数字信号处理实验一信号、 系统及系统响应
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验

数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。
f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。
加深对采样定理的理解。
g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。
数字信号处理实验答案

数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
《数字信号处理》实验报告

《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。
通过该实验加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
所以,学习完第三、四章后,可安排进行实验二。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
学习完第六章以后可以进行实验三。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
以上所提到的四个实验,可根据实验课时的多少恰当安排。
例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。
若时间紧,可以在实验三、四之中任做一个实验。
实验一信号系统及系统响应

a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)
clc h1=[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0]; subplot(221); stem(h1); h2]; subplot(222); =[1,2.5,2.5,1,0,0,0,0,0,0,0,0,0,0 stem(h2); t=0.001; n=1:15; A=10,a=2,w0=10*pi; x=A*exp(-a*t*n).*sin(w0*t*n); subplot(223); plot(n,x); subplot(224); stem(n,x); figure y1=conv(x,h1);%阶跃响应 subplot(121); stem(y1); y2=conv(x,h2);%冲激响应 subplot(122); stem(y2);
(t)的傅里叶变换
X a (jΩ)为 1 X ( j ) X [( j m ) ] a a s T m
^
(3)
将(2)式代入(1)式并进行傅里叶变换,
X a ( j)
^
[ xa (t ) (t nT )]e jt dt
n
n
xa (t ) (t nT )e jt dt
n
xa (nT )e jt dt
(4)
式中的xa(nT)就是采样后得到的序列x(n), 即
x ( n )x n T ) a(
x(n)的傅里叶变换为
n X ( e ) x ( ne ) j j n
数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
数字信号处理实验一

数字信号处理实验一实验目的:掌握利用Matlab产生各种离散时间信号,实现信号的相加、相乘及卷积运算实验函数:参考课本77-19页,注意式(2.11.1)的表达与各matlab子函数间的关系。
1、stem(x,y) % 绘制以x为横轴,y为纵轴的离散序列图形2、[h ,t] = impz(b, a) % 求解数字系统的冲激响应h,取样点数为缺省值[h, t] = impz(b, a, n) % 求解数字系统的冲激响应h,取样点数为nimpz(b, a) % 在当前窗口用stem(t, h)函数出图3、[h ,t] = dstep(b, a) % 求解数字系统的阶跃响应h,取样点数为缺省值[h, t] = dstep (b, a, n) % 求解数字系统的阶跃响应h,取样点数为ndstep (b, a) % 在当前窗口用stairs(t, h)函数出图4、y = filter(b,a,x) % 在已知系统差分方程或转移函数的情况下求系统输出实验原理:一、常用的时域离散信号及其程序1、产生单位抽样函数δ(n)n1 = -5;n2 = 5;n0 = 0;n = n1:n2;x = [n==n0]; % x在n=n0时为1,其余为0stem(n,x,'filled'); %filled:序列圆心处用实心圆表示axis([n1,n2,0,1.1*max(x)])title('单位抽样序列')xlabel('time(n)')ylabel('Amplitude:x(n)')2、产生单位阶跃序列u(n)n1 = -2;n2 = 8;n0 = 0;n = n1:n2;x = [n>=n0]; % x在n>=n0时为1,其余为0stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)])title('单位阶跃序列')xlabel('time(n)')ylabel('Amplitude:x(n)')3、复指数序列复指数序列的表示式为()(),00,0j n e n x n n σω+⎧≥⎪=⎨<⎪⎩,当0ω=时,()x n 为实指数序列;当0σ=时,()x n 为虚指数序列,即()()cos sin j n e n j n ωωω=+,即其实部为余弦序列,虚部为正弦序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验一信号、系统及系统响应西安郵電學院数字信号处理课内实验报告书系部名称:计算机系学生姓名:常成娟专业名称:电子信息科学与技术班级:电科0603学号:04062095(22号)时间: 2008-11-23实验一: 信号、 系统及系统响应一. 实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。
(2) 熟悉时域离散系统的时域特性。
(3) 利用卷积方法观察分析系统的时域特性。
(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。
二. 实验原理与方法采样是连续信号数字处理的第一个关键环节。
对一个连续信号xa(t)进行理想采样的过程可用(10.3.1)式表示。
(10.3.1)其中 (t)为xa(t)的理想采样, p(t)为周期冲激脉冲, 即 (10.3.2)(t)的傅里叶变换 (j Ω)为(10.3.3)将(10.3.2)式代入(10.3.1)式并进行傅里叶变换,^()()()a a x t x t p t =^x()()n p t t nT δ∞=-∞=-∑^x^aX 1()[()]a a s m X j X j m T∞⋅=-∞Ω=Ω-Ω∑^()[()()]()()j t a a n j t a n X j x t t nT e dtx t t nT e dtδδ∞∞-Ω-∞=-∞∞∞-Ω-∞=-∞Ω=-=-∑⎰∑⎰(10.3.4)式中的xa(nT)就是采样后得到的序列x(n), 即x(n)的傅里叶变换为(10.3.5)比较(10.3.5)和(10.3.4)可知 (10.3.6)在数字计算机上观察分析各种序列的频域特性,通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有 (10.3.7)其中一个时域离散线性非移变系统的输入/输出关系为(10.3.8)上述卷积运算也可以在频域实现()()a x n x nT =()()j j nn X e x n e ωω∞-=-∞=∑^()()j a TX j X e ωω=ΩΩ=1()()2,0,1,,1k N j nj k n k X e x m e k k M Mωωπω--====⋅⋅⋅-∑()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑()()()j j j Y e X e H e ωωω=10.80.60.40.200100200300400500x a (j f )f /Hz图10.3.1 实验一的主程序框图三. 实验内容及步骤(1) 认真复习采样理论、 离散信号与系统、 线性卷积、 序列的傅里叶变换及性质等有关内容, 阅读本实验原理与方法。
(2) 编制实验用主程序及相应子程序。
① 信号产生子程序, 用于产生实验中要用到的下列信号序列: xa(t)=Ae -at sin(Ω0t)u(t)进行采样,可得到采样序列xa(n)=xa(nT)=Ae-anT sin(ΩnT)u(n), 0≤n<50其中A为幅度因子, a为衰减因子,Ω0是模拟角频率,T为采样间隔。
这些参数都要在实验过程中由键盘输入,图10.3.2 xa(t)的幅频特性曲线产生不同的xa(t)和xa(n)。
b. 单位脉冲序列: xb(n)=δ(n)c. 矩形序列: xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR系统。
a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序,用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB语言中的卷积函数conv。
conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。
调用格式如下:y=conv (x, h)(3) 调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。
a. 取采样频率fs=1 kHz, 即T=1 ms。
b. 改变采样频率, fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率, fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。
源程序:A=444.128;a=50*sqrt(2)*pi;n=0:49;fs=1000;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=1000');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,0,1000]);xlabel('w/pi');ylabel('/Xa(ejw)/');A=444.128;w=50*sqrt(2)*pi;n=0:49;fs=500;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=500');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,0,500]);xlabel('w/pi');ylabel('/Xa(ejw)/');A=444.128;a=50*sqrt(2)*pi;w=50*sqrt(2)*pi;n=0:49;fs=200;x=A*exp((-a)*n/fs).*sin(w*n/fs); k=-200:200;w=(pi/100)*k;y=x*(exp(-j*pi/100)).^(n'*k);%y=fft(x)subplot(1,2,1);stem(n,x);axis([0,50,-50,150]);xlabel('n');ylabel('Xa(n)');title('fs=200');subplot(1,2,2);plot(w/pi,abs(y))axis([-2,2,80,180]);xlabel('w/pi');ylabel('/Xa(ejw)/');结果分析:时域采样定理要求采样频率大于折叠频率fs/2=500Hz,频谱才不至于出现混叠。
从仿真图中可以看出当fs=200Hz时,频谱出现严重失真(出现混叠);而当fs=1000Hz时,频谱没有失真;fs=500Hz时,频谱刚好处于临界状态。
②时域离散信号、系统和系统响应分析。
a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
原程序:函数调用部分:function[x,n]=impesq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];n=0:3;xb=impesq(0,0,3);Hb=impesq(0,0,3)+2.5*impesq(1,0,3)+2.5*impesq(2,0,3)+impesq(3,0,3); k=-200:200;w=(pi/100)*kaa=xb*(exp(-j*pi/100)).^(n'*k);bb=Hb*(exp(-j*pi/100)).^(n'*k);n=0:3subplot(3,2,1);stem(n,xb);axis([-2 2 0 2]);xlabel('n');ylabel('xb(n)');title('xb(n)');subplot(3,2,2);plot(w/pi,abs(aa));axis([-2 2 0 2]);xlabel('w/pi');ylabel('xb(|(jw)|');title('[xb(ejw)]');subplot(3,2,3);stem(n,Hb);axis([0 4 0 3]);xlabel('n');ylabel('Hb');title('Hb(n)');subplot(3,2,4);plot(w/pi,abs(bb));axis([-2 2 0 8]);xlabel('w/pi');ylabel('Hb(|(jw)|');title('[Hb(ejw)]');n=0:6y=conv(xb,Hb);yy=y*(exp(-j*pi/100)).^(n'*k); subplot(3,2,5);stem(n,y);axis([0 7 0 3]);xlabel('n');ylabel('y(n)');title('xb*Hb');subplot(3,2,6);plot(w/pi,abs(yy));axis([-2 2 0 8]);xlabel('w/pi');ylabel('|Y(jw)|');title('[Y(ejw)]');结果分析:单位冲击序列和任意序列卷积等于任意序列,从仿真图中可以直接看出卷积后的频谱Y/(ejw)/和任意序列的频谱Hb/(ejw)/相同。
b. 观察系统ha(n)对信号xc(n)的响应特性。
原程序:函数调用部分:function[x,n]=stepseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)>=0];n=0:18;xc=stepseq(0,0,9);Ha=stepseq(0,0,9);y=conv(xc,Ha);subplot(2,2,1);stem(n,y);axis([0 20 0 10]);xlabel('n');ylabel('y(n)');title('xc(n)*Ha(n)');k=-300:300;W=(pi/100)*k;Y=y*(exp(-j*pi/100)).^(n'*k) subplot(2,2,2);plot(W/pi,Y);axis([-2 2 0 150]);xlabel('W/pi');ylabel('Y(jw)');title('FT[xc(n)*Ha(n)]');n=0:13;xc1=stepseq(0,0,4);y=conv(xc1,Ha);subplot(2,2,3);stem(n,y);axis([0 15 0 10]);xlabel('n');ylabel('y(n)');title('xc1(n)*Ha(n)');k=-300:300;W=(pi/100)*k;Y=y*(exp(-j*pi/100)).^(n'*k) subplot(2,2,4);plot(W/pi,Y);axis([-2 2 0 60]);xlabel('W/pi');ylabel('Y(jw)');title('FT[xc1(n)*Ha(n)]');结果分析:长度为M的序列X1(n)和长度为N的序列X2(n)做线性卷积后其长度L=M+N-1.当Xc(n)和Ha(n)的长度都为10,作线性卷积后长度为10+10-1=19,和左上角的仿真结果一致;当Xc(n)和Ha(n)的长度分别为5和10时,作线性卷积后的长度为14,仿真图如左下。