rfc1627.Network 10 Considered Harmful (Some Practices Shouldn’t be Codified)

合集下载

RCNP 3.0题库

RCNP 3.0题库

练习结果 : RCNP3.0 模拟考试不保证题库是新的哦,只是指导思路你完成本练习的总分:0/100习题 1用户发现无法远程telnet 到路由器上,通过连接console口执行show run输出了以下内容,那么无法telnet的原因是()enable password ruijieline vty 0 4loginexitno service password-encryption你的选择期望的选项答案简介没配置特权密码配置了no service password-encryption没有配置登录密码没有配置登录账户名单选题(一个答案)分数 : 0/2习题 2当交换机端口因违反端口安全规定而进入“err-disabled”状态后,使用什么命令将其恢复?.你期答案简介的选择望的选项errdisable recoveryno shutdownrecovery errdisablerecovery单选题(一个答案)分数 : 0/2习题 3在配置静态路由时,会根据网络的特殊需求配置递归路由。

下列选项中对递归静态路由陈述正确的是?你的选择期望的选项答案简介静态路由在配置时只指定了下一跳IP,没有指定输出接口,输出接口要根据另一条路由计算得到静态路由在配置时只指定了输出接口,没有指定下一跳路由器,假设其目的是在该接口直连的链路上的,因此匹配该路由的报文将直接把报文的目的地址作为下一跳地址静态路由在配置时只指定了输出接口,没有指定下一跳,下一跳要根据输出接口来得到静态的路由在配置时即指定了直连下一跳又指定了输出接口单选题(一个答案)分数 : 0/2习题 4RLDP环路检测()违例方式和STP协议存在冲突,建议采用()违例方式。

你期答案简介的选择望的选项block/shutdown-portshutdown-svi/shutdown-portblock/shutdown-sviblock/shutdown-svi单选题(一个答案)分数 : 0/2习题 5下列关于S5750E VSU 说法正确的是()你的选择期望的选项答案简介A.仅支持最多2台设备组建VSUB.不支持与其他系列交换机组建VSUC.支持千兆端口作为VSLD.成员设备最大数量为12多选题(多个答案)分数 : 0/2习题 6一个管理员想让自己的笔记本电脑无论连接到交换机S2628G的哪一个VLAN中,都能直接管理这台交换机。

received deauthentication frame in run state

received deauthentication frame in run state

received deauthentication frame in run state最近,在我的Wi-Fi网络连接中出现了一个奇怪的问题:我一直接收到了一个“在运行状态下收到解除认证帧”的警告信息。

我开始打开一些Google页面来搜集关于这个问题的信息,发现这是一个普遍的问题。

这篇文章将为您介绍这个问题的原因和解决方法。

首先,让我们了解一下什么是解除认证帧。

在Wi-Fi网络中,它是一种控制帧,用于向某个设备发送断开连接的命令。

常见的情况是,当您的设备在Wi-Fi网络中登陆时,它会发送认证请求。

如果这个请求被接受,那么设备会被认为是合法的设备,它可以连接到Wi-Fi网络中。

但是,当您离开这个网络时,设备需要发送解除认证帧,以便网络知道它已经离开了网络。

现在让我们探讨一下为什么在运行状态下收到解除认证帧是一个问题。

它通常发生在两种情况下。

第一种情况是,您的设备在Wi-Fi网络中与许多其他设备进行通信,但是网络资源有限,因此需要在某些设备之间进行切换。

为了实现这个,网络会向设备发送解除认证帧,以便它可以切换到其他设备。

在这种情况下,您不必担心这个警告信息。

它只是一个网络机制的信号。

另一种情况是,有人正在试图攻击您的Wi-Fi网络,通过发送解除认证帧来中断您的连接。

这是一个非常严重的问题。

如果您经常收到这个警告信息,可能意味着您的网络受到了攻击。

您应该立即采取措施来加强您的网络安全性。

那么,如何解决这个问题呢?首先,您需要确保您的Wi-Fi网络设置是正确的。

您应该启用WPA2加密,并使用强密码来保护您的网络。

您还可以使用网络安全软件来检测和阻止攻击。

如果您经常收到解除认证帧警告信息,您还可以考虑更改您的Wi-Fi网络设置,例如更改信道或设置MAC地址过滤,以阻止攻击者进入您的网络。

总之,在运行状态下收到解除认证帧是一个非常常见的问题。

在大多数情况下,它只是一个网络机制的信号,您不必担心。

但是,如果您经常收到这种警告信息,那么您需要采取措施来加强您的网络安全性,这样您的网络就不会受到攻击。

RFC文档

RFC文档

RFC编号题目2398Some Testing Tools for TCP Implementors2415Simulation Studies of Increased Initial TCP Window Size2416When TCP Starts Up With Four Packets Into Only Three Buffers2452IP Version 6 Management Information Base for the Transmission Control Protocol2525Known TCP Implementation Problems2581TCP Congestion Control2582The NewReno Modification to TCP’s Fast Recovery AlgorithmOngoing TCP Research Related to Satellites 27602861TCP Congestion Window Validation(检验)2873TCP Processing of the IPv4 Precedence Field2883An Extension to the Selective Acknowledgement (SACK) Option for TCPCongestion Control Principles 29142923TCP Problems with Path MTU Discovery2988 Computing TCP's Retransmission TimerEnhancing TCP’s Loss Recovery Using Limited 3042TransmitInappropriate TCP Resets Considered Harmful 3360Increasing TCP’s Initial Window33903449TCP Performance Implications of Network Path Asymmetry3465TCP Congestion Control with Appropriate Byte Counting (ABC)3481TCP over Second (2.5G) and Third (3G) Generation Wireless Networks3517A Conservative Selective Acknowledgment (SACK)-basedLoss Recovery Algorithm for TCPThe Eifel Detection Algorithm for TCP 3522内容废弃编号更新编号时间这篇文章列出了所有的tcp测试工具和测试报告 从名字 种类描述 自动化 有用性 需求环境参考文献 来介绍测试工具本文共列举了12个测试工具包1998.8括:分布式基准系统DBs,Dummynet,Netperf,NIST Net,Orchestra,Packet Shell,Tcpanaly,Tcptrace,Tracelook,Treno,Ttcp,Xplot本文涵盖了一些对增加TCP初始的窗口大小的影响的模拟研究在长时间的TCP连接(文件传输)和短暂的浏览方式连接进行建模。

rfc6797中定义

rfc6797中定义

rfc6797中定义
RFC 6797是关于HTTP Strict Transport Security(HSTS)的标准规范。

HSTS是一种Web安全策略,旨在增强HTTPS的安全性。

在RFC 6797中,HSTS被定义为一种机制,它允许网站要求浏览器仅通过加密的HTTPS连接访问它,从而防止中间人攻击和SSL剥离攻击。

RFC 6797详细描述了HSTS的工作原理、使用方法和安全考虑,以及如何在HTTP响应头中使用Strict-Transport-Security字段来启用HSTS。

此外,RFC 6797还规定了HSTS的一些行为,例如如何处理子域名、如何处理已过期的HSTS信息等。

该规范还包括了对HSTS预加载列表的定义,这是一种浏览器内置的列表,其中包含了一些网站的域名,这些网站要求始终通过HTTPS访问,无论用户的初始访问是通过HTTP还是HTTPS。

总的来说,RFC 6797提供了对HSTS协议的详细解释和规范,以及对其在实际应用中的一些考虑和限制。

这个标准的制定对于推动Web安全和加强HTTPS的应用具有重要意义。

rancher 告警规则表达式

rancher 告警规则表达式

rancher 告警规则表达式Rancher告警规则表达式是Rancher平台中用于定义和触发告警的一种配置方式。

这些规则是基于一组表达式和条件,用于监控应用程序和基础设施的状态,并在满足特定条件时生成告警。

本文将从表达式的不同类型以及常见的使用场景等方面详细介绍Rancher告警规则表达式。

Rancher告警规则表达式主要分为两大类,即资源表达式和事件表达式。

资源表达式用于监控集群中的资源状态,而事件表达式则用于监控集群中发生的事件。

下面将分别介绍这两种表达式的常见用法。

一、资源表达式资源表达式主要用于监控集群中的资源状态,例如容器、节点、服务等。

常见的资源表达式包括以下几种:1. 监控容器状态可以通过以下表达式来监控容器的状态:- `container_state_waiting == true`:监控容器是否处于等待状态;- `container_state_terminated == true`:监控容器是否已终止;- `container_state_running == false`:监控容器是否停止运行。

2. 监控节点状态可以通过以下表达式来监控节点的状态:- `node_state_not_ready == true`:监控节点是否处于不可用状态;- `node_state_out_of_disk == true`:监控节点是否磁盘空间不足;- `node_state_memory_pressure == true`:监控节点是否内存不足。

3. 监控服务状态可以通过以下表达式来监控服务的状态:- `service_state_not_healthy == true`:监控服务是否处于不健康状态;- `service_state_restarting == true`:监控服务是否正在重启;- `service_state_stopped == true`:监控服务是否已停止。

二、事件表达式事件表达式主要用于监控集群中发生的事件,例如节点加入集群、容器启动等。

CISP试题-11月考试最新题目-红字为模糊的题目_CISP试题_CISP试题

CISP试题-11月考试最新题目-红字为模糊的题目_CISP试题_CISP试题

CISP 2012.111. 关于信息安全保障,下列说法正确的是:A. 信息安全保障是一个客观到主观的过程,即通过采取技术、管理等手段,对信息资源的保密性、完整性、可用性提供保护,从而给信息系统所有者以信心B. 信息安全保障的需求是由信息安全策略所决定的,是自上而下的一个过程,这个过程中,决策者的能力和决心非常重要C. 信息系统安全并不追求万无一失,而是要根据基金预算,做到量力而行D. 以上说法都正确2. 人们对信息安全的认识从信息技术安全发展到信息安全保障,主要是由于:A. 为了更好地完成组织机构的使命B. 针对信息系统的攻击方式发生重大变化C. 风险控制技术得到革命性的发展D. 除了保密性,信息的完整性和可用性也引起了人们的关注3. 关于信息安全发展的几个阶段,下列说法中错误的是:A. 信息安全的发展是伴随着信息技术的发展,为应对其面临的不同威胁而发展起来的B. 通信安全阶段中,重要的是通过密码技术保证所传递信息的保密性、完整性和可用性C. 信息安全阶段,综合了通信安全阶段和计算机安全阶段的需求D. 信息安全保障阶段,最重要的目标是保障组织机构使命(任务)的正常进行4. 按照技术能力、所拥有的资源和破坏力来排列,下列威胁中哪种威胁最大?A. 个人黑客B. 网络犯罪团伙C. 网络战士D. 商业间谍5. 信息系统安全主要从哪几个方面进行评估?A. 1个(技术)B. 2个(技术、管理)C. 3个(技术、管理、工程)D. 4个(技术、管理、工程、应用)6. 完整性机制可以防范以下哪种攻击?A. 假冒源地址或用户的地址的欺骗攻击B. 抵赖做过信息的递交行为C. 数据传输中被窃听获取D. 数据传输中被篡改或破坏没拍到7的问题,缺。

A. 策略B. 检测C. 响应D. 加密8. 依据信息系统安全保障评估框架,确定安全保障需求考虑的因素不包括下列哪一方面?A. 法规政策的需求B. 系统的价值C. 系统需对抗的威胁D. 系统的技术构成9. 依据国家标准GB/T20274《信息系统安全保障评估框架》,在信息系统安全目标中,评估对象包括哪些内容?A. 信息系统管理体系、技术体系、业务体系B. 信息系统整体、信息系统安全管理、信息系统安全技术和信息系统安全工程C. 信息系统安全管理、信息系统安全技术和信息系统安全工程D. 信息系统组织机构、管理制度、资产10.关于信息安全保障管理体系建设所需要重点考虑的因素,下列说法错误的是:A. 国家、上级机关的相关政策法规需求B. 组织的业务使命C. 信息系统面临的风险D. 项目的经费预算11. 在密码学的Kerchhoff假设中,密码系统的安全性仅依赖于____________。

DNS缓存投毒攻击原理与防御策略

DNS缓存投毒攻击原理与防御策略

17 2009.11
China Communications
II 服务器只记录本地资源的所有授权主 机,若想查询非本地的主机信息,则要向信息持有 者(权威 DNS 服务器)发送查询请求。为了避免每 次查询都发送请求,DNS 服务器会把权威 DNS 服务 器返回的查询结果保存在缓存中,并保持一定时间, 这就构成了 DNS 缓存(DNS Cache)。DNS 缓存投毒 攻击就是通过污染 DNS Cache,用虚假的 IP 地址信 息替换 Cache 中主机记录的真实 IP 地址信息来制造 破坏。
III.KAMINSKY缓存投毒攻击
2008 年夏天,Dan Kaminsky 发现了一种新型 DNS 缓存投毒攻击,引起了网络安全界的广泛关注。 该攻击方法克服了传统 DNS 缓存投毒攻击存在的攻 击所需时间长、成功率很低的缺陷。
3.1 Kaminsky攻击原理 传统的 DNS 缓存投毒攻击,污染的目标是应 答数据包中带有查询结果 IP 地址的回答资源记录部 分(参见表 1 (b)),而 Kaminsky 攻击上升了一个层 次,污染的目标是应答数据包中 Authority Records 部分(授权资源记录,参见表 1 (b))。图 4 显示了 Kaminsky 攻击流程。 (1) 攻 击 者 向 被 攻 击 的 目 标 服 务 器 发 送 一 个 DNS 查询请求,该查询请求中的域名主机使用随机 序 列 和 目 标 域 名 的 组 合, 如 图 4 中 的 www276930. ,其中 为目标域名,276930 是随 机生成的序列。显然,这个查询的域名主机是不存 在的,正常返回的应答数据包中回答资源记录部分 应为 NXDOMAIN(表示该域名主机不存在)。 (2)被攻击目标服务器会按 2.1 节中所述 DNS

组播侦听发现(MLDv1)协议详解RFC2710

组播侦听发现(MLDv1)协议详解RFC2710

中国地质大学江城学院组播侦听发现(MLDv1)协议详解_RFC2710学部机械与电子信息学部班级11计网本1学号2320110102姓名王青指导教师辛玲2013年11月16 日目录Table of Contents1 MLDv1简介......................................................................................................... . (3)2 消息格式 (4)2.1 代码(Code) (4)2.2 校验和(Checksum)............................................................................... (4)2.3 最大响应延迟(Maximum Response Delay)......................................... . (5)2.4 保留(Reserved) (5)2.5 组播地址(Multicast Address).................................................................... .. (5)2.6 其他区域(Other fields).............................................................................. . (5)3 协议描述 (5)4 节点状态转换图.................................................................... (7)5 路由器状态转换图............................................................. ................................ . (9)6 定时器及其缺省值列表.......................................................................................... .. (13)6.1 健壮性变量(Robustness Variable)............................................................. .. (13)6.2 查询间隔(Query Interval).......................................... .. (13)6.3 查询响应间隔(Query Response Interval).................. .............................. . (13)6.4 组播侦听者间隔(Multicast Listener Interval).............................. .............. (14)6.5 其他查询器存在间隔(Other Querier Present Interval)................................ . (14)6.6 启动查询间隔(Startup Query Interval)........................................................ . (14)6.7 启动查询次数(Startup Query Count) (14)6.8 最后侦听者查询间隔(Last Listener Query Interval)............................ ........ (14)6.9 最后侦听者查询次数(Last Listener Query Count)......................... (14)6.10 主动报告间隔(Unsolicited Report Interval) (14)7 消息目的地址 (14)文档标题关键词Key words:IPv6、MLD、IGMPv2本文档介绍了IPv6路由器所使用的一种协议,用以发现在其直连网络上的组播侦听者(即希望接收组播数据的节点)的存在,并且能明确发现这些邻居节点所感兴趣的组播地址。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Network Working Group E. Lear Request for Comments: 1627 Silicon Graphics, Inc. Category: Informational E. Fair Apple Computer, Inc.D. Crocker Silicon Graphics, Inc. T. Kessler Sun Microsystems, Inc. July 1994 Network 10 Considered Harmful(Some Practices Shouldn’t be Codified)Status of this MemoThis memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution ofthis memo is unlimited.SUMMARYRe-use of Internet addresses for private IP networks is the topic of the recent RFC 1597 [1]. It reserves a set of IP network numbers,for (re-)use by any number of organizations, so long as thosenetworks are not routed outside any single, private IP network. RFC 1597 departs from the basic architectural rule that IP addresses must be globally unique, and it does so without having had the benefit of the usual, public review and approval by the IETF or IAB. Thisdocument restates the arguments for maintaining a unique addressspace. Concerns for Internet architecture and operations, as well as IETF procedure, are explored.INTRODUCTIONGrowth in use of Internet technology and in attachments to theInternet have taken us to the point that we now are in danger ofrunning out of unassigned IP network numbers. Initially, numberswere formally assigned only when a network was about to be attachedto the Internet. This caused difficulties when initial use of IPsubstantially preceded the decision and permission to attach to theInternet. In particular, re-numbering was painful. The lesson that we learned was that every IP address ought to be globally unique,independent of its attachment to the Internet. This makes itpossible for any two network entities to communicate, no matter where either might be located. This model is the result of a decades-long evolution, through which the community realized how painful it can be to convert a network of computers to use an assigned number after Lear, Fair, Crocker & Kessler [Page 1]using random or default addresses found on computers just out of the box. RFC 1597 abrogates this model without benefit of general IETFcommunity discussion and consensus, leaving policy and operationalquestions unasked and unanswered.KEEP OUR EYES ON THE PRIZE: AN ARCHITECTURAL GOAL AND VIOLATIONA common -- if not universal -- ideal for the future of IP is forevery system to be globally accessible, given the proper securitymechanisms. Whether such systems comprise toasters, light switches, utility power poles, field medical equipment, or the classic examples of "computers", our current model of assignment is to ensure thatthey can interoperate.In order for such a model to work there must exist a globally unique addressing system. A common complaint throughout the community isthat the existing security in host software does not allow for every (or even many) hosts in a corporate environment to have direct IPaccess. When this problem is addressed through proper privacy andauthentication standards, non-unique IP addresses will become abottleneck to easy deployment if the recommendations in RFC 1597 are followed.The IP version 4 (IPv4) address space will be exhausted. Thequestion is simply: when?If we assert that all IP addresses must be unique globally, connected or not, then we will run out of IP address space soon.If we assert that only IP addresses used on the world-wide Internetneed to be globally unique, then we will run out of IP address space later.It is absolutely key to keep the Internet community’s attentionfocused on the efforts toward IP next generation (IPng), so that wemay transcend the limitations of IPv4. RFC 1597 produces apparentrelief from IPv4 address space exhaustion by masking those networksthat are not connecting to the Internet, today. However, thisapparent relief will likely produce two results: complacency on thelarge part of the community that does not take the long term view,and a very sudden IP address space exhaustion at some later date.Prior to IPng deployment, it is important to preserve all thesemantics that make both the Internet and Internet technology so very valuable for interoperability. Apple Computer, IBM, and Motorolacould not collaborate as easily as they have to produce the PowerPCwithout uniquely assigned IP addresses. The same can be said of theSilicon Graphics merger with MIPS. There are many, many more examples Lear, Fair, Crocker & Kessler [Page 2]that can be cited.It should be noted that a scheme similar to RFC 1597 can beimplemented at the time that we actually run out of assignable IPv4address space; it simply requires that those organizations which have been assigned addresses but are not yet connected to the Internetreturn their addresses to IANA. It is important that the IAB (andIANA as its agent) reassert their ownership of the IP address spacenow, to preclude challenges to this type of reassignment. OPERATIONAL ISSUESRFC 1597 ImplementationsMethods are needed to ensure that the remaining addresses areallocated and used frugally. Due to the current problems, Internetservice providers have made it increasingly difficult fororganizations to acquire public IP network numbers. Private networks have always had the option of using addresses not assigned to them by appropriate authorities. We do not know how many such networksexist, because by their nature they do not interact with the globalInternet. By using a random address, a company must take some careto ensure it is able to route to the properly registered owner ofthat network.RFC 1597 proposes to solve the routing problem by assigning numbersthat will never be used outside of private environments. Using such standard numbers introduces a potential for clashes in another way.If two private networks follow RFC 1597 and then later wish tocommunicate with each other, one will have to renumber. The sameproblem occurs if a private network wishes to become public. Thelikely cost of renumbering is linear to the number of hosts on anetwork. Thus, a large company with 10,000 hosts on a network could incur considerable expense if it either merged with another companyor joined the Internet in such a way as to allow all hosts todirectly access the outside network.The probability of address clashes occurring over time approach 100% with RFC 1597. Picking a random network number reduces the chancesof having to renumber hosts, but introduces the routing problemsdescribed above. Best of all, retrieving assigned numbers from theappropriate authority in the first place eliminates both existing and potential address conflicts at the cost of using a part of theaddress space.Apple Computer once believed that none of its internal systems would ever speak IP directly to the outside world, and as such, networkoperations picked IP class A network 90 out of thin air to use.Lear, Fair, Crocker & Kessler [Page 3]Apple is only now recovering from this error, having renumbered some 5,000 hosts to provide them with "desktop" Internet access. Unlessthe Internet community reaffirms its commitment to a globally unique address space, we condemn many thousands of organizations to similar pain when they too attempt to answer the call of the global Internet. Another timely example of problems caused by RFC 1597 is Sun’s use of Internet multicasting. Sun selectively relays specific multicastconferences. This has the effect of making many hosts at Sun visible to the Internet, even though they are not addressable via IP unicast routing. If they had non-global addresses this would not work atall. It is not possible to predict which machines need globaladdresses in advance. Silicon Graphics has a similar configuration, as is likely for others, as well.Some might argue that assigning numbers to use for private networkswill prevent accidental leaks from occurring through some sort ofconvention a’la Martian packets. While the proposal attempts tocreate a standard for "private" address use, there is absolutely noway to ensure that other addresses are not also used.Hence, the "standard" becomes nothing but a misleading heuristic. In fact, it is essential that routers to the global Internet advertisenetworks based only on explicit permission, rather than refusing toadvertise others based on implicit prohibition, as supported by thepolicy formally created in RFC 1597.Security IssuesAdministrators will have a hard time spotting unauthorized networks, when their network has been breached (either intentionally orunintentionally) because the other networks might have the samenumbers as those normally in the routing tables. More over, aninadvertent connection could possibly have a double whammy effect of partitioning two operational networks.It is worth emphasizing that IP providers should filter out all butauthorized networks. Such a practice would not only preventaccidents but also enhance the security of the Internet by reducingthe potential number of points of attack.Internet multicasting adds a new dimension to security. In somecases it may possible to allow multicasting through firewalls thatcompletely restrict unicast routing. Otherwise unconnected networks might well need unique addresses, as illustrated in the exampleabove.Lear, Fair, Crocker & Kessler [Page 4]Problems with ExamplesRFC 1597 gives several examples of IP networks that need not haveglobally unique address spaces. Each of those cases is plausible,but that does not make it legitimate to ENCOURAGE non-uniqueness ofthe addresses. In fact, it is equally plausible that globally unique IP addresses will be required, for every one of the scenariosdescribed in RFC 1597:- Airport displays are public information and multicasting beyond the airport might be useful.- An organization’s machines which, today, do not need globalconnectivity might need it tomorrow. Further, mergingorganizations creates havoc when the addresses collide.- Current use of firewalls is an artifact of limitations in thetechnology. Let’s fix the problem, not the symptom.- Inter-organization private links do not generate benefit from being any more correct in guessing which machines want to interact thanis true for general Internet access.This is another point that warrants repetition: the belief thatadministrators can predict which machines will need Internet accessis quite simply wrong. We need to reduce or eliminate the penalties associated with that error, in order to encourage as much Internetconnectivity as operational policies and technical security permit.RFC 1597 works very much against this goal.Problems With "Advantages" And More DisadvantagesRFC 1597 claims that Classless Inter-Domain Routing (CIDR) willrequire enterprises to renumber their networks. In the general case, this will only involve those networks that are routed outside ofenterprises. Since RFC 1597 addresses private enterprise networks,this argument does not apply.The authors mention that DCHP-based tools [2] might help networknumber transition. However, it is observed that by and large suchtools are currently only "potential" in nature.Additionally, with the onslaught of ISDN, slip, and PPP in hostimplementations, the potential for a workstation to become a routerinadvertently has never been greater. Use of a common set ofaddresses for private networks virtually assures administrators ofhaving their networks partitioned, if they do not take care tocarefully control modem connections.Lear, Fair, Crocker & Kessler [Page 5]Finally, RFC 1597 implies that it may be simple to change a host’s IP address. For a variety of reasons this may not be the case, and itis not the norm today. For example, a host may be well known within a network. It may have long standing services such as NFS, whichwould cause problems for clients were its address changed. A hostmay have software licenses locked by IP address. Thus, migrating ahost from private to global addressing may prove difficult. At thevery least, one should be careful about addressing well known hosts. POLICY ISSUESIANA Has Overstepped Their MandateFor many years, IANA has followed an assignment policy based on theexpectation of Internet connectivity for ALL assignees. As such itserves to encourage interconnectivity. IANA assignment of thenetwork numbers listed in RFC 1597 serves to formally authorizebehavior contrary to this accepted practice. Further, this changewas effected without benefit of community review and approval.RFC 1597 specifies a new operational requirement explicitly: network service providers must filter the IANA assigned network numberslisted in RFC 1597 from their routing tables. This address spaceallocation is permanently removed from being used on the Internet.As we read RFC 1601 [3], this action is not within the purview ofIANA, which should only be assigning numbers within the currentstandards and axioms that underlie the Internet. IP network numbers are assigned uniquely under the assumption that they will be used on the Internet at some future date. Such assignments violate thataxiom, and constitute an architectural change to the Internet. RFC1602 [4] and RFC 1310 [5] also contain identical wording to thiseffect in the section that describes IANA.While RFC 1597 contains a view worthy of public debate, it is notready for formal authorization. Hence, we strongly encourage IANA to withdraw its IP address assignments documented by RFC 1597 forthwith. The IAB should review the address assignment policies and procedures that compose IANA’s mandate, and reaffirm the commitment to aglobally unique IP address space.COMMENTS AND CONCLUSIONSThe Internet technology and service is predicated on a global address space. Members of the Internet community have already experiencedand understood the problems and pains associated with uncoordinatedprivate network number assignments. In effect the proposal attempts Lear, Fair, Crocker & Kessler [Page 6]to codify uncoordinated behavior and alter the accepted Internetaddressing model. Hence, it needs to be considered much morethoroughly.RFC 1597 gives the illusion of remedying a problem, by creatingformal structure to a long-standing informal practice. In fact, the structure distracts us from the need to solve these very realproblems and does not even provide substantive aid in the near-term. In the past we have all dreaded the idea of having any part of theaddress space re-used. Numerous luminaries have both written andspoke at length, explaining why it is we want direct connections from one host to another. Before straying from the current architectural path, we as a community should revisit the reasoning behind thepreaching of unique addressing. While RFC 1597 attempts to changethis model, its costs and limitations for enterprises can beenormous, both in the short and long term.REFERENCES[1] Rekhter, Y., Moskowitz, B., Karrenberg, D., and G. de Groot,"Address Allocation for Private Internets", T.J. Watson Research Center, IBM Corp., Chrysler Corp., RIPE NCC, RFC 1597, March1994.[2] Droms, R., "Dynamic Host Configuration Protocol", RFC 1541,Bucknell University, October 1993.[3] Huitema, C., "Charter of the Internet Architecture Board (IAB)", RFC 1601, IAB, March 1994.[4] Internet Architecture Board, Internet Engineering SteeringGroup, "The Internet Standards Process -- Revision 2", IAB,IESG, RFC 1602, March 1994.[5] Internet Activities Board, "The Internet Standards Process", RFC 1310, IAB, March 1992.[6] Internet Activities Board, "Summary of Internet ArchitectureDiscussion", Notes available from ISI, [:pub/IAB/IABmins.jan91Arch.txt], IAB, January 1991.SECURITY CONSIDERATIONSSee the section, "Security Issues".Lear, Fair, Crocker & Kessler [Page 7]AUTHORS’ ADDRESSESEliot LearSilicon Graphics, Inc.2011 N. Shoreline Blvd.Mountain View, CA94043-1389Phone: +1 415 390 2414EMail: lear@Erik FairApple Computer, Inc.1 Infinite LoopCupertino, CA 95014Phone: +1 408 974 1779EMail: fair@Dave CrockerSilicon Graphics, Inc.2011 N. Shoreline Blvd.Mountain View, CA94043-1389Phone: +1 415 390 1804EMail: dcrocker@Thomas KesslerSun Microsystems Inc.Mail Stop MTV05-442550 Garcia Ave.Mountain View, CA 94043Phone: +1 415 336 3145EMail: kessler@Lear, Fair, Crocker & Kessler [Page 8]。

相关文档
最新文档