第十四章《一次函数》单元测试3
八年级数学第十四章一次函数单元测试题(含答案)

第十四章 一次函数测试题一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-126.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( ) A .y=-x-2 B .y=-x-6 C .y=-x+10 D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、你能填得又快又对吗?(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________. 12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、认真解答,一定要细心哟!(共60分) 21.(14分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(12分)一次函数y=kx+b 的图象如图所示:(1)求出该一次函数的表达式; (2)当x=10时,y 的值是多少? (3)当y=12时,•x 的值是多少?23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元. ①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?。
初二 第14章 一次函数 单元测试含答案

八年级数学一次函数单元测试题(总分:100.0 考试时间:65分钟)班级_______________ 准考证号________________ 姓名___________ 得分_____ 一、判断题:本大题共3小题,从第1小题到第2小题每题3.0分小计6.0分;第3小题为4.0分;共计10.0分。
1、函数y=(m+6)x+(m-2), 当m=-6时是一次函数( )2、( )3、函数y=-(x+6)与y轴的交点是(0 , 6).( )二、单选题:本大题共8小题,从第4小题到第5小题每题3.0分小计6.0分;从第6小题到第11小题每题4.0分小计24.0分;共计30.0分。
4、函数y=中,自变量x的取值范围是[]A.x>B.x<C.x≠D.x≠25、一列火车从青岛站出发,加速行驶一段时间后开始匀速行驶.过了一段时间,火车到达下一个车站,乘客上下车后,火车又加速,一段时间后再次开始匀速行驶.下面图________可以近似地刻画出火车在这段时间内的速度变化情况.[]A B C.D.6、正比例函数如图1所示,则这个函数的解析式为[]A.B.C.D.图1 图2 图37、下列函数中, 不是一次函数的是[ ]A.y=3xB.y=2-xC.y=x-D.y= -38、一次函数的图像不经过[]A.第一象限B.第二象限C.第三象限D.第四象限9、已知一次函数图像如图2所示,那么这个一次函数的解析式是[]A.B.C.D.10、下列说法中正确的是[]A.用图象表示变量之间的关系时,用竖直方向上的点表示自变量;B.用图象表示变量之间的关系时,用水平方向上的点表示因变量;C.用图象表示变量关系用横轴上的点表示因变量;D.用图象表示变量关系用纵轴上的点表示因变量.11、弹簧的长度与所挂物体的质量的关系为一次函数,如图3所示,由此图可知不挂物体时弹簧的长度为[]A.7cm B.8 cm C.9 cm D.10 cm三、填空题:本大题共6小题,从第12小题到第15小题每题3.0分小计12.0分;从第16小题到第17小题每题4.0分小计8.0分;共计20.0分。
第14章 一次函数单元测试卷(含答案)

第14章一次函数单元测试卷(总分:100分,时间:100分钟)题号一1 二2 三3 四4 五5 六6 七7 八8 得分角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题4分,共32分)1.已知函数y=kx(k≠0)中,y随x的增大而增大,那么一次函数y=kx-k的图象经过() A.一,二,三象限 B.一,二,四象限 C.一,三,四象限 D.二,三,四象限2.下面的哪个点在函数y=2x-3的图象上()A.(-5,-7) B.(0,3) C.(1,-1) D,(-2,7)3.如图,直线y=kx+b交坐标轴于A、B两点,则不等式kx+b>0的解集是()A.x>-2 B.x>3 C.x<-2 D.x<34.函数y=2x+的自变量x的取值范围是()A.x≥-2且x≠3 B.x>-2且x≠3C.x≥-2 D.x>-25.已知直线y=kx+b中,当x1>x2时,y1>y2,则下列结论中一定正确的是()A.k>0 B.k<0 C.b>0 D.b<06.下图中表示y是x函数的图象是()7.一次函数y 1=kx+b与y2=x+a的图象如图测所示,则下列结论:①k<0;②a>0;•③当x<3时,y1<y2中,正确的个数是()A.0个 B.1个 C.2个 D.3个8.甲、乙两人在一次赛跑中,路程s与时间t的关系如图测所示(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),•小王根据图象得到如下四个信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙两人中先到达终点的是乙C.甲、乙同时起跑D.甲在这次赛跑中的速度为5m/s二、填空题(每小题4分,共28分)9.y-2与x成正比例,当x=-2时,y=4,则y与x的函数关系式是______.10.根据图测所示的程序,计算当输入x=3时,输出的结果y=_______.(第10题) (第13题)11.生物学家研究表明,某种蛇的长度ycm是其尾长xcm的一次函数,•当蛇的尾长为6cm 时,蛇长45.5cm;当尾长为14cm时,蛇长为105.5cm.当一条蛇的尾长为10cm时,•这条蛇的长度是_______cm.12.直线y=3x向下平移2个单位得到直线________.13.如图测,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得关于x,y的二元一次方程,.y ax by kx=+⎧⎨=⎩的解是________.14.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系,当x=36(kPa)时,y=108(g/m3),•请写出y与x的函数关系式_____________.三、解答题(共40分)16.(12分)•某公司市场营销售部的营销员的个人月收入与该营销员每月的销售成一次函数关系,其图象如图测所示,根据图象提供的信息,解答下列问题:(1)求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式.(2)已知该公司营销员李平5月份的销售量为1.2万件,求李平5月份的收入.17.(12分)如图测,已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式.(2)若△APB的面积为3,求m的值.(提示:分两种情形,即点P在A的左侧和右侧)18.(16分)第三届南宁国际龙舟赛于2006年6月3日至4日在南湖举行,甲、•乙两队在比赛时,路程y(米)与时间x(分钟)的函数图象如图测所示,根据函数图象填空和解答问题:(1)最先到达终点的是_____队,比另一个队领先_____分钟到达.(2)在比赛过程中,乙队_____分钟和_____分钟时两次加速,•图中点A•的坐标是_______,点B的坐标是_______.(3)假设乙队在第一次加速后,始终保持这个速度继续前进,那么甲、•乙两队谁先到达终点?请说明理由.参考答案1.C 2.C 3.A 4.A 5.A 6.C 7.B 8.C9.y=-x+2 10.2 11.75.5 12.y=3x-213.42x y =-⎧⎨=-⎩ 14.y=3x 15.如y=-4x-2(答案不唯一)16.(1)设y=kx+b (k ≠0).因为图象过点(0,400)和(2,1600)两点,所以400,600,21600.400.b k k b b ==⎧⎧⎨⎨+==⎩⎩解这个方程组,得 所以所求的函数关系式为y=600x+400(x ≥0).(2)当x=1.2时,y=600×1.2+400=1120(元).17.(1)设直线L 1的解析式为y=kx+b ,由题意,得0,1,2 3. 1.k b k k b b -+==⎧⎧⎨⎨+==⎩⎩解得 所以直线L 1的解析式为y=x+1.(2)当点P 在点A 的右侧时,AP=m-(-1)=m+1,有S △APB =12×(m+1)×3=3,解得m=1.此时点P的坐标为(1,0).当点P在点A的左侧时,AP=-1-m,有S△APB=12×(-m-1)×3=3,解得m=-3,此时,点P的坐标为(-3,0).综上所述,m的值为1或-3.18.(1)乙 0.6 (2)1 3 (1,100)(3,450)(3)易求得直线AB的解析式为y=175x-75,当y=800时,即800=175x-75,x=5.所以甲、乙两队同时到达终点.可以编辑的试卷(可以删除)。
第14章 一次函数全章水平测试(含答案)

第14章《一次函数》全章水平测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x的函数是( )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( )3.函数x y x y x y 21,3,2-=-==的共同特点是( ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m .2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是 .3.直线13+=x y 与x y 51-=的交点坐标为 .4.直线42+-=x y 与x 轴交点的坐标是 ,方程222-=+-x 的解是 .5.当m 满足 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为 .7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m .8.将x y 21=的图象向右平移2个单位后,得到的图象解析式是 . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.5.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,如图(1),图(2)中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B到海岸的距离与追赶时间之间的关系?⑵A,B哪个速度快?⑶15分内B能否追上A?⑷如果一直追下去,那么B能否追上A?⑸当A 逃到海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.y(元)x(吨)84.864O7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图10中的折线分别表示S1、S2与t之间的函数关系.⑴甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.参考答案一、选择题(每小题5分,共40分)1.下列四个图象中,不能表示y 是x 的函数是( D )ABC2.一根蜡烛长20㎝,点燃后,每小时燃烧5㎝,燃烧时剩下的高度h (㎝)与燃烧时间t (小时)的函数关系用图象表示为( B )3.函数x y x y x y 21,3,2-=-==的共同特点是( D ) A.图象过相同象限 B.y 随x 增大而减小 C.y 随x 增大而增大 D.图象都过原点4.若直线63+=x y 与坐标轴围成的三角形的面积为S ,则S 等于( A )A.6B.12C.3D.24 5.若一次函数k x k y +-=)1(中,k >1,则函数的图象不经过第( C )象限A.一B.二C.三D.四6.若直线32+=x y 与b x y 23-=相交于直线x y =上同一点,则b 的值是( A )A.-3B.23-C.6D.49-7.要得到423--=x y 的图象,可把直线x y 23-=向( D )A.左平移4个单位B.右平移4个单位C.上平移4个单位D.下平移4个单位8.若2+y 与3-x 成正比例,且当0=x 时,1=y ,则当1=x 时,y 等于( B )A.1B.0C.-1D.2 二、填空题(每小题5分,共40分)1.若函数2)102()5(x m x m y -+-=(m 为常数)中的y 与x 成正比例,则m =-5.2.一次函数的图象过点(1,2),且y 随x 增大而减小,请写出一个满足条件的解析式是3+-=x y .(答案不唯一)3.直线13+=x y 与x y 51-=的交点坐标为 (0,1) .4.直线42+-=x y 与x 轴交点的坐标是(2,0),方程222-=+-x 的解是 x =2 .5.当m 满足 m >3 时,一次函数m x y 263-+-=的图象与y 轴交于负半轴.6.已知一次函数的图象经过点A (0,3)且与两坐标轴所围成的三角形面积为3,则这个一次函数的解析式为35.135.1+=+-=x y x y 或.7.若点A (2,3),B (4,-3),C (m ,0)在同一直线上,则=m 1 .8.将x y 5.0=的图象向右平移2个单位后,得到的图象解析式是15.0-=x y . 三、解答题(每题10分,共70分)1.一次函数图象经过(3,5)和(-4,-9)两点,⑴求此一次函数的解析式;⑵若点(a ,2)在函数图象上,求a 的值.解略:⑴12-=x y ,⑵23=a2.已知一次函数n x m y -++=3)42(,求:⑴m 、n 是什么数时,y 随x 的增大而增大;⑵m 、n 为何值时,函数图象与y 轴的交点在x 轴下方;⑶m 、n 为何值时,函数图象经过原点;⑷若图象经过第一、二、三象限,求m 、n 的取值范围.解略:⑴当m >-2、n 为任意数时,y 随x 的增大而增大;⑵当m ≠-2、n >3时,函数图象与y 轴的交点在x 轴下方;⑶当m ≠-2、n =3为何值时,函数图象经过原点; ⑷当m >-2、n <3时,图象经过第一、二、三象限.3.画出函数62+=x y 的图象,利用图象:⑴求方程062=+x 的解;⑵求不等式62+x >0的解;⑶若-2≤y ≤4,求x 的取值范围.解:图略⑴方程062=+x 的解为3-=x; ⑵不等式62+x >0的解为3->x ;⑶当14-≤≤-x 时-1≤y ≤3.4.⑴求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;⑵设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式.解:⑴62+-=x y ,图略⑵△ABC 的面积S 关于t 的函数表达式为tS 2133-=5.我国边防局接到情报,近海处有一可疑船只A 正向公海方向行驶,边防局迅速派出快艇B 追赶,如图(1),图(2)中1l ,2l 分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.(1) (2)根据图象回答下列问题:⑴哪条线表示B 到海岸的距离与追赶时间之间的关系?⑵A ,B 哪个速度快?⑶15分内B 能否追上A ?⑷如果一直追下去,那么B 能否追上A ?⑸当A 逃到海岸12海里的公海时,B 将无法对其进行检查,照此速度,B 能否在A 逃入公海前将其拦截?解略:⑴射线1l 表示B 到海岸的距离与追赶时间之间的关系;⑵快艇B 的速度快;⑶15分内B 不能否追上A ;⑷如果一直追下去,那么B 能追上A ;⑸照此速度,B 能在A 逃入公海前将其拦截.6.我国很多城市水资源缺乏,为了加强居民的节水意识,•某市制定了每月用水4吨以内(包括4吨)和用水4吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y (元)是用水量x (吨)的函数,其函数图象如图.⑴观察图象,求出函数在不同范围内的解析式;⑵说出自来水公司在这两个用水范围内的收费标准;⑶若某用户该月交水费12.8元,求他用了多少吨水.解略:⑴⎩⎨⎧>-≤=)4(6.16.1)4(2.1x x x xy⑵4吨以内(包括4吨),每吨1.2元 4吨以上,每吨1.6元⑶若某用户该月交水费12.8元,则他用了9吨水.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km ),图10中的折线分别表示S 1、S 2与t 之间的函数关系.⑴甲、乙两地之间的距离为 8 km ,乙、丙两地之间的距离为 2 km ; ⑵求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?⑶求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.解略:⑵第二组由甲地出发首次到达乙地及由乙地到 达丙地所用的时间分别是0.8h 和0.2h ; ⑶)18.0(8102<<-=t t S可以编辑的试卷(可以删除)。
第14章《一次函数》慈云中学单元测试题(含答案)

y=ax-3y=2x+bOy-2-5x慈云中学八年级《一次函数》测试题题号 一1 二2 三3 四4 五5 六6 七7 八8 得分任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级 姓名 座号 评分______________一. 填空(每题4分,共28分)1. 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是______2. 已知一次函数y=kx+5的图象经过点(-1,2),则k= .3. 一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 图象与坐标轴所围成的三角形面积是 .4. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .5.写出同时具备下列两个条件的一次函数表达式(写出一个即可) . (1)y 随着x 的增大而减小。
(2)图象经过点(1,-3)6.某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表 质量x (千克) 1 2 3 4 …… 售价y (元)3.60+0.207.20+0.2010.80+0.2014.40+0.2……由上表得y 与x 之间的关系式是 . 7.已知函数2y x b =+和3y ax =-的图像交于点(25)P --,,则根据图像可得不等式23x b ax +>-的解集是 .二、选择题(每题3分,共21分)8.下列函数(1)y =πx (2)y=2x -1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一x (cm )2052012.5 次函数的有( )A 、4个B 、3个C 、2个D 、1个9.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 y 2大小关系是( )A 、y 1 >y 2B 、y 1 =y 2C 、y 1 <y 2D 、不能比较10.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )A 、BC D11.已知一次函数y=kx+b 的图象如图所示,则k,b 的符号是( ) A 、k>0,b>0 B 、k>0,b<0 C 、k<0,b>0 D 、k<0,b<012.弹簧的长度y cm 与所挂物体的质量x(kg)的关系是一次函数, 图象如右图所示,则弹簧不挂物体时的长度是( )A 、9cmB 、10cmC 、10.5cmD 、11cm 13.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是 ( )A 、 y=2xB 、y=2x -6C 、 y=5x -3D 、y=-x -3 14.下面函数图象不经过第二象限的为 ( )A 、y=3x+2B 、 y=3x -2C 、y=-3x+2D 、 y=-3x -2三、解答题(每题9+10+10++10+12=51分,共51分)15.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题: (1)当行驶2千米时,收费应为 元;20 4h (厘米) t (小时)204 h (厘米) t (小时)204h (厘米) 204 h (厘米) t (小时)Yx(2)从图象上你能获得哪些信息?(请写出2条)①②(3)求出收费y(元)与行使x(千米)(x≥3)之间的函数关系式。
八年级数学上册第十四章一次函数单元综合测试题试题

青云镇中心中学八年级数学上册第十四章一次函数单元综合测试题新人教版班级姓名等级一、选择〔每一小题3分,一共30分〕题号 1 2 3 4 5 6 7 8 9 10 答案1.以下函数,y随x增大而减小的是〔〕A.y=x B.y=x–1 C.y=x+1 D.y=–x+12.假设点A(2 , 4)在直线y=kx–2上,那么k=〔〕A.2 B.3 C.4 D.03.y=kx+b图象如图那么〔〕A.k>0 , b>0B.k>0 , b<0创作;朱本晓C.k<0 , b<0D.k<0 , b>04.直线y=(k–2)x+k不经过第三象限,那么k的取值范围是〔〕A.k≠2 B.k>2 C.0<k<2 D.0≤k<2 自变量x取值范围是〔〕5.函数y=3xA.x≥3 B.x>3 C.x≤3 D.x<36.y=kx+k的大致图象是〔〕A B CD7.函数y=kx+2,经过点(1 , 3),那么y=0时,x=〔〕A.–2 B.2 C.0创作;朱本晓D.±28.直线y=x+1与y=–2x–4交点在〔〕A.第一象限B.第二象限C.第三象限D.第四象限9.函数y=2x+1的图象经过〔〕A.(2 , 0) B.(0 , 1) C. (1 , 0)D.(12, 0)10.正确反映,龟兔赛跑的图象是〔〕A B CD二、填空〔每一小题3分,一共30分〕11.函数y=(k–3)x k -8是正比例函数,那么k=________.12.函数表示法有三种,分别是_________ , _________ , _________.创作;朱本晓创作;朱本晓 13.函数y=x -2自变量x 的取值范围是_________. 14.一次函数经过点(–1 , 2)且y 随x 增大而减小,请写出一个满足上述条件的函数关系式______________________________.15.y+2和x 成正比例,当x=2时,y=4且y 与x 的函数关系式是____________________________________.16.直线y=3x+b 与y 轴交点(0 ,–2),那么这条直线不经过第____象限.17.直线y=x –1和y=x+3的位置关系是_________,由此可知方程组y =x -1y =x +3⎧⎨⎩解的情况为__________________. 18.一次函数图象经过第二、三、四象限,那么它的解析式是_________〔只填一个〕.19.点A(a ,–2) , B(b ,–4)在直线y=–x+6上,那么a 、b 的大小关系是a____b.20.从A地向B地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,假设通话时间是七分钟〔t≥3且t是整数〕,那么付话费y 元与t分钟函数关系式是__________________.三、解答题〔21.22.每一小题8分;23题9分;24.25.26题每一小题12分〕21.函数y=(2m–2)x+m+1 〔此题8分〕〔1〕m为何值时,图象过原点.〔2〕y随x增大而增大,求m的取值范围.〔3〕函数图象与y轴交点在x轴上方,求m取值范围.〔4〕图象过二、一、四象限,求m的取值范围.22.一次函数图象经过点(3 , 5) , (–4,–9)两点. 〔此题8分〕〔1〕求一次函数解析式.创作;朱本晓〔2〕求图象和坐标轴的交点坐标.〔3〕求图象和坐标轴围成三角形面积.〔4〕点(a , 2)在图象上,求a的值.40cm. (此题9分)〔1〕写出底边长ycm与腰xcm的函数关系式.〔2〕写出自变量取值范围.〔3〕画出函数图象24.甲、乙两人分别骑自行车和摩托车从甲地到乙地 (此题12分) 〔1〕谁出发较早,早多长时间是?谁到达乙地早?早多长时间是创作;朱本晓〔2〕两人行驶速度分别是多少?〔3〕分别求出自行车和摩托车行驶过程的函数解析式?25.一农民带了假设干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数〔含备用零钱〕的关系如下图,结合图象答复以下问题:〔此题12分〕〔1〕农民自带的零钱是多少?〔2〕降价前他每千克土豆出售的价格是多少?〔3〕降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱〔含备用零钱〕是26元,问他一一共带了多少千克土豆?创作;朱本晓26.某地拔号入网有两种收费方式,A计时制3元/时;B全日制54元/月,另加通信费1.2元/时,问选择哪种上网方式钱? (此题12分)励志赠言经典语录精选句;挥动**,放飞梦想。
第14章 一次函数单元复习测试卷(含答案)

第十四章 一次函数单元复习测试卷的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级 姓名 座号 成绩一、选择题(每题5分,共30分)1.下列给出的四个点中,不在直线23y x =-上的是( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 2.下列关系式中,不是函数关系的是( )A.2y x =-B.y x =±C.2y x =D.32y x =+ 3.已知每枝笔售2元,则总售价y 元与售出数量x 枝的函数图像是( )A.一条直线B.一条射线C.一条线段D.呈射线排列的无限个点 4.如果直线36y x =+与24y x =-交点坐标为(,)a b ,则x ay b =⎧⎨=⎩是下列哪个方程组的解( )A.3624y x x y -=⎧⎨-=⎩B.3624y x x y -=⎧⎨-=-⎩C.3624x y x y -=⎧⎨-=⎩D.3624x y x y -=⎧⎨-=-⎩5.无论m 为何实数,直线2y x m =+与4y x =-+的交点不可能在( ) A.第一象限B.第二象限C.第三象限D.第四象限6.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h (米)随时间t (小时)变化的大致图象是( )二、填空题(每题5分,共30分)7.正比例函数的图像经过点(1,-5),它的解析式是 . 8.函数14y x =-中,自变量x 的取值范围是 . 9.直线142y x =-可以由直线112y x =+向 平移 个单位得到. 10.若直线26y x =-与x 、y 轴的交点分别为点A 、B ,则AOB S ∆= .11.若关于10(0)ax a +>≠的解集是1x <,则直线1y ax =+与x 轴的交点坐标是 . 12.在函数5y x m =-+的图象上有点1(2,)y -,2(5,)y ,则12,y y 的大小关系是 . 三、解答题(共40分)13.(8分)将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .(1)设x 张白纸粘合后的总长度为ycm ,写出y 与x 的函数关系式; (2)求出当20x =时,y 的值.14.(10分)已知一次函数图象经过(3,5)和(-4,-9)两点.(1)求此一次函数的解析式; (2)若点(m ,2)在函数图象上,求m 的值.15.(10分)一天上午8时,小华去县城购物,到下午2时返回家,结合图象回答:(1)小华何时第一次休息?(2)小华离家最远的距离是多少?(3)返回时平均速度是多少?(4)请你描述一下小华购物的情况.16.(12分)某水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg,或将当日所捕捞的水产品40kg进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,设每天安排x名工人进行水产品精加工.(1)求每天做水产品精加工所得利润y(元)与x的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使这一天所获利润最大?最大利润是多少?参考答案一、选择题(每题5分,共30分)1.下列给出的四个点中,不在直线23y x =-上的是( D )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) 2.下列关系式中,不是函数关系的是( B )A.2y x =-B.y x =±C.2y x =D.32y x =+ 3.已知每枝笔售2元,则总售价y 元与售出数量x 枝的函数图像是( D )A.一条直线B.一条射线C.一条线段D.呈射线排列的无限个点 4.如果直线36y x =+与24y x =-交点坐标为(,)a b ,则x ay b =⎧⎨=⎩是下列哪个方程组的解( A )A.3624y x x y -=⎧⎨-=⎩B.3624y x x y -=⎧⎨-=-⎩C.3624x y x y -=⎧⎨-=⎩D.3624x y x y -=⎧⎨-=-⎩5.无论m 为何实数,直线2y x m =+与4y x =-+的交点不可能在( C ) A.第一象限B.第二象限C.第三象限D.第四象限6.有一游泳池注满水,现按一定速度将水排尽,然后进行清洗,再按相同速度注满水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量为h (米)随时间t (小时)变化的大致图象是( C )二、填空题(每题5分,共30分)7.正比例函数的图像经过点(1,-5),它的解析式是 =- 5y x . 8.函数14y x =-中,自变量x 的取值范围是 ≠ 4x . 9.直线142y x =-可以由直线112y x =+向 下 平移 5 个单位得到.10.若直线26y x =-与x 、y 轴的交点分别为点A 、B ,则AOB S ∆= 9 .11.若关于10(0)ax a +>≠的解集是1x <,则直线1y ax =+与x 轴的交点坐标是 (1,0) . 12.在函数5y x m =-+的图象上有点1(2,)y -,2(5,)y ,则12,y y 的大小关系是 12>y y . 三、解答题(共40分)13.(8分)将长为30cm ,宽为10cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm .(1)设x 张白纸粘合后的总长度为ycm ,写出y 与x 的函数关系式; (2)求出当20x =时,y 的值.解:(1)y 与x 的函数关系式为=+273y x(2)当=20x 时,=⨯+=27203543y .14.(10分)已知一次函数图象经过(3,5)和(-4,-9)两点.(1)求此一次函数的解析式; (2)若点(m ,2)在函数图象上,求m 的值. 解:(1)设一次函数的解析式为=+y kx b 则有3549k b k b +=⎧⎨-+=-⎩解得21k b =⎧⎨=-⎩∴一次函数的解析式为=-21y x (2)∵点(,2)m 在一次函数=-21y x 图象上 ∴212m -= ∴32m =15.(10分)一天上午8时,小华去县城购物,到下午2时返回家,结合图象回答: (1)小华何时第一次休息? (2)小华离家最远的距离是多少? (3)返回时平均速度是多少?(4)请你描述一下小华购物的情况. 答:(1)小华在上午9点第一次休息; (2)小华离家最远的距离是30千米; (3)返回时平均速度是15千米/小时; (4)略16.(12分)某水产品养殖加工厂有200名工人,每名工人每天平均捕捞水产品50kg ,或将当日所捕捞的水产品40kg 进行精加工,已知每千克水产品直接出售可获利润6元,精加工后再出售,可获利润18元,设每天安排x 名工人进行水产品精加工. (1)求每天做水产品精加工所得利润y (元)与x 的函数关系式;(2)如果每天精加工的水产品和未来得及精加工的水产品全部出售,那么如何安排生产可使这一天所获利润最大?最大利润是多少?解:(1)每天做水产品精加工所得利润y (元)与x 的函数关系式为1840720y x x =⨯=; (2)设一天所获的利润为W 元,则[] 720650(200)4018060000W x x x x =+⨯⨯--=+又∵x x ⨯--50(200)40≥0,∴x ≤11119.∵=>1800k ,∴y 随x 的增大而增大∴当=111x 时,利润最大, 1801116000079980W =⨯+=最大(元)答:应安排111名工人进行水产品精加工,安排89名工人捕捞水产品,所获利润最大,最大利润为79 980元.可以编辑的试卷(可以删除)。
第十四章一次函数单元测试题 (附答案)

一次函数单元测试题(附答案)命题人:官田中学 戴爱娣一、填空(30分)1. 已知函数y=(k –3)x k -8是正比例函数,则k=________.2. 函数表示法有三种,分别是_________ , _________ , _________.3. 函数y=x -2自变量x 的取值范围是_________. 4. 已知一次函数经过点(–1 , 2)且y 随x 增大而减小,请写出一个满足上述条件的函数关系式______________________________. 5. 已知y+2和x 成正比例,当x=2时,y=4且y 与x 的函数关系式是____________________________________. 6. 直线y=3x+b 与y 轴交点(0 ,–2),则这条直线不经过第____象限. 7.直线y=x –1和y=x+3的位置关系是_________,由此可知方程组y =x -1y =x +3⎧⎨⎩解的情况为__________________. 8. 一次函数图象经过第二、三、四象限,那么它的表达式是_________(只填一个).9. 已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b.10. 从A 地向B 地打长途,不超3分钟,收费2.4元,以后每超一分超加收一元,若通话时间七分钟(t ≥3且t 是整数),则付话费y 元与t 分钟函数关系式是__________________.二、 选择(30分)1. 下列函数,y 随x 增大而减小的是( )A .y=xB .y=x –1C .y=x+1D .y=–x+1 2. 若点A(2 , 4)在直线y=kx –2上,则k=( ) A .2 B .3 C .4 D .03. y=kx+b 图象如图则( )A .k>0 , b>0B .k>0 , b<0C .k<0 , b<0D .k<0 , b>04. 已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( )A .k ≠2B .k>2C .0<k<2D .0≤k<2 5. 函数y=x 取值范围是( ) A .x ≥3 B .x>3 C .x ≤3 D .x<36.y=kx+k 的大致图象是( )A B CD 7. 函数y=kx+2,经过点(1 , 3),则y=0时,x=( ) A .–2 B .2 C .0 D .±2 8. 直线y=x+1与y=–2x –4交点在( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y=2x+1的图象经过( ) A .(2 , 0)B .(0 , 1)C. (1 , 0)D .(12, 0)10. 正确反映,龟兔赛跑的图象是( )ABCD三、(8分)已知函数y=(2m–2)x+m+1①m为何值时,图象过原点.②已知y随x增大而增大,求m的取值范围.③函数图象与y轴交点在x轴上方,求m取值范围.④图象过二、一、四象限,求m的取值范围.四、(8分)已知一次函数图象经过点(3 , 5) , (–4,–9)两点.①求一次函数解析式.②求图象和坐标轴交点坐标.③求图象和坐标轴围成三角形面积.④点(a , 2)在图象上,求a的值.五、(8分)已知某一次函数自变量x的取值范围是0≤x≤10,函数y的取值范围,10≤y≤30 , 求此函数解析式.六、(8分)直线y=2x+m和直线y=3x+3的交点在第二象限,求m的取值范围. 七、(12分)等腰三角形周长40cm.①写出底边长ycm与腰xcm的函数关系式.②写出自变量取值范围.③画出函数图象八、(8分)甲、乙两人分别骑自行车和摩托车从甲地到乙地(1)谁出发较早,早多长时间?谁到达乙地早?早多长时间(2)两人行驶速度分别是多少?(3)分别求出自行车和摩托车行驶过程的函数解析式?九、(8分)某地拔号入网有两种收费方式,A计时制3元/时,B全日制54元/月,另加通信费1.2元/时,问选择哪种上网方式省钱?参考答案: 一、填空1、92、解析法、列表法、图象法3、x ≥1且x ≠24、y=-x+1等5、y=3x-26、一7、平行,无解 8、y=-x-1等 9、< 10、y=x-0.6 二、1~5题:DBACC ,6~10题:AACBD三、1、m=-1 2、m>1 3、m>-1 4、-1<m<1 四、1、y=2x-1 2、(0,-1)(21,0) 3、41 4、a=23五、y=2x+10或y=-2x+30 六、2<m<3七、1、y=40-2x 2、10<x<20 3、略 八、1、甲,3小时,乙,3小时2、甲10千米/时,乙40千米/时3、y 甲=10x y 乙=40x-120 九、y A =3x y B =1.2x+54每月上网时间30小时,两种方式一样,每月上网时间大于30小时,B 方式省钱,每月上网时间少于30小时,A 方式省钱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章《一次函数》
一、填空题(每题4分,共24分)
1.已知一个正比例函数的图象经过点(1,5),则这个正比例函数的表达式是 . 2.已知一次函数y=x+4的图像经过点(m ,6),则m =________
3.若直线y=kx+b 平行直线y=3x+2,且过点(2,-1),则k=______ ,b=______ . 4.两直线y=x-1与y=-x+2的交点坐标 5.一次函数y= 2x -4的图象与x 轴交点坐标是 , 与y 轴交点坐标是 .
6.如右图:一次函数y kx b =+的图象经过A 、B
△AOC 的面积为___________.
二.选择题(每题4分,共16分)
7. 下列函数中,是正比例函数的是………………………………………………..( ) (A )4x y =
. (B )4
y x
=. (C )53y x =-. (D )2621y x x =--. 8.下列各点在直线y=2x+3上的是…………………………………………………….( )
(A )(-1, 0) (B )(-5, -13) (C )(0,3) (D )(-2,1) 9.已知点(1x ,1y )和点(2x ,2y )都在直线y=- 1
2 x+2上,若12x x >,则1y ,2y 的
关系是………………………………………………………………………………….( )
(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较 10.如图所示的图象中,不可能是关于x 的一次函数y=mx-(m-3)的图象的是( )
三.解答题(共60分)
11.(11分)已知,一条直线经过点A(1,3)和B(2,5).求:
(1)这个一次函数的解析式。
(2)当3
x=-时,y的值.
12. (12分)已知函数y=(m+1)x+2m -3
(1)若函数图象经过原点,求m的值
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
13. (12分)如图是某汽车行驶的路程S (km)与时间t
的函数关系图.观察图中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是 km/min (2)汽车在中途停了多长时间? min (3)当16≤t ≤30时,求S 与t 的函数关系式.
14.(15分) 小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作: 请根据图中给出的信息,解答下列问题:
(1)放入一个小球量筒中水面升高_______cm ;
(2)求放入小球后量筒中水面的高度y (cm )与小球个数x (个)•之间的
一次函数关系式(不要求写出自变量的取值范围); (3)量筒中至少放入几个小球时有水溢出?
40 12
15.(10分) A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,•求总运费Y(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?。