高中物理专题复习动量及动量守恒定律
2020届高考物理总复习:动量 第2讲动量守恒定律

(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。 (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒)。 (3)规定正方向,确定初、末状态的动量。 (4)由动量守恒定律列出方程。 (5)代入数据,求出结果,必要时讨论说明。
题型一 动量守恒定律的理解和应用问题
(3)若 m1<m2,则 v1'<0,v2'>0,碰后 m1 反向弹回,m2 沿 m1 碰前方向运动
题型三 碰撞问题
关键能力
发生非弹性碰撞时,内力是非弹性力,部分机械能转化为物体的内能,机械能有损失,动
非弹性碰撞
量守恒,总动能减少,满足:
m1v1+m2v2=m1v1'+m2v2' 12m1v1 2 +12m2v2 2 >12m1v1'2+12m2v2'2
两个物体组成的系统初动量等于末动量
可写为:p=p'、Δp=0和Δp1=-Δp2。
(4)守恒条件 ①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。 ②近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 ③分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
C 方向行走时,船的速度为u,由动量守恒定律可知下列表达式成立的是( )。
A.(M+m)v0=Mu+mv B.(M+m)v0=Mu+m(v-u) C.(M+m)v0=Mu-m(v-u) D.(M+m)v0=Mu-m(v-v0)
答 案解
析
题型一 动量守恒定律的理解和应用问题 解析
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律

高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。
2、冲量也是矢量,它是力在时间上的积累。
冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。
在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。
在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。
动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。
4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。
外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。
(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。
d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。
(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。
b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。
(5)动量守恒定律的应用步骤。
第一,明确研究对象。
第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。
高中物理选修一动量守恒知识点归纳

高中物理选修一:动量守恒知识点归纳一、动量的概念1. 动量的定义:动量是物体运动状态的量度,是物体质量和速度的乘积,通常用符号 p 表示。
2. 动量的单位:国际单位制中,动量的单位是千克·米/秒(kg·m/s)。
3. 动量的方向:动量的方向与物体的运动方向一致。
二、动量定理1. 动量定理的表述:一个物体的动量改变量等于作用在该物体上的合外力的冲量。
2. 动量定理的数学表达:Δp = F·Δt,其中Δp表示动量的改变量,F表示合外力,Δt表示时间。
3. 动量定理的应用:可以用来分析物体在外力作用下的运动状态。
三、动量守恒定律1. 动量守恒定律的表述:在一个封闭系统内,如果合外力为零,则系统的总动量保持不变。
2. 动量守恒定律的数学表达:Σpi = Σpf,即系统最初的总动量等于系统最终的总动量。
3. 动量守恒定律的应用:可用来分析弹性碰撞和完全非弹性碰撞等情况下物体的运动状态。
四、弹性碰撞1. 弹性碰撞的特点:在碰撞过程中,动能守恒,动量守恒。
2. 弹性碰撞的数学表达:m1v1i + m2v2i = m1v1f + m2v2f,即碰撞前的总动量等于碰撞后的总动量。
3. 弹性碰撞的应用:可用来分析弹簧振子、弹性小球碰撞等实际问题。
五、完全非弹性碰撞1. 完全非弹性碰撞的特点:在碰撞过程中,动量守恒,动能不守恒。
2. 完全非弹性碰撞的数学表达:m1v1i + m2v2i = (m1 + m2)v,即碰撞前的总动量等于碰撞后物体的总动量。
3. 完全非弹性碰撞的应用:可用来分析汽车碰撞、弹性小球与粘性物体碰撞等实际问题。
六、动量守恒实验1. 实验装置:常用的实验装置包括弹簧振子、动量棒等。
2. 实验原理:利用实验装置,进行不同形式的碰撞实验,验证动量守恒定律。
3. 实验过程:通过记录实验数据,进行数据分析,验证动量守恒定律在实验中的应用。
七、动量守恒在日常生活和工程实践中的应用1. 交通事故分析:利用动量守恒定律,可以分析交通事故中车辆碰撞的情况,从而减少事故损失。
高中物理选必一第一章动量守恒定律(1动量2动量定理)

第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
高中物理动量守恒定律

一、概念复习
1、动量:p = mv
2、冲量:I=F·t
3、动量定理:即 p ′ — p=I
4、动量守恒定律 如果一个系统不受外力,或者所受外力之和为零 (两个物体)m1v1+m2v2=m1v/1+m2v/2
动量守恒定律成立的三个条件:
(1) 系统不受外力或者所受外力之和为零 (2) 若系统所受合外力不为零,但在内力远大于外
m2 m2
V0
m1
m2
V1ˊ
V2ˊ
V2
2m1 m1 m2
V0
m1
m2
碰撞问题的解应同时遵守三个原则:
(1)系统动量守恒的原则:P′=P (2)空间可行性原则
(63. )反不冲违运背动能:量一守个恒静的止原的则物体:在EK内′≤力E作K 用下分裂为两个部分,
一部分向某个方向运动,另一部分必然向相反的方向运动。这个
现象叫做反冲。
二、应用动量定理或动量守恒定律 解题的一般步骤
• 1.选取研究对象和系统,确定物理过程(是解 题关键所在),根据是否满足动量守恒的条件选 择用动量守恒定律还是动量定理; 2.选取正方向(或建立坐标系)和参考系(一 般以地面为参考系); 3.写出初末状态的动量(注意:一般以相对地面 速度),或应用动量定理时的冲量;
例7、带有1/4光滑圆弧轨道质量为M的滑车静止于光
滑水平面上,如图示,一质量为m的小球以速度v0水 平冲上滑车,当小球上行再返回并脱离滑车时,以下
说法正确的是: ( B C D )
A.小球一定水平向左作平抛运动
B.小球可能水平向左作平抛运动
v0
C.小球可能作自由落体运动
m
M
D.小球可能水平向右作平抛运动
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)

第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
高中物理关于动量定理的所有公式

高中物理关于动量定理的所有公式1.动量和冲量:动量:P = mV 冲量:I = F t2.动量定理:物体所受合外力的冲量等于它的动量的变化.公式:F合t = mv’ 一mv 解题时受力分析和正方向的规定是关键3.动量守恒定律:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变.(研究对象:相互作用的两个物体或多个物体)公式:m1v1 + m2v2 = m1 v1‘+ m2v2’或?p1 =一?p2 或?p1 +?p2=O适用条件:(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.(3)系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力.(4)系统在某一个方向的合外力为零,在这个方向的动量守恒.4.功:W = Fs cos? 适用于恒力的功的计算)(1)理解正功、零功、负功(2)功是能量转化的量度重力的功------量度------重力势能的变化电场力的功-----量度------电势能的变化分子力的功-----量度------分子势能的变化合外力的功------量度-------动能的变化5.动能和势能:动能:Ek =重力势能:Ep = mgh 与零势能面的选择有关6.动能定理:外力对物体所做的总功等于物体动能的变化(增量).公式:W合= ?Ek = Ek2 一Ek1 = 21 机械能守恒定律:机械能 = 动能+重力势能+弹性势能条件:系统只有内部的重力或弹力做功.公式:mgh1 + 或者 Ep减 = Ek增(1)内容:物体所受合力的冲量等于物体的动量变化.表达式:Ft=mv′-mv=p′-p,或Ft=△p动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F是合外力对作用时间的平均值.p为物体初动量,p′为物体末动量,t为合外力的作用时间.(2)F△t=△mv是矢量式.在应用动量定理时,应该遵循矢量运算的平行四边表法则,也可以采用正交分解法,把矢量运算转化为标量运算.假设用Fx(或Fy)表示合外力在x (或y)轴上的分量.(或)和vx(或vy)表示物体的初速度和末速度在x(或y)轴上的分量,则Fx△t=mvx-mvx0Fy△t=mvy-mvy0上述两式表明,合外力的冲量在某一坐标轴上的分量等于物体动量的增量在同一坐标轴上的分量.在写动量定理的分量方程式时,对于已知量,凡是与坐标轴正方向同向者取正值,凡是与坐标轴正方向反向者取负值;对于未知量,一般先假设为正方向,若计算结果为正值.说明实际方向与坐标轴正方向一致,若计算结果为负值,说明实际方向与坐标轴正方向相反.感谢您的阅读,祝您生活愉快。
高中物理动量守恒定律

高中物理动量守恒定律高中物理动量守恒定律篇(1):高中物理选修3-5基础学问总结对于好多小伙伴来说,高中物理属于较难学的科目,在选修3-5物理课本中,许多规律和公式一般比较简洁,但就是应用起来难。
下面是百分网我为大家整理的高中物理选修3-5学问归纳,盼望对大家有用!高中物理选修3-5学问一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零.(碰撞、爆炸、反冲)留意:内力的冲量对系统动量是否守恒没有影响,但可转变系统内物体的动量.内力的冲量是系统内物体间动量传递的缘由,而外力的冲量是转变系统总动量的缘由.2、动量守恒定律的表达式 m1v1+m2v2=m1v1/+m2v2/ (规定正方向) △p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒.必需留意区分总动量守恒与某一方向动量守恒.4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒, ;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒, ;动能守恒, ;特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度 ,vB= .特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小.5、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (留意:几何关系)二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不行再分的能量值ε叫做能量子ε= hν.h为普朗克常数(6.63×10-34J.S)2、黑体:假如某种物体能够完全汲取入射的各种波长电磁波而不发生反射,这种物体就是肯定黑体,简称黑体.3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动.(普朗克的能量子理论非常好的解释了这一现象)物理选修3-5重点学问电磁波及其应用、电磁波谱(一)麦克斯韦电磁场理论1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)理解:①匀称变化的磁场产生稳定电场;②非匀称变化的磁场产生变化电场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 1向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v 。
解:系统水平方向动量守恒,全过程机械能也守恒。
A A B A B A B v 1 v v 1/ v 2/ Ⅰ Ⅱ Ⅲv 1在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1 由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()g m M Mv H +=221 全过程系统水平动量守恒,机械能守恒,得12v m M m v += 本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。
2.子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
例2. 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解: 子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒: ()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d 对子弹用动能定理:22012121mv mv s f -=⋅ ……① 对木块用动能定理:2221Mv s f =⋅ ……② ①、②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ……③ 由上式不难求得平均阻力的大小:()d m M Mmv f +=220至于木块前进的距离s 2,可以由以上②、③相比得出:d m M m s +=2 3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它形式的能向动能转化。
可以把这类问题统称为反冲。
例3. 质量为m 的人站在质量为M 、长为L 的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?解:先画出示意图。
人、船系统动量守恒,总动量始终为零,所以人、船l 2 l 1 s 2 d s 1 v 0 v动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于L 。
设人、船位移大小分别为l 1、l 2,则:mv 1=Mv 2,两边同乘时间t ,ml 1=Ml 2,而l 1+l 2=L ,∴L mM m l +=2 例4. 总质量为M 的火箭模型 从飞机上释放时的速度为v 0,速度方向水平。
火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?解:火箭喷出燃气前后系统动量守恒。
喷出燃气后火箭剩余质量变为M-m ,以v 0方向为正方向,()mM mu Mv v v m M mu Mv -+=''-+-=00, 二、动量与能量1.动量与动能动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比mv p =;动能的大小与速度的平方成正比221mv E k =。
两者的关系:k mE p 22=。
动量是矢量而动能是标量。
物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.2.动量定理与动能定理动量定理:物体动量的变化量等于物体所受合外力的冲量.I p =∆,冲量FS I =是力对时间的积累效应。
动能定理:物体动能的变化量等于外力对物体所做的功.W E k =∆,功FS W =是力对空间的积累效应.3.动量守恒定律与机械能守恒定律动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,且研究的都是某一物理过程。
动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变。
运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的。
如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的.动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容.例5. 如图所示,滑块A 、B 的质量分别为1m 与2m ,21m m <,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。
两滑块一起以恒定的速率v 0向右滑动.突然轻绳断开.当弹簧伸至本身的自然长度时,滑块A 的速度正好为0.求:(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep ;(2)在以后的运动过程中,滑块B 是否会有速度为0的时刻?试通过定量分析证明你的结论.解:(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A 的速度为0,故系统的机械能等于滑块B 的动能.设这时滑块B 的速度为v ,则有2221v m E =. 因系统所受外力为0,由动量守恒定律有:v m v m m 2021=+)(. 解得2202212)(m v m m E +=. 由于只有弹簧的弹力做功,系统的机械能守恒,所以有:E E v m m p =++2021)(21 解得2202112)(m v m m m E p +=. (2)假设在以后的运动中滑块B 可以出现速度为0的时刻,并设此时A 的速度为1v ,弹簧的弹性势能为p E ',由机械能守恒定律得:2202212112)('21m v m m E v m p +=+,根据动量守恒得11021v m v m m =+)(, 求出1v 代入上式得:2202211202212)('2)(m v m m E m v m m p +=++ 因为0'≥P E ,故得:2202211202212)(2)(m v m m m v m m +≤+ 。
即21m m ≥,这与已知条件中21m m <不符. 可见在以后的运动中不可能出现滑块B 的速度为0的情况.例6.如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的档板B 相连,弹簧处于原长时,B 恰位于滑道的末端O点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩 擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能Ep (设弹簧处于原长时弹性势能为零).解:(1)由机械能守恒定律,有:21112m gh m v =,解得v =gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有:112()m v m m v '=+ 碰后A 、B 一起压缩弹簧,当弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功12()W m m gd μ=+ 由能量守恒定律,有:212P 121()()2m m v E m m gd μ'+=++ 解得21P 1212()m E gh m m gd m m μ=-++例7.如图,半径为R 的光滑圆形轨道固定在竖直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞 中无机械能损失.重力加速度为g .试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度。