2019年九年级数学上册 21.1 一元一次方程教案 (新版)新人教版.doc

合集下载

一元一次方程教案人教版

一元一次方程教案人教版

一元一次方程教案最新人教版一、教学目标1. 让学生理解一元一次方程的概念,掌握一元一次方程的解法。

2. 培养学生运用一元一次方程解决实际问题的能力。

3. 培养学生合作交流、归纳总结的能力。

二、教学重点1. 一元一次方程的概念及解法。

2. 一元一次方程在实际问题中的应用。

三、教学难点1. 一元一次方程的解法。

2. 实际问题中的一元一次方程求解。

四、教学方法1. 采用问题驱动法,引导学生自主探究一元一次方程的解法。

2. 利用实例分析,让学生了解一元一次方程在实际生活中的应用。

3. 组织小组讨论,培养学生的合作交流能力。

4. 运用归纳总结法,帮助学生巩固所学知识。

五、教学内容1. 一元一次方程的概念及例题解析。

2. 一元一次方程的解法(移项、合并同类项、系数化为1)。

3. 一元一次方程在实际问题中的应用举例。

4. 课堂练习:求解一元一次方程。

5. 总结一元一次方程的解法及应用。

六、教学步骤1. 引入新课:通过复习相关数学知识,引导学生回顾代数式的基本概念,为新课的学习做好铺垫。

2. 讲解一元一次方程的概念:解释一元一次方程的定义,举例说明。

3. 演示一元一次方程的解法:通过示例,展示解一元一次方程的步骤,包括移项、合并同类项、系数化为1。

4. 应用实例:提供几个实际问题,让学生运用一元一次方程进行求解。

5. 课堂练习:布置一些练习题,让学生独立完成,检验对一元一次方程的掌握程度。

七、教学反思在课后,对课堂教学进行反思,观察学生的反馈,了解学生在学习过程中的难点和疑点,为下一步的教学提供参考。

八、课后作业布置一些相关的课后作业,让学生进一步巩固一元一次方程的知识,提高解题能力。

九、课堂评价通过课堂提问、练习完成情况等方式,对学生的学习情况进行评价,了解学生的掌握程度,为后续教学提供依据。

十、教学拓展对于学习优秀的学生,可以提供一些拓展资料,如一元二次方程、多元方程等,激发学生的学习兴趣,提高学生的数学素养。

初中数学人教版九年级上册:第21章《一元二次方程》全章教案

初中数学人教版九年级上册:第21章《一元二次方程》全章教案

初中数学人教版九年级上册实用资料第二十一章 一元二次方程 21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页 问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x 个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=±2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x =±1.2 即1+x =1.2,1+x =-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.第2课时配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m ,长为8 m .像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.例1解下列方程:(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a )2即(x +b 2a )2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac4a 2≥0∴(x +b 2a )2=(b 2-4ac 2a)2直接开平方,得:x +b2a =±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x (3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac 2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1)(2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734) 例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?) 例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值.变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ;变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x 2-5x -3=0 (2)9x +2=x 2 (3)6x 2-3x +2=0(4)3x 2+x +1=02.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值.3.已知方程x 2+bx +6=0的一个根为-2,求另一根及b 的值.21.3 实际问题与一元二次方程(2课时)第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x 个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页习题21.3第2-7题.第2课时解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页习题21.3第8,10题.。

人教版数学九年级上册21.1《一元二次方程(1)》教学设计

人教版数学九年级上册21.1《一元二次方程(1)》教学设计

人教版数学九年级上册21.1《一元二次方程(1)》教学设计一. 教材分析《一元二次方程(1)》是人教版数学九年级上册第21.1节的内容,本节主要介绍一元二次方程的定义、解法及其应用。

一元二次方程是初中数学的重要内容,也是后续学习高中数学的基础。

通过本节的学习,学生能够了解一元二次方程在实际生活中的应用,培养其解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程有一定的了解。

但在解一元二次方程方面,学生可能还存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,引导学生逐步掌握一元二次方程的解法。

三. 教学目标1.知识与技能:理解一元二次方程的定义,掌握一元二次方程的解法,能够应用一元二次方程解决实际问题。

2.过程与方法:通过合作交流,培养学生探究问题的能力,提高学生解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系。

四. 教学重难点1.重点:一元二次方程的定义,一元二次方程的解法。

2.难点:一元二次方程的解法,应用一元二次方程解决实际问题。

五. 教学方法采用问题驱动法、合作交流法、案例教学法等,引导学生主动探究,合作解决问题。

六. 教学准备1.教师准备:教材、教案、PPT、教学辅助材料等。

2.学生准备:课本、练习本、文具等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入一元二次方程的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解一元二次方程的定义,呈现一元二次方程的解法,引导学生理解并掌握解法。

3.操练(10分钟)学生独立完成一些一元二次方程的练习题,巩固所学知识。

4.巩固(5分钟)对学生的练习进行讲解,解答学生的疑问,帮助学生巩固知识。

5.拓展(10分钟)引导学生思考一元二次方程在实际生活中的应用,让学生尝试解决实际问题。

6.小结(5分钟)对本节课的主要内容进行总结,强调一元二次方程的定义和解法。

7.家庭作业(5分钟)布置一些一元二次方程的练习题,让学生课后巩固所学知识。

陕西省石泉县池河中学人教版九年级数学上册教案:21.1一元一次方程

陕西省石泉县池河中学人教版九年级数学上册教案:21.1一元一次方程
实践活动和小组讨论环节,学生们表现出了很高的热情。他们通过讨论和实验操作,不仅加深了对一元一次方程的理解,还学会了如何将理论知识应用于实际问题的解决中。我在旁听学生的讨论时发现,他们在解决问题的过程中,能够相互启发,共同进步。
然而,我也注意到,部分学生在小组讨论中较为沉默,可能是因为害羞或者不自信。在未来的教学中,我需要更多地关注这些学生,鼓励他们积极参与,增强他们的自信心。同时,我也应该提供更多的机会让每个学生都有表达自己观点的机会。
4.练习:教材中第21.1节后的习题1-4题。
二、核心素养目标
本节课的核心素养目标旨在培养学生的逻辑推理、数学建模和问题解决能力。通过学习一元一次方程,使学生能够:
1.理解一元一次方程的概念,掌握方程的基本性质,提高逻辑推理能力;
2.学会运用移项、合并同类项等方法解一元一次方程,培养数学运算和数学建模能力;
-难点三:将实际问题抽象为一元一次方程的过程,学生需要掌握如何从问题中提取关键信息,正确设立变量,以及如何根据问题情境列出方程。
举例:
-对于移项难点,可以通过具体的例子,如方程2x + 5 = 3x - 2,展示如何将3x移至等式左边,2移至等式右边,并解释符号变化的规则。
-在合并同类项方面,可以通过对比x和2x,以及3和3x这样的项,强调只有变量和它们的系数相同的项才能合并,同时演示如何将常数项与其他项合并。
在总结回顾环节,我对学生今天的学习成果进行了简单的回顾,也给了他们提问的机会。我感到欣慰的是,学生们敢于提出自己的疑问,这表明他们有勇气面对自己的不足,也愿意寻求帮助。
3.能够将实际问题抽象为一元一次方程,提高问题分析和解决能力;
4.通过合作交流,提升学生的团队协作能力和表达交流能力,激发对数学学科的兴趣和自信心。

一元一次方程教案(人教版)

一元一次方程教案(人教版)

一元一次方程教案(最新人教版)章节一:引言教学目标:1. 理解实际问题与方程之间的联系。

2. 掌握一元一次方程的概念。

教学内容:1. 引入实际问题,引导学生思考问题与数值之间的关系。

2. 介绍一元一次方程的定义和特点。

教学步骤:1. 引入实际问题,例如购物问题,引导学生思考问题与数值之间的关系。

2. 引导学生将实际问题转化为方程,解释一元一次方程的定义和特点。

教学评估:1. 提问学生对实际问题与方程之间关系的理解。

2. 检查学生对一元一次方程的定义和特点的掌握。

章节二:一元一次方程的解法教学目标:1. 掌握一元一次方程的解法。

2. 能够熟练解一元一次方程。

教学内容:1. 介绍一元一次方程的解法。

2. 讲解一元一次方程的解法步骤。

教学步骤:1. 引入一元一次方程的解法,解释解法的基本思想。

2. 讲解一元一次方程的解法步骤,包括去分母、去括号、移项、合并同类项、化简等操作。

教学评估:1. 提问学生对一元一次方程解法的理解。

2. 让学生独立解一元一次方程,检查学生的解题能力。

章节三:一元一次方程的应用教学目标:1. 能够应用一元一次方程解决实际问题。

2. 掌握一元一次方程在实际问题中的应用。

教学内容:1. 介绍一元一次方程在实际问题中的应用。

2. 讲解一元一次方程在实际问题中的解法步骤。

教学步骤:1. 引入实际问题,引导学生思考问题与方程之间的联系。

2. 讲解一元一次方程在实际问题中的解法步骤,包括建立方程、解方程、检验解等操作。

教学评估:1. 提问学生对一元一次方程在实际问题中应用的理解。

2. 让学生独立解决实际问题,检查学生的应用能力。

章节四:复习与巩固教学目标:1. 复习一元一次方程的概念和解法。

2. 巩固对一元一次方程的理解和应用能力。

教学内容:1. 复习一元一次方程的概念和解法。

2. 进行一元一次方程的练习。

教学步骤:1. 复习一元一次方程的概念和解法,回答学生的问题。

2. 进行一元一次方程的练习,包括解方程和应用方程解决实际问题。

一元一次方程教案(人教版)

一元一次方程教案(人教版)

一元一次方程教案(最新人教版)一、教学目标1. 让学生掌握一元一次方程的定义、解法和应用。

2. 培养学生运用数学知识解决实际问题的能力。

3. 培养学生合作学习、积极探究的精神。

二、教学内容1. 一元一次方程的定义:含有一个未知数,未知数的次数为1,系数不为0的方程。

2. 一元一次方程的解法:移项、合并同类项、系数化为1。

3. 一元一次方程的应用:解决实际问题。

三、教学重点与难点1. 重点:一元一次方程的定义、解法和应用。

2. 难点:一元一次方程的解法步骤和应用。

四、教学方法1. 采用问题驱动法,引导学生探究一元一次方程的解法。

2. 运用案例分析法,让学生学会将实际问题转化为一元一次方程。

3. 采用合作学习法,培养学生团队协作精神。

五、教学过程1. 导入:通过生活实例,引导学生认识一元一次方程。

2. 新课讲解:讲解一元一次方程的定义、解法和应用。

3. 案例分析:分析实际问题,引导学生学会将问题转化为方程。

4. 课堂练习:布置练习题,让学生巩固所学知识。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学评价2. 评价内容:一元一次方程的定义、解法、应用以及解决实际问题的能力。

3. 评价标准:准确理解概念,熟练掌握解法,能够灵活应用到实际问题中。

七、教学资源1. 教材:最新人教版数学教材。

2. 课件:教学课件,包含图片、动画、例题等。

3. 练习题:课后练习题及拓展题。

4. 实际问题案例:生活中的相关问题案例。

八、教学进度安排1. 第1周:引入一元一次方程,讲解定义和简单解法。

2. 第2周:深入学习一元一次方程的解法,解题步骤,以及解的意义。

3. 第3周:应用一元一次方程解决实际问题,案例分析。

4. 第4周:练习题讲解,巩固知识,拓展应用。

九、教学拓展1. 对比二元一次方程:引导学生思考二元一次方程与一元一次方程的区别和联系。

2. 探索其他方程类型:引导学生了解并探究其他类型的方程,如二次方程等。

3. 数学历史:介绍一元一次方程在数学发展史上的地位和作用。

新人教版初中数学九年级上册《第二十一章一元二次方程:21.1一元二次方程》优质课教案_0

新人教版初中数学九年级上册《第二十一章一元二次方程:21.1一元二次方程》优质课教案_0

21.1《一元二次方程》教学设计一、教学内容一元二次方程的概念,一元二次方程的一般形式及一元二次方程的解(根)的概念.二、教学目标(1)体会一元二次方程是刻画实际问题的重要数学模型,并理解一元二次方程的概念.(2)了解一元二次方程的一般形式,会将一元二次方程化成一般形式.(3)会判定一个数是否是方程的根及解决一些概念性的题目.(4)通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.三、教学重、难点重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题. 难点1. 通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.2. 判定一个数是否是方程的根.课时安排1课时.四、教学过程设计(1)复习回顾1、什么叫做方程?2、我们都学过哪些方程?3、我们如何定义方程的“元”和“次”?(2)探究新知1、集思广益方程 2240+-=x x 属于什么方程?其他实际问题中是否也能列出这一类方程呢?分析:设切去的正方形的边长为x cm ,则盒底的长为(100―2x ) cm ,宽为(50―2x ) cm .根据方盒的底面积为3600 cm 2,得(100―2x )(50―2x )=3 600.整理,得 4x 2―300x +1 400=0.化简,得 x 2―75x +350=0问题一、如图,有一块矩形铁皮,长100 cm ,宽50 cm .在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600 2cm ,那么铁皮各角应切去多大的正方形? 问题二、要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,你说组织者应该邀请多少个队参赛? 分析: 全部比赛共有28场. 若设应邀请x 个队参赛,则每个队要与其他x-1个队各赛一场,比赛共有x(x-1)/2场,由此,我们可以列出方程x(x-1)/2=28,化简得x 2―x=56.042)2(22=-++-m x x m 【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.学生活动:思考交流以上三个方程有什么共同点?老师点评:(1)等号两边都是整式;(2)只含一个未知数x ;(3)未知数的最高次数是2;二元一次方程的概念:像这样,等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.【设计意图】让学生自己给出定义就是对过去所学一元一次方程的定义的类比和对比。

完整版数学人教版九年级上册一元二次方程第一课时教案.doc

完整版数学人教版九年级上册一元二次方程第一课时教案.doc

21. 1 一元二次方程教学内容一元二次方程概念及一元二次方程一般式及有关概念. 教学目标了解一元二次方程的概念;一般式 ax 2+bx+c=0 ( a ≠ 0)及其派生的概念; ?应用一元二次方程概念解决一些简单 题目.1.通过设置问 题,建立数学模型, ?模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的 题目. 4.态度、情感、价值观5.通过生活学习数学,并用数学解决生活中的问 题来激发学生的学习热情.重难点关键1.?重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问 题.2.难点突破:通过提出问 题,建立一元二次方程的数学模型, ?再由一元一次方程的概念迁移到一元二次方程的概念.教学过程 一、复习引入问题 1:( 1)什么是一元一次方程?( 2)一元一次方程的一般形式是什么?问 题 2:学生讨论交流完成引言: 要设计一座 2 m 高的人体雕像, 使雕像的上部 (腰以上) 与下部(腰以下)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高? 设雕像下部高 x m ,于是得方程。

问题 3:如图,有一块矩形铁皮,长 100 cm ,宽 50 cm ,在它的四角各切一个同样的正方形, 然后将四周突出部分折起, 就能制作一个无盖方盒, 如果要制作的无盖方盒的底面积为 3600 cm 2,那么铁皮各角应切去多大的正方形?设切去的正方形的边长为 x cm ,则盒底的长为( 100- 2x )cm ,宽为( 50- 2x )cm ,根据方盒的底面积为3 600 cm 2,得。

问题 4:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排 7 天,每天安排 4 场比赛,比赛组织者应邀请多少个队参赛?设应邀请 x 个队参赛,每个队要与其他( x - 1)个队各赛 1 场,由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共1x x 1场.可列方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年九年级数学上册 21.1 一元一次方程教案(新版)新人教版一元二次方程的根概念。

念迁移到一元二次
小学五年级学习过简易方程,上初中后学习了一元一次方程,
个队参赛,
整理所列方程后观察:
4x+3=
分析:类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般
学的知识求出下列方程的根吗?
+1=0
一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根
已知方程5x。

相关文档
最新文档