

A.y=f(x)是奇函数B.y=f(x)的周期为π

C.

y=f(x)的图象关于直线x=对称D.

y=f(x)的图象关于点(﹣,0)对称

考点:函数y=Asin(ωx+φ)的图象变换

专题:三角函数的图像与性质.

分析:利用函数图象的平移法则得到函数y=f(x)的图象对应的解析式为f(x)=cosx,则可排除选项A,B,再由

cos=cos(﹣)=0即可得到正确选项.

解答:

解:将函数y=sinx的图象向左平移个单位,得y=sin(x+)=cosx.

即f(x)=cosx.

∴f(x)是周期为2π的偶函数,选项A,B错误;

∵cos=cos(﹣)=0,

∴y=f(x)的图象关于点(﹣,0)、(,0)成中心对称.

故选:D.

点评:本题考查函数图象的平移,考查了余弦函数的性质,属基础题.

10.(2014?安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是()

A.B.C.D.

考点:函数y=Asin(ωx+φ)的图象变换

专题:三角函数的求值.

分析:利用两角和的正弦函数对解析式进行化简,由所得到的图象关于y轴对称,根据对称轴方程求出φ的最小值.

解答:

解:函数f(x)=sin2x+cos2x=sin(2x+)的图象向右平移φ的单位,

所得图象是函数y=sin(2x+﹣2φ),

图象关于y轴对称,可得﹣2φ=kπ+,

即φ=﹣,

当k=﹣1时,φ的最小正值是.

故选:C.

点评:本题考查三角函数的图象变换,考查正弦函数图象的特点,属于基础题.

二.填空题

11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.

考点:三角函数的最值

专题:三角函数的求值.

分析:展开两角和的正弦,合并同类项后再用两角差的正弦化简,则答案可求.

解答:解:∵f(x)=sin(x+φ)﹣2sinφcosx

=sinxcosφ+cosxsinφ﹣2sinφcosx

=sinxcosφ﹣sinφcosx

=sin(x﹣φ).

∴f(x)的最大值为1.

故答案为:1.

点评:本题考查两角和与差的正弦,考查了正弦函数的值域,是基础题.

12.(2014?重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()= .

考点:函数y=Asin(ωx+φ)的图象变换

专题:三角函数的图像与性质.

分析:

哟条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.

解答:

解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.

再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]

=sin(2ωx+φ﹣ω)=sinx的图象,

∴2ω=1,且φ﹣ω=2kπ,k∈z,

∴ω=,φ=,∴f(x)=sin(x+),

∴f()=sin(+)=sin=.

故答案为:.

点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.

13.(2014?上海)方程sinx+cosx=1在闭区间[0,2π]上的所有解的和等于.

考点:两角和与差的正弦函数;正弦函数的图象

专题:三角函数的求值.

分析:

由三角函数公式可得sin(x+)=,可知x+=2kπ+,或x+=2kπ+,k∈Z,结合x∈[0,2π],可得x值,求和即可.

解答:解:∵sinx+cosx=1,

∴sinx+cosx=,

即sin(x+)=,

可知x+=2kπ+,或x+=2kπ+,k∈Z,

又∵x∈[0,2π],

∴x=,或x=,

∴+=

故答案为:

点评:本题考查两角和与差的三角函数公式,属基础题.

14.(2014?陕西)设0<θ<,向量=(sin2θ,cosθ),=(1,﹣cosθ),若?=0,则tanθ= .

考点:平面向量数量积的运算

专题:平面向量及应用.

分析:由条件利用两个向量的数量积公式求得 2sinθcosθ﹣cos2θ=0,再利用同角三角函数的基本关系求得tan θ

解答:

解:∵=sin2θ﹣cos2θ=2sinθcosθ﹣cos2θ=0,0<θ<,

∴2sinθ﹣cosθ=0,∴tanθ=,

故答案为:.

点评:本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题.

15.(2014?山东)函数y=sin2x+cos2x的最小正周期为.

考点:二倍角的余弦;两角和与差的正弦函数;三角函数的周期性及其求法

专题:三角函数的图像与性质.

分析:

利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期

解答:

解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,

故函数的最小正周期的最小正周期为=π,

故答案为:π.

点评:本题主要考查两角和的正弦公式、二倍角的余弦公式,正弦函数的周期性,属于基础题.

16.(2014?湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B= .

考点:余弦定理

专题:三角函数的求值.

分析:利用正弦定理列出关系式,将a,sinA,b的值代入求出sinB的值,即可确定出B的度数.

解答:

解:∵在△ABC中,A=,a=1,b=,

∴由正弦定理=得:sinB===,

∵a<b,∴A<B,

∴B=或.

故答案为:或

点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

17.(2014?福建)在△ABC中,A=60°,AC=2,BC=,则AB等于.

考点:余弦定理;正弦定理

专题:三角函数的求值.

分析:利用余弦定理列出关系式,将AC,BC,以及cosA的值代入即可求出AB的长.

解答:解:∵在△ABC中,A=60°,AC=b=2,BC=a=,

∴由余弦定理得:a2=b2+c2﹣2bccosA,即3=4+c2﹣2c,

解得:c=1,

则AB=c=1,

故答案为:1

点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.

18.(2014?北京)在△ABC中,a=1,b=2,cosC=,则c= ;sinA= .

考点:余弦定理

专题:三角函数的求值;解三角形.

分析:利用余弦定理列出关系式,将a,b,以及cosC的值代入求出c的值,由cosC的值求出sinC的值,再由a,c的值,利用正弦定理即可求出sinA的值.

解答:

解:∵在△ABC中,a=1,b=2,cosC=,

∴由余弦定理得:c2=a2+b2﹣2abcosC=1+4﹣1=4,即c=2;

∵cosC=,C为三角形内角,

∴sinC==,

∴由正弦定理=得:sinA===.

故答案为:2;

点评:此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.

三.解答题

19.(2014?广西)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.

考点:正弦定理的应用;三角函数中的恒等变换应用

专题:解三角形.

分析:由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+B)]=﹣tan(A+B)即可得出.

解答:解:∵3acosC=2ccosA,

由正弦定理可得3sinAcosC=2sinCcosA,

∴3tanA=2tanC,

∵tanA=,

∴2tanC=3×=1,解得tanC=.

∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,

∵B∈(0,π),

∴B=

点评:本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.

20.(2014?重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.

(Ⅰ)若a=2,b=,求cosC的值;

(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.

考点:余弦定理;正弦定理

专题:三角函数的求值.

分析:

(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值

即可;

(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,

代入S=sinC求出ab的值,联立即可求出a与b的值.

解答:

解:(Ⅰ)∵a=2,b=,且a+b+c=8,

∴c=8﹣(a+b)=,

∴由余弦定理得:cosC===﹣;

(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA?+sinB?=2sinC,

整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,

∵sinAcosB+cosAsinB=sin(A+B)=sinC,

∴sinA+sinB=3sinC,

利用正弦定理化简得:a+b=3c,

∵a+b+c=8,

∴a+b=6①,

∵S=absinC=sinC,

∴ab=9②,

联立①②解得:a=b=3.

点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.21.(2014?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,

(Ⅰ)求cosA的值;

(Ⅱ)求cos(2A﹣)的值.

考点:正弦定理;两角和与差的余弦函数

专题:三角函数的求值.

分析:(Ⅰ)已知第二个等式利用正弦定理化简,代入第一个等式表示出a,利用余弦定理表示出cosA,将表示出的a,b代入计算,即可求出cosA的值;

(Ⅱ)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,进而利用二倍角的正弦、余弦函数公式求出sin2A与cos2A的值,原式利用两角和与差的余弦函数公式及特殊角的三角函数值化简,将各自的值代入计算即可求出值.

解答:解:(Ⅰ)将sinB=sinC,利用正弦定理化简得:b=c,

代入a﹣c=b,得:a﹣c=c,即a=2c,

∴cosA===;

(Ⅱ)∵cosA=,A为三角形内角,

∴sinA==,

∴cos2A=2cos2A﹣1=﹣,sin2A=2sinAcosA=,

则cos(2A﹣)=cos2Acos+sin2Asin=﹣×+×=.

点评:此题考查了正弦、余弦定理,同角三角函数间的基本关系,二倍角的正弦、余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.

22.(2014?四川)已知函数f(x)=sin(3x+).

(1)求f(x)的单调递增区间;

(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.

考点:两角和与差的余弦函数;正弦函数的单调性

专题:三角函数的求值.

分析:

(1)令 2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.

(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα的值.

解答:

解:(1)∵函数f(x)=sin(3x+),令 2kπ﹣≤3x+≤2kπ+,k∈z,

求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈z.

(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,

∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),

∴sinαcos+cosαsin=(cos2α﹣sin2α)?(sinα﹣cosα),

即(sinα﹣cosα)=?(cosα﹣sinα)2?(sinα+cosα),

又∵α是第二象限角,∴cosα﹣sinα<0,

当sinα+cosα=0时,此时cosα﹣sinα=﹣.

当sinα+cosα≠0时,此时cosα﹣sinα=﹣.

综上所述:cosα﹣sinα=﹣或﹣.

点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.

23.(2014?江西)已知函数f(x)=(a+2cos2x)cos(2x+θ)为奇函数,且f()=0,其中a∈R,θ∈(0,π).(1)求a,θ的值;

(2)若f()=﹣,α∈(,π),求sin(α+)的值.

考点:三角函数中的恒等变换应用;函数奇偶性的性质

专题:三角函数的求值.

分析:

(1)把x=代入函数解析式可求得a的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得.

(2)利用f()=﹣和函数的解析式可求得sin,进而求得cos,进而利用二倍角公式分别求得sinα,cosα,最后利用两角和与差的正弦公式求得答案.

解答:

解:(1)f()=﹣(a+1)sinθ=0,

∵θ∈(0,π).

∴sinθ≠0,

∴a+1=0,即a=﹣1

∵f(x)为奇函数,

∴f(0)=(a+2)cosθ=0,

∴cosθ=0,θ=.

(2)由(1)知f(x)=(﹣1+2cos2x)cos(2x+)=cos2x?(﹣sin2x)=﹣,

∴f()=﹣sinα=﹣,

∴sinα=,

∵α∈(,π),

∴cosα==﹣,

∴sin(α+)=sinαcos+cosαsin=.

点评:本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.

24.(2014?湖南)如图,在平面四边形ABCD中,DA⊥AB,DE=1,EC=,EA=2,∠ADC=,∠BEC=.(Ⅰ)求sin∠CED的值;

(Ⅱ)求BE的长.

考点:余弦定理的应用;正弦定理

专题:解三角形.

分析:(Ⅰ)根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.

(Ⅱ)利用两角和的余弦公式,结合正弦定理即可得到结论.

解答:解:(Ⅰ)设α=∠CED,

在△CDE中,由余弦定理得EC2=CD2+ED2﹣2CD?DEcos∠CDE,

即7=CD2+1+CD,则CD2+CD﹣6=0,

解得CD=2或CD=﹣3,(舍去),

在△CDE中,由正弦定理得,

则sinα=,

即sin∠CED=.

(Ⅱ)由题设知0<α<,由(Ⅰ)知cosα=,

而∠AEB=,

∴cos∠AEB=cos()=cos cosα+sin sinα=,

在Rt△EAB中,cos∠AEB=,

故BE=.

点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.

25.已知函数f(x)=Asin(x+),x∈R,且f()=.

(1)求A的值;

(2)若f(θ)﹣f(﹣θ)=,θ∈(0,),求f(﹣θ).

考点:两角和与差的正弦函数

专题:三角函数的图像与性质.

分析:

(1)通过函数f(x)=Asin(x+),x∈R,且f()=,直接求A的值;

(2)利用函数的解析式,通过f(θ)﹣f(﹣θ)=,θ∈(0,),求出cosθ,利用两角差的正弦函数求f(﹣θ).

解答:

解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=,

∴f()=Asin(+)=Asin=,

∴.

(2)由(1)可知:函数f(x)=3sin(x+),

∴f(θ)﹣f(﹣θ)=3sin(θ+)﹣3sin(﹣θ+)

=3[()﹣()]

=3?2sinθcos=3sinθ=,

∴sinθ=,

∴cosθ=,

∴f(﹣θ)=3sin()=3sin()3cosθ=.

点评:本题考查两角和与差的三角函数,三角函数的解析式的求法,基本知识的考查.

26.(2014?安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,且b=3,c=1,△ABC的面积为,求cosA 与a的值.

考点:余弦定理的应用

专题:计算题;解三角形.

分析:

利用三角形的面积公式,求出sinA=,利用平方关系,求出cosA,利用余弦定理求出a的值.

解答:解:∵b=3,c=1,△ABC的面积为,

∴=,

∴sinA=,

又∵sin2A+cos2A=1

∴cosA=±,

由余弦定理可得a==2或2.

点评:本题考查三角形的面积公式、余弦定理,考查学生的计算能力,属于中档题.

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数练习题及答案

创作编号:BG7531400019813488897SX 创作者: 别如克* 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β

7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=31 ,则sin β 的值是( ). A .3 1 B .-3 1 C . 3 2 2 D .- 3 2 2 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .??? ??2π ,4π∪??? ??4π5 ,π B .?? ? ??π ,4π C .?? ? ??4π5 ,4π D .??? ??π ,4π∪??? ? ?23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的2 1 倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ??? ? ? 3π - 2x ,x ∈R B .y =sin ?? ? ??6π + 2x ,x ∈R C .y =sin ??? ? ? 3π + 2x ,x ∈R D .y =sin ??? ? ? 32π + 2x ,x ∈R 二、填空题 11.函数f (x )=sin 2 x +3tan x 在区间??? ???3π4π ,上的最大值是 . 12.已知sin α= 552,2 π ≤α≤π,则tan α= . 13.若sin ??? ??α + 2π=53,则sin ?? ? ??α - 2π= . 14.若将函数y =tan ??? ? ? 4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ??? ? ? 6π + x ω的图象重合,则ω的最小值为 . 15.已知函数f (x )=21(sin x +cos x )-2 1 |sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ??? ? ? 3π + 2x ,x ∈R ,有下列命题:

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

任意角的三角函数练习题及答案详解

任意角的三角函数 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{α|α=k π+6 π,k ∈Z }≠{β|β=-k π+6 π ,k ∈Z } C .若α是第二象限的角,则sin2α<0 D .第四象限的角可表示为{α|2k π+2 3π<α<2k π,k ∈Z } 2.若角α的终边过点(-3,-2),则( ) A .sin α tan α>0 B .cos α tan α>0 C .sin α cos α>0 D .sin α cot α>0 3.角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A . 2 2 B .- 2 2 C .± 2 2 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为 ( ) A .410 B .46 C .42 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 7.点P 是角α终边上的一点,且 ,则b 的值是( ) A 3 B -3 C ±3 D 5 8.在△ABC 中,若最大的一个角的正弦值是 ,则△ABC 是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 等边三角形 9.若α是第四象限角,则 是( ) A 第二象限角 B 第三象限角 C 第一或第三象限角 D 第二或第四象限角 10.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( )

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

高考数学三角函数知识点总结及练习

三角函数总结及统练 一. 教学内容: 三角函数总结及统练 (一)基础知识 1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ 2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值 3. 三角函数的符号——口诀:一正二弦,三切四余弦。 4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan 5. 同角三角函数的关系 平方关系:商数关系: 倒数关系:1cot tan =?αα 1c s c s i n =?αα 1s e c c o s =?αα 口诀:凑一拆一;切割化弦;化异为同。 6. 诱导公式——口诀:奇变偶不变,符号看象限。 α απ+k 2 α- απ- απ+ απ-2 α π -2 α π +2

正弦 αsin αsin - αsin αsin - αsin - αcos αcos 余弦 αcos αcos αcos - αcos - αcos αsin αsin - 正切 αtan αtan - αtan - αtan αtan - αcot αcot - 余切 αcot αcot - αcot - αcot αcot - αtan αtan - 7. 两角和与差的三角函数 ?????? ? ?+-=-?-+=+?????????+?=-?-?=+?-?=-?+?=+βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαt a n t a n 1t a n t a n )t a n (t a n t a n 1t a n t a n )t a n (s i n s i n c o s c o s )c o s (s i n s i n c o s c o s )c o s (s i n c o s c o s s i n )s i n (s i n c o s c o s s i n )s i n ( 8. 二倍角公式——代换:令αβ= ??????? -= -=-=-=?=ααααααααααα22222tan 1tan 22tan sin cos sin 211cos 22cos cos sin 22sin 降幂公式?????? ?+=-=22cos 1cos 22cos 1sin 22αααα 半角公式: 2cos 12 sin αα -± =;2cos 12cos αα+±=; αα αcos 1cos 12tan +-± = αα ααα cos 1sin sin cos 12 tan += -= 9. 三角函数的图象和性质 函数 x y sin = x y cos = x y tan =

数学锐角三角函数的专项培优练习题(含答案)附答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 EF FK -=26(分米), ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 63 -(2)=26, ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且 MD=CM,DE⊥AB于点E,连结AD、CD. (1)求证:△MED∽△BCA; (2)求证:△AMD≌△CMD; (3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=17 5 S1时,求cos∠ABC的 值. 【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 . 【解析】 【分析】 (1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;

高中数学三角函数练习题

高一数学第一次月考试题 一. 选择题(每题5分,共60分) 1.函数)6 2sin(2π +=x y 的最小正周期是( ) A .π4 B .π2 C .π D .2 π 2.0sin300=( ) A .1 2 B . 32 C .-12 D .-32 3.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠ AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 4.如果sin α-2cos α 3sin α+5cos α =-5,那么tan α的值为( ) A .-2 B .2 D .-2316

5.函数)2 52sin(π+=x y 的图象的一条对称轴方程是( ) A .2 π-=x B .4 π-=x C .8 π = x D .4 5π= x 6.将函数y =sin(x -π 3)的图象上所有点的横坐标伸长到原来的2 倍(纵坐标不变),再将所得的图象向右平移π 3个单位,得到的图象 对应的解析式是( ) A .y =sin 1 2x B .y =sin(12x -π 2) C .y =sin(12x -π 6 ) D .y =sin(2x -π 6 ) 7.已知α是第二象限角,且4tan =-3 α,则( ) A .4sin =-5α B .4sin =5α C .3cos =5α D .4cos =-5 α 8.已知3 cos +=25πθ?? ???,且3,22 ππθ? ? ∈ ??? ,则tan θ=( ) A .43 B .-43 C .34 D .-34 9.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|< π 2 )的部分图象如

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答 案) 一、选择题 1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是() 图1-2-3 【解析】观察题图可知0到3为一个周期, 则从2 013到2 014对应着1到2到3. 【答案】 B 2.-330是() A.第一象限角B.第二象限角 C.第三象限角D.第四象限角 【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A 3.把-1 485转化为+k360,kZ)的形式是() A.45-4360 B.-45-4360 C.-45-5360 D.315-5360 【解析】-1 485=-5360+315,故选D. 【答案】 D 4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角B.第二象限的角 C.第三象限的角D.第四象限的角

【解析】∵是第四象限的角,k360-90k360,kZ, -k360+180180--k360+270,kZ, 180-是第三象限的角. 【答案】 C 5.在直角坐标系中,若与的终边互相垂直,则与的关系为() A.=+90 B.=90 C.=+90-k360 D.=90+k360 【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ. 【答案】 D 二、填空题 6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同, =k360+60,kZ. 【答案】k360+60,kZ 7.是第三象限角,则2是第________象限角. 【解析】∵k360+180k360+270,kZ k180+90k180+135,kZ 当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ

高考全国卷三角函数大题训练

三角函数及数列大题训练 1.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式;令n n b na =,求数列的前n 项和n S 2.等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++ 求数列1n b ?? ???? 的前项和. 3.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (1)求A (2)若2a =,ABC ?的面积为3;求,b c 。 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 5.已知数列{}n a 满足11a =,131n n a a +=+. ⑴证明1{}2 n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112 n a a a ++<…+. 6.ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1A C B -+=,2a c =,求C 。

7.ABC ?的内角A 、B 、C 的对边分别为,,a b c 。已知90,2A C a c b -=+= ,求C 8.如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90° (1)若PB=1 2,求PA ;(2)若∠APB =150°,求tan ∠PBA 9.在△ABC 中,a, b, c 分别为内角A, B, C 的对边, 且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值. 10.已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列? ? ????-1 2 n n a 的前n 项和。 11. 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c 。角A ,B ,C 成等差数列。 (Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值。 12.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈π0,2 ?? ???? . (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 13.在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知? =2,cosB=, b=3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos (B ﹣C )的值. A B C P

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高三文科数学三角函数专题测试题

A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 在△ABC 中,AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 3 2=2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动02π????<< ??? 个单位长度,所得的部分图象如右图所示,则?的值为( ) A .6π B .3 π C .12π D .23π 2.已知函数()sin 23f x x π? ?=+ ??? ,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π个长度单位 3 .若11sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13 或-1 4.2014cos()3π的值为( ) A .12 B C .12- D . 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6.若sin a = -45,a 是第三象限的角,则sin()4 a π+=( ) (A ) -10 (B )10 (C ) -10 (D )10 7.若552)4sin(2cos -=+π αα,且)2 ,4(ππα∈,则α2tan 的值为( )

A .34- B .4 3- C .43 D .34 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在)0,2(π -上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A .向右平移 4 π个单位,再向上平移1个单位 B .向左平移4 π个单位,再向下平移1个单位 C .向右平移2 π个单位,再向上平移1个单位 D .向左平移2 π个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移6π个单位,得到函数()y g x =的图象,则()2g π等

高考数学-三角函数大题综合训练

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值.

任意角的三角函数练习题及答案详解

任意角的三角函数练习题及答案详解 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

高一数学限时训练---任意角的三角函数(4) 测试时间:2007.3.20 一、选择题 1.以下四个命题中,正确的是( ) A .在定义域内,只有终边相同的角的三角函数值才相等 B .{?|?=k ?+ 6π,k ∈Z }≠{?|?=-k ?+6π,k ∈Z } C .若?是第二象限的角,则sin2?<0 D .第四象限的角可表示为{?|2k ?+23?<?<2k ?,k ∈Z } 2.若角?的终边过点(-3,-2),则( ) A .sin ??tan ?>0 B .cos ??tan ?>0 C .sin ??cos ?>0 D .sin ??cot ?>0 3.角?的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin ?的值是( ) A .22 B .-22 C .±22 D .1 4.α是第二象限角,其终边上一点P (x ,5),且cos α=42 x ,则sin α的值为( ) A .410 B .46 C .4 2 D .-410 5.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角 D .第一、二象限角或终边在y 轴上 6.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α 是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象 限角 二、填空题 1.已知角?的终边落在直线y =3x 上,则sin ?=________. 2.已知P (-3,y )为角?的终边上一点,且sin ?= 1313,那么y 的值等于________. 3.已知锐角?终边上一点P (1,3),则?的弧度数为________. 4.(1)sin 49πtan 3 7π_________ 三、解答题 1.已知角?的终边过P (-3?,4),求?的六种三角函数值

2020高考数学专项复习《三角函数10道大题》(带答案)

4 2 ) 三角函数 1.已知函数 f (x ) = 4 c os x s in(x + (Ⅰ)求 f (x ) 的最小正周期; ) -1. 6 (Ⅱ)求 f (x ) 在区间[- , ] 上的最大值和最小值. 6 4 2、已知函数 f (x ) = sin(2x + ) 3 + sin(2x - 3 + 2 cos 2 x - 1, x ∈ R . (Ⅰ)求函数 f (x ) 的最小正周期; (Ⅱ)求函数 f (x ) 在区间[- , ] 上的最大值和最小值. 4 4 3、已知函数 f (x ) = tan(2x + ), 4 (Ⅰ)求 f (x ) 的定义域与最小正周期; ? ? (II )设∈ 0, ? ,若 f ( ) = 2 cos 2, 求的大小 ? ? 4、已知函数 f (x ) = (sin x - cos x ) sin 2x . sin x (1) 求 f (x ) 的定义域及最小正周期; (2) 求 f (x ) 的单调递减区间. 5、 设函数 f (x ) = cos(2x + + sin 2 x . 2 4 (I )求函数 f (x ) 的最小正周期; ( II ) 设 函 数 1 g (x ) 对 任 意 x ∈ R , 有 g (x + 2 = g (x ) , 且 当 x ∈[0, ] 时 , 2 g (x ) = - f (x ) ,求函数 g (x ) 在[-, 0] 上的解析式. 2 2 ) )

3 + = 6、函数 f (x ) = A sin(x - 称轴之间的距离为 , 2 ) +1( A > 0,> 0 )的最大值为 3, 其图像相邻两条对 6 (1)求函数 f (x ) 的解析式; (2)设∈(0, ) ,则 f ( ) = 2 ,求的值. 2 2 7、设 f ( x ) = 4cos( ωx - π )sin ωx + cos 2ωx ,其中> 0. 6 (Ⅰ)求函数 y = f ( x ) 的值域 (Ⅱ)若 y = f ( x ) 在区间?- 3π , π? 上为增函数,求 的最大值. ?? 2 2 ?? 8、函数 f (x ) = 6 cos 2 x + 2 3 cos x - 3(> 0) 在一个周期内的图象如图所示, A 为 图象的最高点, B 、C 为图象与 x 轴的交点,且?ABC 为正三角形. (Ⅰ)求的值及函数 f (x ) 的值域; 8 3 (Ⅱ)若 f (x 0 ) 5 ,且 x 0 ∈(- 10 2 , ) ,求 f (x 0 1) 的值. 3 3 9、已知 a , b , c 分别为?ABC 三个内角 A , B , C 的对边, a cos C + 3a sin C - b - c = 0 (1)求 A ; (2)若 a = 2 , ?ABC 的面积为 ;求b , c . 10、在 ? ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c .已知 cos A cos C . = 2 ,sin B = 5 3 (Ⅰ)求 tan C 的值; (Ⅱ)若 a = 2 ,求? ABC 的面积.

相关文档
最新文档