实验三 信号与系统(数字信号部分1)
信号与系统实验报告三

一.实验目的1. 深入理解系统频率响应的物理意义2. 掌握利用Matlab 分析系统频率响应的方法3. 理解系统对信号的作用关系二.实验原理傅里叶变换是信号分析 的最重要的内容之一。
从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰()f t 的傅里叶变换存在的充分条件是()f t 在无限区间内绝对可积,即()f t 满足下式:()f t dt ∞-∞<∞⎰但上式并非傅里叶变换存在的必要条件。
在引入广义函数概念之后,使一些不满足绝对可积条件的函数也能进行傅里叶变换。
傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰。
在这一部分的学习中,大家都体会到了这种数学运算的麻烦。
在MATLAB 语言中有专门对信号进行正反傅里叶变换的语句,使得傅里叶变换很容易在MATLAB 中实现。
在MATLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic Math Toolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法。
下面分别介绍这两种实现方法的原理。
1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier( f ) 对f(t)进行傅里叶变换,其结果为F(w)F =fourier(f,v) 对f(t)进行傅里叶变换,其结果为F(v)F=fourier( f,u,v ) 对f(u)进行傅里叶变换,其结果为F(v) ②傅里叶反变换f=ifourier( F ) 对F(w)进行傅里叶反变换,其结果为f(x)f=ifourier(F,U) 对F(w)进行傅里叶反变换,其结果为f(u)f=ifourier( F,v,u ) 对F(v)进行傅里叶反变换,其结果为f(u)由于MATLAB 中函数类型非常丰富,要想了解函数的意义和用法,可以用mhelp 命令。
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
西交大《信号与系统》《数字信号处理》教学大纲

西安交通大学《信号与系统B》课程教学大纲(说明:信通系应该学的是《信号与系统A》,但是找不到A的大纲。
只找到了西交大电子、计算机等专业的《信号与系统B》的大纲,因为用的教材是一样的,大家就凑活着用吧)英文名称:Signals and Systems B课程编号:INFT3014学时:68 (讲课60 ,实验8 );学分:4.0 开课时间:秋季学期适用对象:电子科学与技术、计算机科学与技术专业、光信息科学与技术专业先修课程:数学分析(工程类)或高等数学、电路使用教材及参考书:1. 阎鸿森、王新凤、田惠生编《信号与线性系统》,西安交通大学出版社,1999 年8 月第一版2. [ 美] A.V. 奥本海姆等著,刘树棠译,《信号与系统》(第二版),西安交通大学出版社,1998 年一.课程性质、目的和任务“信号与系统”是电气与电子信息类各专业本科生继“电路”或“电路分析基础”课程之后必修的重要主干课程。
该课程主要研究确知信号的特性,线性时不变系统的特性,信号通过线性时不变系统的基本分析方法,信号与系统分析方法在某些重要工程领域的应用,以及数字信号处理的基础知识。
通过本课程的学习,使学生掌握信号分析、线性系统分析及数字信号处理的基本理论与分析方法,并对这些理论与方法在工程中的某些应用有初步了解。
为适应信息科学与技术的飞速发展及在相关专业领域的深入学习打下坚实的基础。
同时,通过习题和实验,学生应在分析问题与解决问题的能力及实践技能方面有所提高。
该课程是学习《现代通信原理》、《自动控制理论》等后续课程所必备的基础。
二.教学基本要求通过本课程的学习,在掌握连续时间信号与系统和离散时间信号与系统分析以及数字信号处理的基本理论和方法方面应达到以下基本要求:1. 掌握信号与系统的基本概念,信号与系统的描述方法,基本信号的特性,系统的一般性质,系统的互联,增量线性系统的等效方法。
2. 掌握信号分解的基本思想及信号在时域、频域和变换域进行分解的基本理论及描述方法。
信号与系统实验教程

信号与系统实验教程信号与系统实验是电子信息类专业中一门重要的实验课程。
在这门实验中,学生将学习如何利用实验仪器和软件工具来分析和处理信号,并理解信号在系统中的作用和相互之间的关系。
以下是一些常见的信号与系统实验教程:1. 实验一:信号的采集与表示- 学习使用信号采集仪器(例如信号发生器、示波器等)。
- 了解采样原理和采样频率对信号的影响。
- 学习如何将模拟信号转换为数字信号。
- 使用编程语言或工具对信号进行采样和表示。
2. 实验二:信号的变换与处理- 学习傅里叶变换和信号频谱分析的原理。
- 使用傅里叶变换工具(例如FFT算法)对信号进行频谱分析。
- 学习信号的时域和频域表示之间的转换关系。
- 学习数字滤波器的原理和应用。
3. 实验三:线性时不变系统的特性分析- 学习线性时不变系统的定义和性质。
- 了解系统的单位冲激响应和冲激响应与输入信号的卷积关系。
- 利用实验仪器测量系统的冲激响应。
- 使用软件工具对系统进行时域和频域特性分析。
4. 实验四:信号采样与重构- 学习信号采样和重构的理论基础。
- 利用实验仪器对信号进行采样和重构。
- 学习采样定理的应用和限制。
- 学习插值和抽取技术对信号进行采样和重构。
5. 实验五:系统的频率响应与稳定性- 学习系统的频率响应和稳定性分析。
- 使用频率响应仪器(例如频谱分析仪)对系统进行测量和分析。
- 学习系统的振荡和稳定条件。
- 学习系统的幅频特性和相频特性之间的关系。
以上是信号与系统实验教程的一些基本内容,具体的实验内容和教程可以根据教学大纲和教材进行更详细的设计和安排。
数字信号处理实验(1-7)原始实验内容文档(含代码)

实验要求1.每个实验进行之前须充分预习准备,实验完成后一周内提交实验报告;2.填写实验报告时,分为实验题目、实验目的、实验内容、实验结果、实验小结五项;3.实验报告要求:实验题目、实验目的、实验内容、实验结果四项都可打印;但每次实验的实验内容中的重要代码(或关键函数)后面要用手工解释其作用。
实验小结必须手写!(针对以前同学书写实验报告时候抄写代码太费时间的现象,本期实验报告进行以上改革)。
实验一信号、系统及系统响应实验目的:1. 掌握使用MATLAB进行函数、子程序、文件编辑等基本操作;2. 编写一些数字信号处理中常用序列的3. 掌握函数调用的方法。
实验内容:1.在数字信号处理的基本理论和MATLAB信号处理工具箱函数的基础上,可以自己编写一些子程序以便调用。
(1)单位抽样序列δ(n-n0)的生成函数impseq.m(2)单位阶跃序列u(n-n0)的生成函数stepseq.m(3)两个信号相加的生成函数sigadd.m(4)两个信号相乘的生成函数sigmult.m(5)序列移位y(n)=x(n-n0)的生成函数sigshift.m(6)序列翻褶y(n)=x(-n)生成函数sigfold.m(7)奇偶综合函数evenodd.m(8)求卷积和2.产生系列序列,并绘出离散图。
(1) x1(n)=3δ(n-2)-δ(n+4) -5≤n≤5(2) x3(n)=cos(0.04πn)+0.2w(n) 0≤n≤50其中:w(n)是均值为0,方差为1 的白噪声序列。
3.设线性移不变系统的抽样响应h(n)=(0.9)^n*u(n),输入序列x(n)=u(n)-u(n-10),求系统的输出y(n).实验二 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
实验三 信号与系统

dy (t ) dx(t ) + y (t ) = − x (t ) 系统2 系统2: dt dt
系统3: 系统3
H ( s) =
2s ( s + 1) 2 + 1002
2s s +1
系统4 系统4:
H (s) =
系统5 系统5:
s 2 + 100 H (s) = 2 s + 2 s + 100
分别绘制其零极点分布图和幅频特性曲线、相频特性曲线, 1、分别绘制其零极点分布图和幅频特性曲线、相频特性曲线,并从系统 的幅频特性曲线分析系统是哪种滤波器(低通、高通、全通、带通、 的幅频特性曲线分析系统是哪种滤波器(低通、高通、全通、带通、带阻 滤波器)? 滤波器)? 对于系统3 输入为sin(ωt) sin(ωt), 分别为50 90,100,110,150时 50, 2、对于系统3,输入为sin(ωt),当ω分别为50,90,100,110,150时 观察系统稳态响应的幅值,并解释变化趋势和系统性能的关系。 观察系统稳态响应的幅值,并解释变化趋势和系统性能的关系。
0.5 0.4 cn? ? ? 0.3 0.2 0.1 0 -8 -6 -4 -2 0 2 4 6 8
2 1 cn? ? ? 0 -1 -2 -8
-6
-4
-2
0
2
4
6
8
ω/ω()
周期信号的合成以及Gibbs Gibbs现象 二、周期信号的合成以及Gibbs现象 用有限项级数合成例1所给的周期方波信号,并绘制出原始周期信号、 3、用有限项级数合成例1所给的周期方波信号,并绘制出原始周期信号、 合成的周期信号、信号的幅度谱和相位谱。 合成的周期信号、信号的幅度谱和相位谱。
信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。
具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。
2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。
3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。
4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。
二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。
2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。
3、计算机及相关软件:用于进行数据处理和分析。
三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。
连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。
常见的信号类型包括正弦信号、方波信号、脉冲信号等。
2、线性时不变系统线性时不变系统具有叠加性和时不变性。
叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。
3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。
对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。
2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。
3、在示波器上观察并记录不同信号的波形、频率和幅度。
信号与系统实验报告资料

《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。
2、观测基波和其谐波的合成。
二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。
2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波Um0TU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7s i n 715s i n 513s i n 31(s i n 4 ++++=t t t t u t u mωωωωπ 2、三角波())5s i n 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4c o s 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6c o s 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验三
1、已知0.51,2sin(10)t y e y t -==,绘制12y y +和1*2y y 的图形。
clc,clear;
t=-5:0.01:5;
y1=exp(-0.5*t);y2=sin(10*t);
y3=y1+y2;y4=y1.*y2;
plot(t,y3,':',t,y4,'-');
legend('y1+y2的曲线图','y1*y2的曲线图');
2、利用impz 函数,计算以下差分方程表示的离散系统的单位脉冲响应,并绘制前30点的波形。
[]0.7[1]0.45[2]0.6[3]0.8[]0.44[1]0.36[2]0.02[3]y k y k y k y k f k f k f k f k +-----=--+-+- k=0:30;a=[1 0.7 -0.45 -0.6];b=[0.8 -0.44 0.36 0.02];
impz(b,a,k);title('单位脉冲响应');
3、已知输入信号为[][1][11]f k k k εε=---,系统的单位冲激响应为[]0.9k
h k =,利用卷积和求系统的响应y[k],并绘制[]f k 、[]h k 、[]y k 的波形
clc,clear;
n=1:100;
x=[1 1 1 1 1 1 1 1 1 1 zeros(1,90)];
h=0.9.^n;
y=conv(x,h);
k=1:199;
subplot(3,1,1);stem(n,x);title('f[k]的波形');
subplot(3,1,2);stem(n,h);title('h[k]的波形');
subplot(3,1,3);stem(k,y);title('y[k]的波形');
4、已知某连续时间系统的微分方程为''''()4()3()2()()y t y t y t f t f t ++=+,输入信号()()f t t ε=,初始状态为(0)1y -=,'(0)2y -
=,试求系统的零输入响应、零状态响应和完全响应,并绘制响应的波形。
syms t;
[r p]=residue([1 4 3],[2 1]);
A=r.*exp(p*t);
ft=sum(A);
ft=
5/(8*exp(t/2))
t=0:0.01:10;
sys=tf([2 1],[1 4 3]);
f=1*(t>0);
y1=lsim(sys,f,t);
plot(t,y1);title('系统零状态响应波形图');xlabel('时间');ylabel('幅值');
figure
y2=5./(8*exp(t/2));
plot(t,y2);title('系统零输入响应波形图');xlabel('时间');ylabel('幅值');
figure
y3=y1+y2';
plot(t,y3);title('系统全响应波形图');xlabel('时间');ylabel('幅值');
5、已知周期三角信号,请分解为傅里叶级数,并用前面7次谐波合成。
(幅值在正负1之间交替,周期4)
T=4;tao=2;w=2*pi/T;
a0=quadl(@singrect,-2,2)/T;%计算a0
N=7;an=zeros(1,N);bn=zeros(1,N);
for k=1:N
an(k)=quadl(@rectcos,-2,2,[],[],k,w)*2/T;
bn(k)=quadl(@rectsin,-2,2,[],[],k,w)*2/T;
end
t=-2:0.001:2;
y=1-abs(t);
subplot(2,2,1);plot(t,y,'r');hold on;
axis([-4,4,-1.5,1.5]);%最初的三角信号
%有限项级数逼近
A0=a0;
AN=sqrt(an.^2+bn.^2);
fiN=-atan(bn./an);
subplot(4,2,1);plot(t,y,'r',t,A0/2);axis([-4,4,-1.5,1.5]);title('直流项');
grid on;%直流项
wave=a0/2;
for k=1:7
wave=wave+an(k)*cos(k*w*t+fiN(k));
subplot(4,2,k+1);plot(t,y,'r',t,wave);
axis([-4,4,-1.5,1.5]);grid on;
end
下面是3个被调用的子程序:
function y=rectsin(t,n,w)
y=(1-abs(t)).*(t>-2&t<2).*sin(n*w*t);
function y=singrect(t)
y=(1-abs(t)).*(t>-2&t<2);
function y=rectcos(t,n,w)
y=(1-abs(t)).*(t>-2&t<2).*cos(n*w*t);。