三角函数专题复习

合集下载

《三角函数》复习专题

《三角函数》复习专题

《三角函数》复习专题一、重要知识点清理1.角的概念:(了解)正角:按 时针方向旋转形成的角叫做正角. 负角:按 时针方向旋转形成的角叫做负角. 零角:射线没有做任何旋转,我们称它形成一个零角. 2.象限角、象限界角(轴线角)把角置于直角坐标系中,使角的顶点与 重合,角的始边与 重合,角的终边(除端点外)的位置在第几象限,就称这个角是第几象限角。

角的终边在坐标轴上的角称为象限界角,它不属于任何象限.α是第二象限角可表示为: . α是第四象限角可表示为: . 3.终边相同的角:与α角终边相同的角的集合可以记做 . 4.弧度制的定义:(略)α= . 弧长公式:l = ; 扇形面积公式:S = = .5.角度与弧度的换算:180o = ; 1o = rad ;1ra d 6.任意角的三角函数的定义:7.三角函数的值在各象限的符号:8.作三角函数线平方关系:;商数关系: ; 公式(一):sin(2)k πα+= c o s (2)k πα+= t a n (2)k πα+= 公式(二):sin()πα+= c o s ()πα+= t a n ()πα+= 公式(三):sin()α-= c o s ()α-= t a n ()α-=公式(四):sin()πα-= c o s ()πα-= t a n ()πα-= 公式(五):sin(2)πα-= c o s (2)πα-= t a n (2)πα-= 公式(六):sin()2πα-= c o s ()2πα-= t a n ()2πα-=公式(七):sin()2πα+= c o s ()2πα+= t a n ()2πα+= 公式(八):3sin()2πα-= 3c o s ()2πα-= 3t a n ()2πα-=公式(九):3sin()2πα+= 3c o s ()2πα+= 3t a n ()2πα+= 九个诱导公式的简记口诀为: (注意公式的逆向变换,符号是关键)求值,化简的步骤为: 12.函数()y f x =为周期函数⇔存在 T ,使 恒成立; 13.函数2cos(2)13y x π=-++,的 定义域为 ;值域为 ;周期为 ;增区间 ;减区间为 ;对称轴方程为 ;对称中心为 ; 14.有关函数sin()y A x b ωϕ=++(0,0,,A b ωϕ>>为常数)的方法要点 ①求其对称轴、中心、最大值和最小值:正弦型函数sin()y A x ωϕ=+的对称中心是其 点;对称轴经过其 点; ②求其单调区间方法:17.正弦、余弦、正切函数的图象和性质18.函数图象变换:①函数y =sin(x ±φ)( φ>0)的图象可由函数y=sin x 的图象向左(或右)平移 个单位而得到,称为 变换.这种变换的实质是:纵坐标,横坐标增加(或减少) 个单位. ②函数y =sin ωx (ω>0)的图象可由函数y =sin x 的图象沿x 轴伸长(ω<1)或缩短(ω>1)到原来的ω1倍而得到,称为 变换.这种变化的实质是:纵坐标 ,横坐标伸长(0<ω<1)或缩短(ω>1)到原来的 倍.③函数y =A sin x 的图象可由函数y =sin x 的图象沿y 轴伸长(A >1)或缩短(A <1)到原来的A 倍而得到的,称为 变换.这种变换的实质是:横坐标 ,纵坐标伸长(A >1)或缩小(0<A <1)到原来的 倍.19.综合变换:以函数y =3sin(2x -3π),x ∈R 为例.①按φ、ω、A 顺序变换:y =sin x →y=sin(x -3π)→y =sin(2x -3π)→y =3sin(2x -3π) 图象变换:②按ω、φ、A 顺序变换:y =sin x →y =sin2x →y =sin(2x -3π)→y =3sin(2x -3π)图象变换:y =sin(x -3π)y =sin(2x -3π)y =3sin(2x -3π)y =sin(2x -3πy =3sin(2x -3π)用流程图来表示:。

三角函数专题复习

三角函数专题复习

三角函数专题复习一、任意角和弧度制例1.下列各角中,终边相同的角是 ( )A.23π和240B.5π−和314 C.79π−和299π D.3和3例2.已知扇形圆心角60α=,α所对的弧长6l π=,则该扇形面积与其内切圆面积的比值为__________.练习:1.将1665−化成2(02,Z)k k απαπ+<∈的形式是( )A .584ππ−− B .384ππ− C .5104ππ− D .3104ππ− 2.(多选)如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),60BOA ∠=︒,质点A 以1rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2rad /s 的角速度按顺时针方向在单位圆上运动,则( )A .1s 时,BOA ∠的弧度数为π33+B .πs 12时,扇形AOB 的弧长为7π12 C .πs 6时,扇形AOB 的面积为π3 D .5s 9时,A ,B 在单位圆上第一次相遇3.若角α与角β的终边关于y 轴对称,则α与β的关系是____ _______.4.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若2AB =,则莱洛三角形的面积(即阴影部分面积)为______.二、三角函数的概念例3. 若θ是第二象限角,则 ( ) A.sin θ2>0 B.cos θ2<0 C.tan θ2>0 D.以上均不对例4.已知111A B C △与222A B C △满足:12sin cos A A =,12sin cos B B =,12sin cos C C =,则( )A .111ABC △是钝角三角形,222A B C △是锐角三角形B .111A BC △是锐角三角形,222A B C △是钝角三角形C .两个三角形都是锐角三角形D .两个三角形都是钝角三角形例5. 已知函数()263x f x a−=+(0a >且1a ≠)的图象经过定点A ,且点A 在角θ的终边上,则sin cos sin cos θθθθ−=+______. 练习:5.有四个关于三角函数的命题:1:p x ∃∈R ,221sin cos 222x x +=;2:p x ∃、y ∈R ,sin()sin sin x y x y −=−; ()3π:sin cos 2πZ 2p x y x y k k =⇒+=+∈;4π:0,2p x ⎛⎫∀∈ ⎪⎝⎭,1cos tan sin x x x =. 其中真命题的是( )A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p6.sin1cos 2tan 3⋅⋅的值( )A .大于0B .小于0C .等于0D .不确定7.已知sin α=,则sin 4α-cos 4α的值为 ( )A.-B. -C.D.8.,,A B C ∠∠∠是三角形的三个内角,下列选项能判断ABC 为等腰三角形的是( )A .()()sin sin ABC A B C +−=−+B .sincos 22A B C A B C +−−+= C .sin sin 22A B C A B C +−−+=D A 9.已知关于x 的方程4x 2-2(m+1)x+m=0,的两个根恰好是一个直角三角形的一个锐角的正弦、余弦,则实数m 的值为________.10.(1(2α是第三象限角.11.已知sin cos x x t +=,t ⎡∈⎣.(1)当12t =且x 是第四象限角时,求33sin cos x x −的值; (2)若关于x 的方程()sin cos sin cos 1x x a x x −++=有实数根,求a 的取值范围.三、诱导公式例6.若角α的终边经过点()()sin 780,cos 330P ︒−︒,则sin α=( ) AB .12 C.2 D .1例7.已知()()()()9π7πsin cos tan 2π22tan πsin πf αααααα⎛⎫⎛⎫−−− ⎪ ⎪⎝⎭⎝⎭=−+. (1)化简()f α;(2)若()π22f f αα⎛⎫+= ⎪⎝⎭,求()π2f f αα⎛⎫− ⎪⎝⎭的值.练习:12.已知n ∈Z ,化简()πsin π16n n ⎡⎤+−=⎢⎥⎣⎦______________. 13.已知2πtan(π)3α+=−. (1)求πsin(2022π)2sin 2π3cos cos(π)2αααα⎛⎫+−+ ⎪⎝⎭⎛⎫−−− ⎪⎝⎭的值; (2)若为α第四象限角,求sin cos αα+的值.14.已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过函数()33x f x a −=−−(0a >且1a ≠)的定点M .(1)求sin 2cos +tan ααα−的值;(2)求()()()()3πsin πcos 2tan 3πcos 2πsin ααααα⎛⎫++− ⎪⎝⎭−+−+−的值.15.已知函数()()()sin πcos πf x x x =+−,且π04x <<. (1)若()14f x =,求πcos cos 2x x ⎛⎫++ ⎪⎝⎭的值; (2)若函数()g x 满足()()tan g x f x =,求14g ⎛⎫ ⎪⎝⎭的值.。

三角函数专题复习

三角函数专题复习

三角函数专题复习(一)1. 三角函数(约16课时)(1)任意角、弧度制:了解任意角的概念和弧度制,能进行弧度与角度的互化。

(2)三角函数①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。

②借助单位圆中的三角函数线推导出诱导公式(的正弦、余弦、正切),能画出的图象,了解三角函数的周期性。

③借助图象理解正弦函数、余弦函数在,正切函数在上的性质(如单调性、最大和最小值、图象与x轴交点等)。

④理解同角三角函数的基本关系式:⑤结合具体实例,了解的实际意义;能借助计算器或计算机画出的图象,观察参数A,ω,对函数图象变化的影响。

⑥会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型。

一、要点●疑点●考点1、任意角和弧度制:①、任意角:正角(按逆时针方向旋转形成的角)、负角(按顺时针方向旋转形成的角)、零角(没有作任何旋转的角);②、象限角:角的顶点与原点重合,角的始边与x轴的正半轴重合,那么角的终边落在第几象限,我们就说这个角是第几象限的角;【注意】:如果角的终边落在坐标轴上,就认为这个角不属于任何一个象限。

③、a:终边相同的角的集合:S={β︱β=α+k·360o,k∈Z};b:终边在x轴上的角的集合:S={β︱β=k•180o,k∈Z};c:终边在y轴上的角的集合:S={β︱β=90o+k·180o,k∈Z};d:终边在坐标轴上的角的集合:S={β︱β=k·90o,k∈Z};e:终边在直线y=x上的角的集合:S={β︱β=45o+k•180o,k∈Z}④、角度制与弧度制:用度作为单位来度量角的单位制叫着角度制;用实数作为单位来度量角的单位制叫着弧度制;把长度等于半径长的弧所对的圆心角叫着1弧度的角,用符号rad表示,读着弧度。

如果半径为r的圆的圆心角α所对的弧长为l,那么,角αα的正负由角α的终边的旋转方向决定。

角度制与弧度制的转化只要通过【注意】:今后用弧度制表示角时,“弧度”二字或“rad”通常略去不写,而只写该角所对应的弧度数。

高考数学(文)《三角函数》专题复习

高考数学(文)《三角函数》专题复习

考法1 利用三角函数的定义求值
对于三角函数的定义,高考中常有以下出题方式:①给出角α终边 上异于原点的任意一点P的坐标,直接根据三角函数的定义求角α 的各个三角函数值;②根据定义写出三角函数值,再用来解决与 之有关的综合问题;③根据三角函数线确定图象. 利用三角函数定义求三角函数值(参数值) 利用三角函数的定义求三角函数值(参数值)时,需要确定以下几个 量:角的终边上异于原点的任意一点P的坐标,点P到原点的距离r.
❖综合点4 解三角形在实际问题中的应用
返回
综合点1 利用正弦定理、余弦定理判断三角形形状 返回
综合点2 与面积、范围有关的问题
返回
综合点2 与面积、范围有关的问题
返回
综合点2 与面积、范围有关的问题
返回
综合点3 正弦定理、余弦定理在平面几何中的应用
返回
75
综合点4 解三角形在实际问题中的应用
返回
考法4 三角函数式的化简与求值
返回
考法4 三角函数式的化简与求值
返回
考法5 三角函数的给值求值(角)
给值求角,即给出三角函数值,求符合条件的角.实质上也可以转化为 给值求值问题,把所求角的三角函数值用含已知角的式子表示,由所得 的函数值结合该函数的单调性求得角. 解决给值求角问题遵循的原则: (1)根据题设条件求角的某一三角函数值.选函数时,一般根据下列原 则:若已知正切函数值,选正切函数;已知正弦、余弦函数值,选正弦 或者余弦函数;若角的范围是,可以选正弦函数或者余弦函数;若角的 范围是,选正弦函数比余弦函数好,因为正弦函数在此区间上是单调函 数;同理,若角的范围是(0,π),选余弦函数比正弦函数好. (2)讨论角的范围,必要时需要根据已知三角函数值缩小角的范围.确 定角的范围要结合已知条件中的角的范围,以及三角函数值的符号,特 别要注意一些隐含条件,尽量使角的范围最小,避免出现增根. (3)根据角的范围和函数值确定角的大小.

高考数学-三角函数专题复习

高考数学-三角函数专题复习

高考数学-三角函数专题复习三角函数专题考点例题解析】考点1.求值1、求sin330°、tan690°、sin585°的值。

解:利用三角函数的周期性和对称性,可得:sin330°=sin(360°-30°)=sin30°=1/2tan690°=tan(720°-30°)=tan30°=1/√3sin585°=sin(540°+45°)=sin45°=√2/22、已知角α为第三象限角,求sin(α+π/2)的值。

解:由于α为第三象限角,所以sinα<0,cosα<0.又因为sin(α+π/2)=cosα,所以sin(α+π/2)<0.3、已知sinθ+cosθ=5/3,cosθ-sinθ=2,求sin2θ的值。

解:将sinθ+cosθ和cosθ-sinθ相加,可得cosθ+cosθ=5/3+2=11/3,即cosθ=11/6.将cosθ-sinθ和sinθ+cosθ相减,可得2sinθ=-1/6,即sinθ=-1/12.代入sin2θ=2sinθcosθ的公式,可得sin2θ=-11/72.4、已知si n(π/4-α)=2/√5,求cosα的值。

解:sin(π/4-α)=sinπ/4cosα-cosπ/4sinα=2/√5,代入cosπ/4=√2/2和sinπ/4=√2/2,可得cosα=1/√10.5、已知f(cosx)=cos3x,求f(sin30°)的值。

解:将x=π/6代入f(cosx)=cos3x,可得f(cosπ/6)=cos(3π/6)=cosπ=-1.又因为sin30°=cosπ/6,所以f(sin30°)=-1.6、已知tanα=15π/22,求cos(π/2-α)的值。

解:tanα=15π/22,所以α为第三象限角,cos(π/2-α)=sinα>0.由tanα=sinα/cosα,可得cosα=15/√466,代入sin^2α+cos^2α=1,可得sinα=7/√466,最终可得cos(π/2-α)=7/15.7、已知tan(π/4+x)=2tan(π/4-x),求cos2x的值。

三角函数会考复习

三角函数会考复习

三角函数会考复习知识要点1.终边相同的角:若α为任意角,则与α终边相同的角,连同角α在内,可以表示成2.我们把长度等于的角叫做1弧度的角。

若l是以角α作为圆心角时所对弧的长,r是圆的半径,则rl,,α之间的关系是,利用弧度制可以推得扇形面积公式S=3.同角三角函数的几个基本关系式:平方关系:倒数关系:商数关系:4.诱导公式的记忆与理解:奇变偶不变,符号看象限5.和,差,倍,半公式及公式的变式:(1)两角和与差的三角函数公式:(2)二倍角公式:(3)降幂公式:(4)万能公式:(5)和差化积与积化和差公式6.三角函数的图象:(1)掌握三种变换:振幅变换,周期变换,相位变换(2)由三角函数图象掌握各种三角函数的性质,从以下几个方面考虑:定义域,值域,周期性,奇偶性,单调性,对称性7、已知三角函数值求角8.求三角函数最值的常见类型及处理方法:(1) 直接利用三角函数的性质:1cos ,1sin ≤≤x x ;(2) 化为一个角的三角函数,形如)sin(ϕω+=x A y 的形式;(3) 可以化为关于某一个三角函数的二次函数的形式;(4) 利用均值定理和三角函数的单调性等典例评析1.已知集合A={第一象限的角},B={锐角},C={小于90°的角},下列四个命题:①A=B=C;②A C;③C A;④A C. 其中正确命题个数为( )(A)0 (B)1 (C)2 (D)42.已知31cos sin =+αα,则1sin cos tan 3cos αααα+-=3.已知51)6cos(=-απ,α是第二象限角,那么=αcos4. 20tan 50tan 320tan 3310tan 3++=5.设αtan 和βtan 是方程0)2()32(2=-+-+m x m mx 的两根,则)tan(βα+的最小值是6.=++++)45tan 1)........(3tan 1)(2tan 1)(1tan 1(7.化简:8cos 228sin 12++-=8.三角函数性质的应用:(1)函数x y cos log 2=的定义域是 ,值域是(2)函数x x y cos sin +=的定义域是 ,值域是(3)函数x x y sin sin 2+=的定义域是 ,值域是(4)函数xx y sin 2sin +=的值域是(5)函数]0,2[,2cos 32sin π-∈-=x x x y 的值域是(6)函数y =的定义域是(7)函数x y 2sin =的单调递减区间是(8)函数)3sin(3x y -=π的单调递增区间是(9)函数x y sin =的最小正周期是(10)函数2)2sin 2(cos x x y -=的最小正周期是(11)函数x x x y 2sin 21cos sin 2-+=的最小正周期是9.函数),0[),34sin(3+∞∈-=x x y π的振幅是 ,周期是 ,频率是 ,相位是 ,初相是 ___10.把函数y=cosx 的图像上的所有点的横坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图像向左平移 个单位,则所得图像表示的函数的解析式为11.若f(x)= sin(x+π/2),g(x)= cos(x-π/2),则下列结论中正确的是( )(A)函数y=f(x)·g(x)的周期为2π(B)函数y=f(x)·g(x)的最大值为1(C)将f(x)的图象向左平移π/2单位后得g(x)的图象(D)将f(x)的图象向右平移π/2单位后得g(x)的图象12.函数y=|tanx|·cosx (0≤x<3π/2,且x≠π/2=的图象是( )13.已知三角函数值会求角:(1)适合51sin =x ,]2,0[π∈x 的x 的集合是(2)适合41cos -=x ,]2,0[π∈x 的x 的集合是(3)适合5tan -=x ,R x ∈的x 的集合是14.函数)22cos(π+=x y 的图象的对称轴方程是15.函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,那么a 的值为16.求值如:)2(2αα=,ββαα-+=)(,)(αββα--=, )],()[(21βαβαα-++=)]()[(21βαβαβ--+=等等 (1)已知,135)43sin(,53)4cos(,40,434=+=-<<<<βπαππβπαπ求)sin(βα+的值(2)设,32)2sin(,91)2cos(=--=-βαβα且20,2πβπαπ<<<<,求 )cos(βα+的值(3)已知,53sin =α,21)tan(),,2(=-∈βπππα求)2tan(βα-的值(4)已知βα,为锐角,,53)2cos(,1312)cos(=+=+βαβα求αtan 的值(5)已知71tan ,21)tan(-==-ββα,且),,0(,πβα∈求βα-2的值(6)求值:40cos 170sin )10tan 31(50sin 40cos +++17.证明(1)已知)2sin(sin 5βαβ+=,且0cos )cos(≠+αβα,求证: αβαtan 3)tan(2=+(2)设,20,23πππ<<<<B A 且,3cot ,55cos =-=B A 求证:.45π=-B A(3)已知,0sin 2)2sin(=++ββα求证)tan(3tan βαα+=18.与三角函数有关的问题(1)已知],2,0[,22sin 32cos π∈++--=x b a x a x a y 若函数的值域为]1,5[-,求常数b a ,的值,以及函数)4sin(4)(bx a a x g π--=的周期和单调递减区间(2)已知,1312)4sin(=-x π且,40π<<x 求)4cos(2cos x x +π(3)已知,471217,53)4cos(πππ<<=+x x 求x x x tan 1sin 22sin 2-+的值(4)作出5sin(2)23y x π=+的简图(5)函数sin()(00)||y A x A ωϕωϕπ=+>><,,的图象如图,求函数解析式19.已知)(x f 满足,),()3(R x x f x f ∈=+且)(x f 是奇函数,若,2)1(=f 则=)2000(f20.在ABC ∆中,B A sin sin >是B A >的 条件21.已知βα,为锐角,且,cot tan βα<则βα+与2π的大小关系是22.设,cos sin θθ+=t 且0cos sin 33<+θθ,则t 的取值范围是23.=73cos 72cos 7cos πππ。

三角函数的专题复习-最经典最全

三角函数的专题复习-最经典最全

三角函数的专题复习-最经典最全
1. 三角函数的基本概念
- 正弦、余弦、正切、余切、正割、余割的定义及其关系- 弧度和角度的转换及其应用
- 三角函数在直角三角形中的应用
2. 三角函数的性质
- 周期性和奇偶性
- 正负变化规律
- 三角函数的大小关系及其应用
3. 三角函数的图像和性质
- 正弦函数的图像和性质
- 余弦函数的图像和性质
- 正切函数的图像和性质
- 三角函数图像的平移、伸缩等变换
4. 三角函数的求值和计算
- 特殊角的三角函数值
- 三角函数的和差化积公式
- 三角函数的倍角和半角公式
- 三角函数的三角恒等式
5. 三角函数的应用
- 三角函数在几何中的应用
- 三角函数在物理中的应用
- 三角函数在工程中的应用
- 三角函数在生活中的应用
6. 典型例题和题解析
- 理解和掌握三角函数的概念和性质
- 运用不同的定理和公式解决相关问题
- 练解题技巧和应用能力
以上是三角函数的专题复习内容,包括基本概念、性质、图像和性质、求值和计算、应用以及典型例题和习题解析。

希望这份文档对您的复习有所帮助,祝您复习顺利!。

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
解直角三角形应用题专题训练
班级 姓名
一 、复习回顾
1、直角三角形的边角关系(∠C=90o
):
三边之间的关系:a 2+b 2= ;两锐角之间的关系:∠A+∠B= ; 边角之间的关系:sinA= cosA= tanA= cotA=
sinB = cosB = tanB= cotB=
2、解直角三角形:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素,求解过程称为解直角三角形。

3、解直角三角形的常用概念:
仰角、俯角、水平距离、铅直距离、坡角、坡度(坡比)、方位角;
4
、要善于把某些实际问题转化为解直角三角形问题。

二 、专题训练
1.如图,在R t ⊿ABD 中∠C=90°,∠D=30°,∠
2、如图,某人在D 处测得山顶C 的仰角为30o ,向前走200米来到山脚A 处,测得山坡AC 的坡度为i=1∶0.5,
1.73,结果保留整数). 第7题
Ǧ´¹Ïß
ˮƽÏß A
C B
2
3、如图,一渔船正以30km/h 的速度由西向东追赶鱼群,在A 处看见小岛C 在船的北偏东60°,40分钟后,渔船行至B 处,此时看见小岛C 在北偏东30
°,已知小岛C 为中心周围10km 以内为我军导弹部队军事演习的着弹危险区。

若这艘渔船继续向东追赶鱼群,是否有进入危险区域的可能? 1.73≈)
4、如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为多少米(精确到0.1).(参考数据:
414.12≈ 732.13≈)
5、小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家
所在居民楼与大厦的距离CD 的长度.(结果保留整数)
(参考数据:o o o o 337
sin37tan37sin 48tan485410≈≈≈,,,
第19题图
3
6、如图,线段AB DC 、分别表示甲、乙两建筑物的高,AB BC DC BC ⊥,⊥,从B 点测得D 点的仰角α为60°从
A 点测得D 点的仰角β
为30°,已知甲建筑物高
36AB =米.
(1)求乙建筑物的高DC ;
(2)求甲、乙两建筑物之间的距离BC (结果精确到0.01米).
1.732)
7、如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的眼睛距地面的距离),求这棵树高。

8、如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角
仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB
9、如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).
(参考数据:
1.73,sin 760.97°≈,cos 760.24°≈,tan 76 4.01°≈)
α β
D

C
B
A 甲
第20题图
A
10、安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交与水箱横截面⊙O的圆心O,⊙O的半径为0.2m,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB于B,OD⊥AD于D,AB=2m,求屋面AB的坡度和支架BF的长.
(参考数据:
13121 tan18,tan32,tan40
35025
≈≈≈)
11、有一段防洪大堤,横截面为梯形ABCD,AB∥CD,斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,大坝底宽AB为10米,坝高2米。

(1)求坝顶宽及斜坡BC的坡角。

(2)为了增加抗洪能力,现将横断面如图所示的大坝加高,加高部分的横断面为梯形DCGH,GH∥CD,点G、H分别在AD、BC的延长线上,当新大坝坝顶宽为4.8米时,大坝加高了几米?
12、某校初三课外活动小组,在测量树高的一次活动中,如图7所示,测得树底部中心A到斜
坡底C的水平距离为8. 8m.在阳光下某一时刻测得1米的标杆影长为0.8m,树影落在斜坡
上的部分CD= 3.2m.已知斜坡CD的坡比i=1
AB。

(结果保留整数,参考数
≈1.7)
_A
图7
4
5。

相关文档
最新文档