开关稳压电源控制电路
常见几种开关电源工作原理及电路图

常见几种开关电源工作原理及电路图图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2.单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3.单端正激式开关电源单端正激式开关电源的典型电路如图四所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
稳压电源电路原理

稳压电源电路原理
稳压电源电路是一种能够提供稳定输出电压的电路。
它主要通过反馈机制来调整输出电压,使其保持在设定值附近。
以下是稳压电源电路的工作原理:
1. 输入电压:稳压电源电路的输入电压通常来自交流电源或直流电源,其电压大小取决于所需的输出电压。
2. 整流滤波:如果输入电源是交流电源,首先需要经过整流桥进行整流处理,将输入电压转换为直流电压。
然后,使用电容器进行滤波,去除电压中的纹波。
3. 参考电压源:稳压电源电路中通常需要一个参考电压源,它提供一个基准电压,用于与输出电压进行比较。
4. 比较器:比较器用于将参考电压和输出电压进行比较,并产生一个误差信号。
如果输出电压高于设定值,误差信号将为正值;如果输出电压低于设定值,误差信号将为负值。
5. 控制元件:误差信号将被传送给一个控制元件,如放大器或运算放大器。
控制元件会根据误差信号的大小来调整输出电压。
6. 调整输出电压:控制元件通过调整电流或电压来改变输出电压。
例如,在线性稳压电源中,控制元件通过调整功率晶体管的导通时间来调整输出电压。
而在开关稳压电源中,控制元件通过调整开关管的开关频率和占空比来调整输出电压。
7. 反馈回路:为了确保输出电压稳定,稳压电源电路通常具有一个反馈回路。
反馈回路会将输出电压与参考电压进行比较,并将误差信号传回控制元件,从而形成一个闭环系统。
通过不断调整控制元件,稳压电源电路能够实时监测和调整输出电压,使其保持在设定值附近,从而提供稳定的电源供应。
这种稳定的电源供应对于许多电子设备的正常运行至关重要。
开关稳压电源的工作原理

开关稳压电源的工作原理
开关稳压电源的工作原理是通过采用开关器件(如MOSFET 等)和一系列电子元器件来控制输入电压的开关状态,从而实现对输出电压的稳定调节。
工作原理如下:
1. 输入电压经过整流(如桥式整流电路)并通过滤波电容进行滤波处理,以去除电源中的交流成分和波动。
2. 基于控制电路内部的反馈机制,比较输入电压与期望输出电压之间的差异,以确定开关器件的开关状态。
3. 当输入电压过低时,控制电路将开关器件导通,让电流通过电感储能,进而提高输出电压。
4. 当输入电压过高时,控制电路将开关器件断开,使电感储能的电流通过输出电容器供电,从而降低输出电压。
5. 控制电路根据反馈信息连续地监测和调整开关器件的开关状态,以使输出电压始终维持在设定的稳定值。
6. 为了提供更加稳定的输出电压,开关稳压电源通常还包括过电压保护、过载保护、短路保护等功能。
通过不断地开关和调整开关器件的状态,开关稳压电源可以实
现对输入电压的有效调节,从而保证输出电压的稳定性和可靠性。
开关型稳压电源的工作原理

开关型稳压电源的工作原理开关型稳压电源是一种通过开关元件进行高效能稳压的电源设备。
它采用开关元件( 通常为晶体管或MOSFET)以高频率开关的方式来调整输出电压,从而实现稳压。
以下是开关型稳压电源的主要工作原理:1.整流:首先,交流电源输入会经过整流电路,将交流电转换为直流电。
这通常使用整流桥等元件实现。
2.滤波:直流电经过整流后可能会包含一些脉动成分,为了去除这些脉动,通常使用滤波电容进行滤波处理,使输出电压更趋于稳定。
3.开关调节:开关型稳压电源的核心是开关调节部分。
这部分包括一个开关元件(通常为晶体管或MOSFET)、一个能够调整开关频率的控制电路和一个输出变压器。
4.开关频率调节:控制电路会根据输出电压的变化情况,调整开关频率。
通过高频率的开关操作,可以更精细地控制输出电压,实现稳压。
5.变压器工作:输出变压器是一个重要的组成部分,通过开关调节,可以改变变压器的工作状态,从而调整输出电压。
通过变压器的变压比例,可以实现输出电压的调节。
6.反馈控制:稳压电源通常采用反馈控制,通过比较输出电压与设定的目标电压,产生一个误差信号。
这个误差信号用于调整开关频率,使输出电压保持稳定。
7.过载和过压保护:开关型稳压电源通常配备有过载和过压保护机制,以防止电源或负载发生故障时损坏设备。
这些保护机制可以通过监测电流和电压进行触发。
8.输出滤波:最后,输出电压还可能通过输出滤波电路进行进一步的滤波,以确保输出信号的纯净性。
开关型稳压电源以其高效能和小体积的特点在电子设备、通信设备、计算机等领域得到广泛应用。
由于采用开关调节的方式,开关型稳压电源相比线性稳压电源能够更有效地调整电压,减少功耗和体积。
开关稳压电源设计

开关稳压电源设计简介开关稳压电源是一种常见的电源设计,它可以将不稳定的输入电压转换成稳定的输出电压。
在电子设备和电子系统中,稳定的电源是至关重要的。
本文将介绍开关稳压电源的设计原理和步骤,并提供一个基本的设计示例。
设计原理开关稳压电源的设计基于开关电源的原理,通过开关管的开关操作,将输入电压切换成高频脉冲电压,经过滤波和调整电路后,得到稳定的输出电压。
输入与输出开关稳压电源的输入电压通常是交流电源,通过整流电路将交流电压转换成直流电压。
输出电压可以是固定的也可以是可调的,通过控制脉冲宽度调制(PWM)或变换频率调制(AFM)来实现。
控制电路开关稳压电源的核心是控制电路,它负责对开关管的开关操作进行控制。
一般情况下,控制电路由反馈电路、调整电路和开关控制器组成。
•反馈电路:用于监测输出电压,并将监测到的电压与设定的目标电压进行比较,得到误差信号。
•调整电路:根据误差信号调整开关管的开关周期和占空比,使输出电压接近设定的目标电压。
•开关控制器:根据调整电路的信号,控制开关管的开关操作。
开关管开关稳压电源的关键组件是开关管,它负责控制输入电压的切换。
常见的开关管有晶体管和MOSFET。
晶体管适用于小功率应用,而MOSFET适用于大功率应用。
设计步骤下面是一个基本的开关稳压电源设计步骤,供参考:1.确定设计需求:确定输入电压范围、输出电压需求、输出电流需求等。
2.选择开关管和开关控制器:根据设计需求选择适合的开关管和开关控制器。
3.设计反馈电路:根据输出电压需求设计反馈电路,包括误差放大器、参考电压源和比较器等。
4.设计调整电路:根据误差信号设计调整电路,包括比较器和PWM控制器等。
5.设计输入电路:根据输入电压范围设计整流电路和滤波电路,将交流电源转换成直流电源。
6.设计输出电路:根据输出电压需求设计输出电路,包括滤波电路和稳压电路等。
7.进行仿真和调试:使用电路仿真软件对设计进行仿真,调试出理想的输出电压波形。
开关稳压电源电路原理

开关稳压电源电路原理
开关稳压电源是一种常用的电源供电方式,它通过开关管的开关动作来调节输出电压,从而实现对负载电压的稳定控制。
本文将从原理、工作过程和应用领域三个方面介绍开关稳压电源的相关知识。
一、原理
开关稳压电源的核心组成部分是开关稳压电源芯片和开关管。
芯片是控制开关管开关动作的重要元件,它通过反馈电路感知输出电压,并将感知到的电压信号与设定值进行比较,从而控制开关管的导通与截止。
开关管则负责将输入电源与输出负载连接或断开,实现对输出电压的调节与控制。
二、工作过程
开关稳压电源的工作过程可以分为两个阶段:导通状态和截止状态。
当芯片感知到输出电压低于设定值时,它会控制开关管导通,使得输入电源与输出负载连接,从而提供稳定的输出电压。
当输出电压达到设定值时,芯片会控制开关管截止,切断输入电源与输出负载的连接,以维持输出电压的稳定性。
三、应用领域
开关稳压电源由于其输出电压稳定、效率高和体积小等特点,被广泛应用于各个领域。
在家用电器领域,开关稳压电源常用于电视、音响、电脑等设备的电源供应;在工业控制领域,开关稳压电源常用于PLC、变频器、伺服系统等设备的电源供应;在通信领域,开
关稳压电源常用于无线基站、通信设备等的电源供应。
此外,开关稳压电源还广泛应用于医疗设备、航空航天、军事装备等领域。
总结:
开关稳压电源通过芯片和开关管的协同工作,实现对输出电压的稳定控制。
其工作过程简单明了,应用领域广泛。
在今后的发展中,随着电子技术的不断进步,开关稳压电源将更加高效、稳定和可靠,为各个领域的电子设备提供更好的电源供应。
tl431在开关电源中稳压反馈电路的应用电路设计

tl431在开关电源中稳压反馈电路的应用电路设计
TL431是一种常用的精密可调节稳压器件,通常用于开关电源中的稳压反馈电路。
它可以作为一个误差放大器,用于控制开关电源的输出电压。
以下是一个简单的TL431稳压反馈电路的应用电路设计示例:
在这个电路中,TL431被用作误差放大器,它通过比较参考电压和反馈电压来控制输出电压。
具体的设计步骤如下:
设置参考电压:TL431的参考电压通过外部电阻网络进行调节,根据需要选择合适的参考电压值。
连接反馈回路:将TL431的输出与开关电源的反馈回路相连,通过比较输出电压和参考电压,控制开关电源的输出电压稳定在设定值。
选择外部元件:根据具体的需求,选择合适的外部电阻、电容等元件,以确保稳压反馈电路的性能和稳定性。
稳压调节:通过调节外部电阻来调节输出电压的设定值,使得开关电源的输出电压符合要求。
需要注意的是,具体的电路设计需要考虑到开关电源的整体设计和控制要求,以及TL431的工作特性和参数。
此外,为了确保电路的性能和稳定性,建议在设计过程中进行仿真和实际测试验证。
开关直流稳压电源设计

开关直流稳压电源设计设计原理:关键参数:开关直流稳压电源的关键参数包括输出电压精度、输出电流、纹波电压和负载调节率等。
输出电压精度表示开关直流稳压电源输出的电压与设定值之间的偏差。
输出电流表示电源能够提供的最大负载电流。
纹波电压表示输出电压的波动情况,是由开关器件的开关操作引起的。
负载调节率表示在负载变化时,输出电压的变化程度。
主要组成部分:一个典型的开关直流稳压电源由以下几个主要组成部分构成:1.输入端:输入端通常有一个交流电源或者一个整流电路,将交流电转换为直流电。
在输入端还可能包含一些滤波电容和短路保护电路。
2.开关电路:开关电路由各种开关器件组成,包括晶体管、场效应管和硅控整流元件等。
开关周期性地打开和关闭,调节输入电压的占空比,从而调节输出电压。
在开关电路中,还可能包含一些保护电路,如过流保护和过压保护等。
3.控制电路:控制电路是开关直流稳压电源中的重要组成部分。
它根据输出电压与设定值之间的偏差,生成控制信号,控制开关器件的开关操作。
控制电路通常由一个误差放大器、一个比较器和一个参考电压源组成。
4.输出端:输出端是开关直流稳压电源输出电压的终点。
它通常由一个输出电感、一个输出滤波电容和一个负载组成。
输出电感和输出电容起到滤波作用,减小输出电压的纹波。
负载则是电源供电的目标设备。
5.反馈回路:反馈回路起到监测输出电压并调整开关操作的作用。
它通常由一个反馈电阻和一个反馈电压比较器组成。
反馈电阻将输出电压分压为反馈电压,反馈电压比较器将反馈电压与设定值进行比较,生成控制信号。
总结:开关直流稳压电源是一种常用的电源设计,用于提供稳定的直流电压输出。
它通过开关器件的开关操作调节输入电压,并通过反馈机制保持输出电压稳定。
设计开关直流稳压电源需要考虑关键参数,包括输出电压精度、输出电流、纹波电压和负载调节率等。
主要的组成部分包括输入端、开关电路、控制电路、输出端和反馈回路。
开关直流稳压电源的设计涉及到多个领域的知识,包括电源电路、电子器件和控制理论等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期较长,甚至可能出现反复,有时一些参数的 确定需通过试验来得到。
二、控制电路结构及原理
控制电路的结构
uf if
反馈
调节器 u* i* 基准源
PWM
驱动
去主电路
封锁信号
保护
电压/电流/温度
并机均流
连接并机线
二、控制电路结构及原理
一、驱动电路
驱动电路是控制电路与主电路的接口,同开关电 源的可靠性、效率等性能密切相关。驱动电路需 有很高的快速性,能提供一定的驱动功率,并具 有较高的抗干扰和隔离噪声能力。
• 采用单一电源向负载供电。
• 特点:结构简单、成本低、但可靠性不高,一旦 电源发生故障,供电中断。
二、控制电路结构及原理
2、并联运行
• N个电源并联构成的电源系统向负载供电, 每个电源的功率为负载所需功率的1/N。 • 特点:每个电源发生故障时,供电不中断, 仅最大供电能力有所降低。电源数量多,成 本上升。用于可靠性要求较高的场合。
三、开关电源PWM控制原理
通常集成PWM控制器将误差电压放大器(EA)、振荡器
、PWM比较器、驱动、基准源、保护电路等常用开关电 源控制电路集成在同一芯片中,形成功能完整的集成电 路: • 基准源:提高稳定度的基准电压,作为电路中给定 的基准。 • 振荡器:产生固定频率的时钟信号,以控制开关频 率。 • 误差电压放大器:实际是一个运放,用来构成电压 或电流调节器。 • PWM比较器:将调节器输出信号uc转换成PWM脉冲的 占空比。
常用的集成PWM控制器:SG3525、TL494和UC3825、
UC3842/3/4/5/6、UC3875/6/7/8/9等。
集成PWM控制器
• 电压模式控制器 • 电流模式控制器 • 峰值电流模式 • 平均电流模式 • 电荷模式
三、开关电源PWM控制原理
开关电源的控制方式
• 电压模式:电压反馈控制环 • 电流模式:电压反馈控制外环,电流控制内环 电流模式控制方式的基本思想 : • 在输出电压闭环的控制系统中,增加了直接或间Байду номын сангаас 的电流反馈控制。 电流控制方式的优点: (1)系统的稳定性增强,稳定域扩大。 (2)系统动态特性改善。输出电压中由输入电压引 入的低频纹波被完全消除。 (3)具有快速限制电流的能力。电源中可不必再设 置输出短路保护电路。
电源的输出电流分配均衡。
二、控制电路结构及原理
电源并联后输出电流不相等的原因:
• 在输出电压相同条件下,电压调节器误差信号不同, 反映了电路参数的分散性。
为了补偿这种分散性,使各电源的输出电流相等
,且电压调节器误差信号都等于零。必须采取控 制措施—设置均流电路。
并联均流方式可以分为:
• 1、利用输出电压调整率均流(电源输出电压随输
输出过电压和欠电压通常由电源或负载的严重故障引
起,也应采用锁存器将故障信号锁存,一旦出现,应 立即停机报警,等待人工干预。
二、控制电路结构及原理
典型的过电压保护电路
R4 R1、R2构成的分压电路作为 R1 Ucc R3 Ui 输入电压Ui的检测电路,A A + Uo Ucc R2 点电压为UA=UiR2/(R1+R2),R3、 C1 RP R4、 RP与比较器C1构成滞环 UH GND GND 比较电路。 调节RP可以改变过电压保 护的限值。 原理: UA*R4/(R3+R4)高于UH→比较器翻转→输出电压Uo变为电 源电压UCC。(虚断) 输入电压回落,UA+R3*(UCC-UH)/R4低于UH→比较器再次 翻转→输出电压Uo回到零。(虚短)
二、控制电路结构及原理
自动选主的主从均流法原理
• 各电源公用一个电压调节器,其输出作为电源的电流 给定,每个电源含有电流调节器,由于每个电源的电 流给定相同,因此各自输出电流是一样的。实际系统 中,每个电源都含有电压调节器,在运行时电压调节 器都处于工作状态,其输出通过均流母线仲裁处最大 值,对应最大值的是主机,其他电源为从机。
三、开关电源PWM控制原理
电压控制模式的结构图
u* +
—
VR
PWM
L C
RL
uf
电流控制模式的结构图
u* +
—
VR
i* +
—
IR
PWM
L
C RL
uf
ifk
三、开关电源PWM控制原理
常见的集成PWM控制器内部电路的典型结构
基准源
欠电压保护
封锁
振荡器
+
uc
PWM比较器
驱动A 分频器 驱动B
-EA +
流信号为各电源电流的最大值。
各电源调节自身电流方法:均流信号与本电源反馈电流
信号之差乘以比例系数,加到本电源的电压给定中。当 误差增大时,本电源电压给定略微提高,使本电源开环 电压提高,分得更多的负载电流。
缺点:通过调节电压给定来调节输出电流,会造成输出
电压的波动,影响稳压精度;同时若比例系数过大,则 会造成输出电压竞相上升,可能导致严重事故。若限定 电压范围,则当均流电路调节能力达到极限时,电源只 能退出均流。
三、开关电源PWM控制原理
驱动电路:结构通常为推挽结构的跟随电路,用来
提供足够的驱动功率,以有效地驱动主电路的开关 器件。
欠电压保护电路:对集成PWM控制器的电源实施监
控,一旦电源跌落至阈值以下时,就封锁输出驱动 脉冲,以免电源掉电过程中,输出混乱的脉冲信号 而造成开关器件的损坏。
封锁电路:由外部信号控制,一旦有外部信号发出
• 自我保护功能:
• 输入过电压 • 系统过热 • 输入欠电压、过电流
• 负载保护功能:
• 输出过电压 • 输出欠电压
二、控制电路结构及原理
输入过电压、输入欠电压、过热保护中,应采用滞环
比较器,以便在故障消失后,电源可自动恢复工作。
过电流保护应采用锁存器将过电流信号锁存。锁存器
应附加复位电路,以便在故障排除后重新开始工作, 或采用时间较长的延时复位电路,以降低过电流保护 的频度。
开关稳压电源 控制电路
1
参考文献
[1] SIOMN ANG, ALEJANDRO OLIVA. 开关功率变换 器——开关电源的原理、仿真和设计,机械工业出版社 5.2 脉宽调制 5.4 商业化集成电路控制器
一、引 言
开关电源的主电路主要处理电能,控制电路主要
处理电信号,属“弱电”,控制着主电路开关器 件的工作。电源的很多指标,如稳压稳流精度、 纹波、输出特性等也与控制电路相关。控制电路 的设计质量对电源的性能至关重要。
注意:均流电路的设计,不仅要使各并联开关电
源模块在正常工作情况下能均流运行,且应考虑 当本模块发生故障时,不应显著影响其他模块的 工作。
二、控制电路结构及原理
四、保护电路
控制电路应包含保护电路,保护电路包含自身保护和负
载保护两方面的功能。一旦出现故障,立即使开关电路 停止工作,并以声或光的形式报警,以保证任何情况下 ,自身不损坏,且不损坏负载。
四、UC3842 控制器及应用
用UC3842为控制器构成的功率为27W反激型多路输出开关电源。
二、调节器电路
调节器的作用是将给定量和反馈量进行比较和运 算,得到控制量。调节器的核心是运算放大器。
二、控制电路结构及原理
三、并机均流电路
开关电源经常需要并机组成系统运行,以获得更
大的容量和更高的可靠性。
根据各种负载对供电可靠性要求的不同,电源可
以采用以下几种不同的运行方式:
1、单机运行
,立即封锁输出脉冲信号,给外部保护电路提供了 一个可控的封锁信号。
四、UC3842 控制器及应用
采用峰值电流模式控制,专门用于构成正激型、
反激型等开关电源的控制电路。
UC3842主要性能指标
• • • • • • • •
最大电源电压/V :36 驱动输出峰值电流/mA :1000 最高工作频率/kHz :500 基准源电压/V :5 基准源温度稳定性/(mV/℃):0.2 误差放大器开环增益/dB :90 误差放大器单位增益带宽/MHz :1 误差放大器输入失调电压/uA :0.1
变开关工作周期TS PWM工作模式可分两种:
• 电压模式PWM:从变换器的输出电压得到控制信号
• 电流模式PWM :不仅需要输出电压信息,还需要变
化器电感电流信息来确定提供给开关管所需要的占空 比。
18
三、开关电源PWM控制原理
作用:将一定范围内连续变化的控制量(模拟信号)转
换为PWM信号,该信号的开关频率固定,占空比跟随 输入信号连续变化。
二、控制电路结构及原理
一次电流保护后,若要重启电路,则必须在 RS触
发器的R端施加复位信号,使RS触发器的输出状态 重新变为低电平,主电路重新开始工作。
三、开关电源PWM控制原理
概述
开关电源有两种工作方式:
• 脉冲宽度调制(PWM)方式:保持TS 不变,控制开关导
通时间 ton
• 脉冲频率调制(PFM)方式:保持导通时间 ton不变,改
UC3842各组成部分原理
• 内部包含5V基准源,用于电压调节器的误差 放大器和峰值电流比较器等。具有可以提供 1A峰值电流的驱动电路、电源欠电压保护电 路等。
四、UC3842 控制器及应用
• 振荡器的振荡频率由外接电阻RT和电容CT决定, CT也决定死区时间的长短。死区时间、开关频率同 RT和CT关系如下
• 3、无主或自动选主的均流方式(基本思路是在
电源间通过并机电缆或称均流总线来传递均流信号 ,每个电源根据均流信号调节自身输出电流,达到 相互一致目的。) • ① 最大电流自动均流法 • ② 自动选主的主从均流法等