八年级数学上册边边边判定三角形全等新版新人教版
人教版八年级上册数学教案:12.2三角形全等的判定边边边

本节课的核心素养目标如下:
1.培养学生的逻辑推理能力,通过探索和掌握SSS全等条件,使学生能够运用严密的逻辑推理进行三角形全等的证明;
2.提升学生的几何直观,通过观察和操作全等三角形的模型,培养学生对几何图形的认识和空间想象力;
3.强化学生的问题解决能力,将全等三角形的知识应用于实际问题的解决中,增强学生对数学知识应用于现实生活的意识;
五、教学反思
在今天的课堂上,我们探讨了三角形全等的判定——边边边。回顾整个教学过程,我觉得有几个地方值得反思。
首先,我在导入新课环节提出了一个与生活相关的问题,希望能激发学生的兴趣。但从学生的反应来看,这个问题可能还不够贴近他们的生活实际,导致部分学生参与度不高。在今后的教学中,我需要更加关注学生的生活经验,提出更具针对性和趣味性的问题。
在学生小组讨论环节,我发现很多学生在交流中能够主动提出自己的想法,但也有一些学生在讨论中显得不够积极。为了提高学生的参与度,我计划在今后的教学中,针对不同学生的特点,采取更有针对性的教学方法,鼓励更多的学生参与到讨论中来。
最后,总结回顾环节,我发现部分学生对今天所学内容的掌握程度还不够牢固。这可能是因为我在教学中没有充分关注学生的反馈,没有及时发现和解决他们的问题。为了提高教学效果,我将在今后的教学中更加关注学生的学习情况,及时进行针对性的辅导。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解“边边边”(SSS)全等条件的基本概念。SSS是指当两个三角形的三组对应边分别相等时,这两个三角形全等。它是判断三角形全等的重要方法,在几何学中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析土地分割中的三角形全等问题,展示SSS在实际中的应用,以及它如何帮助我们解决问题。
人教版数学八年级上册《三角形全等的判定边边边》教学设计

人教版数学八年级上册《三角形全等的判定边边边》教学设计一. 教材分析人教版数学八年级上册《三角形全等的判定边边边》是学生在学习了三角形的基本概念、性质和三角形全等的判定方法后的进一步学习。
本节课主要让学生掌握三角形全等的判定方法之一——边边边(SAS)判定法,并能够运用该方法解决实际问题。
教材通过丰富的图形和实例,引导学生探究和发现三角形全等的规律,培养学生的观察能力、思考能力和动手能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质和三角形全等的判定方法AAA和SSA。
但他们对边边边(SAS)判定法的理解和运用还不够熟练,需要通过本节课的学习,进一步巩固和提高。
此外,学生需要通过实例分析和操作,提高观察能力、思考能力和动手能力。
三. 教学目标1.知识与技能目标:让学生掌握三角形全等的判定方法——边边边(SAS)判定法,并能运用该方法判断两个三角形是否全等。
2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的观察能力、思考能力和动手能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探究、积极思考的精神。
四. 教学重难点1.教学重点:三角形全等的判定方法——边边边(SAS)判定法。
2.教学难点:如何判断两个三角形是否全等,以及如何运用边边边(SAS)判定法解决实际问题。
五. 教学方法1.启发式教学法:通过提问、引导、探究等方式,激发学生的思考,帮助他们发现和理解三角形全等的规律。
2.直观教学法:利用图形、实例等直观教具,帮助学生形象地理解三角形全等的判定方法。
3.小组合作学习法:学生进行小组讨论、操作等活动,培养他们的合作意识和团队精神。
六. 教学准备1.准备相关的图形和实例,用于讲解和演示。
2.准备练习题和作业,用于巩固所学知识。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过一个具体的实例,引导学生回顾三角形全等的判定方法AAA和SSA,为新课的学习做好铺垫。
全等三角形的判定 边边边说课稿2024-2025学年人教版数学八年级上册

边边边说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“边边边”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析“边边边”是初中数学中三角形全等判定定理的重要内容之一。
它是在学生已经学习了三角形的基本概念和性质的基础上,进一步探究三角形全等的条件。
这一内容不仅是后续学习其他全等判定定理的基础,也为解决与三角形全等有关的实际问题提供了有力的工具。
本节课在教材中的地位和作用主要体现在以下几个方面:1、它是三角形全等知识体系中的关键环节,通过对“边边边”判定定理的学习,学生能够系统地掌握三角形全等的判定方法。
2、有助于培养学生的逻辑推理能力和空间观念,让学生在观察、操作、猜想、验证的过程中,体会数学的严谨性和科学性。
3、为后续学习相似三角形、三角函数等知识奠定了基础。
二、学情分析1、学生已经掌握了三角形的基本概念和性质,对三角形有了一定的认识和了解。
2、具备了一定的观察、分析和归纳能力,但在逻辑推理和抽象思维方面还需要进一步的培养和提高。
3、对于通过实验操作来探究数学结论具有较高的兴趣和积极性,但在从实验现象中总结数学规律时可能会遇到困难。
三、教学目标1、知识与技能目标(1)理解并掌握三角形全等的“边边边”判定定理。
(2)能够运用“边边边”判定定理判定两个三角形全等,并能解决简单的实际问题。
2、过程与方法目标(1)通过观察、操作、猜想、验证等活动,培养学生的动手操作能力、合情推理能力和逻辑思维能力。
(2)经历探索三角形全等条件的过程,体会分类讨论的数学思想和转化的数学思想。
3、情感态度与价值观目标(1)通过小组合作学习,培养学生的团队合作精神和交流沟通能力。
(2)让学生在探索中体验成功的喜悦,增强学习数学的自信心。
四、教学重难点1、教学重点掌握三角形全等的“边边边”判定定理,并能熟练运用。
2、教学难点(1)“边边边”判定定理的探究过程。
新人教版八年级上册《三角形全等的判定》(边角边)ppt

D E F
△EDH≌△FDH 根据“SAS”, 所以EH=FH
H
探究3
以2.5cm,3.5cm为三角形的两边,长度为 2.5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
△ADC≌△CBA 根据“SAS”
△ABC≌△EFD 根据“SAS”
例一 已知:如图, AB=CB ,∠ ABD= ∠ CBD
△ ABD 和△ CBD 全等吗? 分析: △ ABD ≌△ CBD (SAS) 边: AB=CB(已知)
B A
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改变成:
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角形 3、会判定三角形全等
作业布置
1.已知:如图,AB=AC,F、E分别是AB、AC的中点. 求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上, AF=CE, BE∥DF,BE=DF. 求证:△ABE≌△CDF.
C F
A
40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的 两个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C
A
பைடு நூலகம்
D
八年级数学上册 12.2 三角形全等的判定 第2课时 用“SAS”判定三角形全等说课稿 (新版)新人

八年级数学上册 12.2 三角形全等的判定第2课时用“SAS”判定三角形全等说课稿(新版)新人教版一. 教材分析本次说课的内容是新人教版八年级数学上册第12.2节三角形全等的判定,第2课时,主要讲解的是用“SAS”判定三角形全等。
这一节内容是在学习了三角形相似和三角形全等的概念基础上进行的,是三角形全等判定方法中的重要一环。
通过本节课的学习,学生能够理解和掌握“SAS”判定三角形全等的方法,并能够运用到实际问题中。
二. 学情分析根据我对学生的了解,他们在学习了三角形相似和三角形全等的基础上,对于全等的概念已经有了初步的认识,但是对于如何用“SAS”判定三角形全等,可能还存在着一些理解和运用上的困难。
因此,在教学过程中,我需要通过具体的例子和练习题,引导学生理解和掌握“SAS”判定三角形全等的方法。
三. 说教学目标本次课的教学目标是让学生理解和掌握“SAS”判定三角形全等的方法,能够运用“SAS”判定三角形全等,并能够解决实际问题。
四. 说教学重难点教学重点是让学生理解和掌握“SAS”判定三角形全等的方法,教学难点是如何引导学生理解和运用“SAS”判定三角形全等。
五. 说教学方法与手段在教学过程中,我会采用讲解法、示范法、练习法等教学方法。
通过讲解法,让学生了解“SAS”判定三角形全等的原理;通过示范法,让学生直观地理解“SAS”判定三角形全等的步骤;通过练习法,让学生巩固“SAS”判定三角形全等的方法。
六. 说教学过程1.导入:通过复习三角形相似和三角形全等的概念,引导学生进入本节课的学习。
2.讲解:“SAS”判定三角形全等的方法:首先,让学生观察两个三角形,找出它们的两个边和夹角分别相等;然后,根据全等三角形的性质,得出这两个三角形全等。
3.示范:通过具体的例子,演示如何用“SAS”判定三角形全等,让学生直观地理解全等的判定过程。
4.练习:让学生通过练习题,运用“SAS”判定三角形全等,巩固所学的方法。
人教版八年级数学上册教学课件三角形全等的判定

AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C (
全等三角形 对应角相等 )
课堂小结
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
谈谈本节课你有思哪路些分析收获以结现合有及图条形件存找,在隐证含准的条备件条困和件惑?
边边边 应 用
书写步骤
学习目标
1.通过三角形的稳定性,体验三角形全等的 “边边边”条件.
2.掌握并会运用“边边边”定理判定两个三 角形的全等.
学习重、难点
重点:寻求三角形全等的条件的方法. 难点:寻求三角形全等的条件的依据.
尝试发现,探索新知
生生 互动
已知△ABC ≌△ DEF,找出其中相等的边与角:
谈谈本节课你有哪些收获以及存在的困惑?
A
A′
B
C
B′
C′
想一想: 作图的结果反映了什么规律?你能用文
字语言和符号语言概括吗?
知识要点
“边边边”判定方法
文字语言:三边对应相等的两个三角形全等。
(简写为“边边边”或“SSS”) A
几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
BD
C
CA=FD,
∴ △ABC ≌△ DEF(SSS). E
∴ ∠A=∠C (
)
重点:寻求三角形全等的条件的方法.
活,用智慧点亮人
生!
一部分,是否也能保证两个三角形全等呢?从这节课开始,我们来探究全等三角形的判定.
∴△ABC≌△FDE(SSS);
=,
∴ △ABD ≌ △ACD ( SSS ).
情景问题
八年级数学上册 12.2 三角形全等的判定(第3课时)课件 (新版)新人教版

第十三页,共25页。
例题(lìtí)讲解:
例1.已知:点D在AB上,点E在AC上,BE和CD相交 (xiāngjiāo)于
点O,AB=AC,∠B=∠C.
求证:BD=CE.
A
证明 :在△ADC和△AEB中
第十页,共25页。
(liànxí
练 已知:如图,AB=A'C,∠A=∠A ' ,∠B=∠C
1
习 求证(qiúzhèng):△ABE≌ △A 'CD
证明:在______和_______中
________ (
)
________ (
)
________ (
)
∴△____≌△_____( )
第十一页,共25页。
∠ABC=180°-∠4
练 习
而∠3=∠4(已知)
1
3
∴∠ABD=∠ABC
A2
B4
在△ABD和△ABC中
∠1=∠2(已知 )
C
AB=AB (公共边)
∠ABD=∠ABC (已证 )
∴△ABD ≌ △ABC(ASA )
∴AC=AD
(全等三角形对应边相等)
第十六页,共25页。
2.已知,如图,∠1=∠2,∠C=∠D
∴ ∠ABD=∠ABC 在△ABD和△ABC中
1
A2
B
∠1=∠2 (已知)
AB=AB(公共边)
C
∠ABD=∠ABC(已证)
∴△ABD≌△ABC (ASA)
∴AC=AD (全等三角形对应边相等)
第十八页,共25页。
六、评价(píngjià)
人教版数学八年级上册《三角形全等的判定——“边边边”》说课稿(2)

人教版数学八年级上册《三角形全等的判定——“边边边”》说课稿 (2)一. 教材分析《三角形全等的判定——“边边边”》是人教版数学八年级上册的一节课。
本节课的主要内容是让学生掌握三角形全等的判定方法之一——边边边(SSS)判定方法。
在学习了三角形的基本概念、性质以及三角形的全等概念之后,学生已经具备了一定的数学基础。
本节课通过引导学生探究三角形全等的条件,让学生通过合作、交流、探究的方式,掌握三角形全等的判定方法,为后续学习其他三角形全等判定方法打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和探究能力,对数学知识有一定的认识和理解。
但部分学生在学习过程中对概念的理解不够深入,容易混淆概念;同时,学生的学习兴趣和学习积极性参差不齐,对数学的学习有一定的恐惧心理。
因此,在教学过程中,需要关注学生的学习兴趣,激发学生的学习积极性,引导学生深入理解概念,提高学生的数学素养。
三. 说教学目标1.知识与技能目标:让学生掌握三角形全等的判定方法之一——边边边(SSS)判定方法,能运用SSS判定方法证明两个三角形全等。
2.过程与方法目标:通过合作、交流、探究的方式,培养学生的动手操作能力、逻辑思维能力和团队协作能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的自主学习能力,使学生在学习过程中体验到数学的乐趣。
四. 说教学重难点1.教学重点:掌握三角形全等的判定方法——边边边(SSS)判定方法。
2.教学难点:理解并运用SSS判定方法证明两个三角形全等。
五. 说教学方法与手段1.教学方法:采用启发式教学法、探究式教学法、合作学习法等,引导学生主动参与课堂,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、几何画板等软件,展示三角形全等的判定过程,直观地呈现教学内容。
六. 说教学过程1.导入新课:通过复习三角形的基本概念和性质,引出三角形全等的概念,进而引入本节课的内容——三角形全等的判定方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、巩固练习 教材第37页练习第1,2题. 学生板演. 教师巡视,给出个别指导. 五、小结与作业 回顾反思本节课对知识的研究探索过程,小结方法及结 论,提炼数学思想,掌握数学规律. 进一步明确:三边分别相等的两个三角形全等. 布置作业:教图,△ABC是一个钢架,AB=AC,AD是连接点A 与BC中点D的支架.求证:△ABD≌△ACD. 引导学生应用条件分析结论,寻找两个三角形的已有条件, 学会观察隐含条件. 让学生独立思考后口头表达理由,由教师板演推理过程. 教师引导学生作图. 已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB. 讨论尺规作图法,作一个角等于已知角的理论依据是什么? 教师归纳:(1)什么是尺规作图;(2)作一个角等于已的三角形,比较三角形能否和原 三角形重合.
引导学生按条件画三角形,再通过画一画,剪一剪,比一 比的方式得出结论:只给出一个或两个条件时,都不能保 证所画出的三角形一定全等.
出 示 探 究 2 : 先 任 意 画 出 一 个 △ A′B′C′ , 使 A′B′ = AB , B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?