决定开关电源寿命的元器件,各部件寿命的评估计算

合集下载

寿命评估

寿命评估

第1节 开关电源及电子零部件-寿命评估1 电源的寿命的定义和期望寿命众所周知,电子产品的故障如Bath-tub Curve (图1,)所示,分为以下三种类型。

① 减少型(DFR ;Decreasing Failure Rate)初期,带有缺陷的部分会发生故障,但随着时间的推移,剩下的都是稳定的部件,故障率亦会下降。

这段时间称为初期故障期。

② 一定型(CFR; Constant Failure Rate) 此时,机器运行稳定,故障率降至一定水平,发生的故障均为随机性事件,称为偶发性故障期。

这段时期的稳定度和平均故障时间(MTBF)呈指数式分布。

③ 增加型(IFR ;Increasing Failure Rate) 故障率逐渐上升。

故障发生原因为磨损。

多见于风扇电动机的球形轴承及继电器的驱动部位等处。

这种类型的故障具有集中某处发生的特征,一般从初期开始即呈正态分布。

因此,可以说寿命就是指机器故障率保持不变的稳定运行时期,也就是偶发故障期。

用户对电源的最低寿命的要求各不相同,一般最好考虑为7~10年。

然而,机器的运行时间因机而异,所以应明确限定期望寿命,并检测设计是否符合寿命标准。

表1中列举了几种主要电器的最短寿命。

它们是在设定完全使用时间为7年的前提下,根据各种电器的运行状况推算出来的数据。

2 电源装置的寿命评估电源装置因为处理电流的缘故,所用部件受到的电应力大,发热量高,机器内部温度上升快,所以寿命评估工作尤显重要。

机器的寿命基本上和使用部件的寿命挂钩。

部件寿命与热、电应力成函数关系,其中更以热应力为主。

从机器寿命设计的观点来看,如果将所有部件的寿命统一,则能达到理想的最优性价比,但部件的寿命性能(影响部件寿命的电力、环境特征)相差巨大,因而难以实现。

一般来说,尽可能降低短寿部件的应力,并极限化使用长寿部件,可以实现部件寿命的平均化。

电阻类、陶瓷电容器和薄膜电容器等半导体部件不接触强应力,寿命极长,因而可以说下面举出的部件的寿命才真正决定了电源的寿命。

开关电源电容选择计算方法

开关电源电容选择计算方法

开关电源电容选择计算方法开关电源的寿命很大程度受到电解电容的制约,而电解电容的寿命取决于其内核温升。

本文从纹波电流计算、纹波电流实测、电解电容选型、温度测试方法、寿命估算等方面,对电解电容作了全面的分析。

纹波电流产生的热量引起电容的内部温升,加速电解液的蒸发,当容值下降20%或损耗角增大为初始值的2~3倍时,预示着电解电容寿命的终结。

通过检查电容器上的纹波电流,可预测电容器的寿命。

本文以连续工作模式的反激变换器输出电容分析为例,重点从纹波电流角度全面分析电解电容的选型与寿命。

1、纹波电流计算假设已知连续工作模式的反激变换器,其输出电流Io 为1.25A,纹波率r为1.1,占空比D为0.62,开关频率为60kHz,由此可以计算次级纹波电流ΔIo和有效值电流Io.rms。

次级纹波电流ΔIo:有效值电流Io.rms:最终得到流过输出电容的纹波电流:图1直观的显示了该电容的纹波电流波形:图1 纹波电流波形2、电解电容选型由上述计算分析得到流过电容的纹波电流为1.72A,综合考虑体积和成本,选择了纹波电流为1.655A的电解电容。

该纹波电流需在电源开关频率下选择,如下列图某厂家电容手册的纹波电流有频率因子,不同频率下的纹波电流不同。

高频低阻电容均会给出100kHz下的纹波电流,本设计开关频率为60kHz,频率因子为0.96~1之间,在此取1即可。

图2 电容纹波电流频率因子注:纹波电流还有一个温度系数,例如105℃电容,在85℃环境温度下,允许的最大纹波电流约为额定最大纹波电流的1.73倍,该参数一般不在电容手册中表达。

3、纹波电流实测测试电解电容纹波电流时,需将电容引脚穿入电流探头中,通过示波器可读得交流有效值。

本设计实例的纹波电流测试结果如图3所示,示波器读得有效纹波电流为1.64A,与理论设计接近。

因此理论计算具有较大的工程指导意义。

图3 实测电容纹波电流4、温度测试方法测量容体表面温度Ts:需在电容器侧面的中间位置开展,如果由于外部影响导致电容器表面温度不均匀、不稳定,需综合测量电容器表面4个点的温度,再取平均值。

史上最全的电子产品寿命评估公式

史上最全的电子产品寿命评估公式

Af = ( [RHt /RHu] p ) × e(Ea/K)× (1/Tu - 1/Tt)MTBF=(N *T*Af)/RRHt——试验湿度*注:R为泊松分布期望值;N为试验样品数;T 为试验时间,单位为小时;Af为试验加速系数RHu——使用湿度Tu——使用温度(K)Tt——试验温度(K)p ——指数,典型的数值为2.66;2~3Ea ——活化能,对电子设0.67K ——Boltzman 波尔兹曼常数 =8.617×10-*注:推算年份与对应失效率含义为,产品使用t 年后的失效率已知加速系数求按使用环境条件25℃/60%RH 来算的话,加速系数大概是200,就是试验一小时对应实际使用200小时。

不过评估的时候参考的是转化出来已知累计失效率和统计年份,倒推实验数量和试验时间,*试验失效数设置为0,置信度水指数分布时的可靠度t=2.302*(lg (1/r))/λ可靠度r=0.9失效率λ0.09年失效率t= 1.17037t时产品的可靠度为90%失效率t为失效率推算时间,与MTBF 单位相同123456784.7439 6.29587.75399.153610.513311.842413.148114.43463.88985.32236.68087.99369.274910.532211.770912.9947加速系数失效数R系数90%R系数95%200.222.30262.9958MTBF=小时1470326.05小时年167.85年推算年份失效率失效率105.78%t为失效率推算时间,与MTBF单位相加速系数失效数R系数90%R系数95%200.222.30262.9958期望值R(泊松分布)MTBF计算(95%置信度)MTBF(h)=已知平均年化失效率,倒推实验数量和试验时间,*试验失效数设置为0,置信度水。

史上最全的电子产品寿命评估公式

史上最全的电子产品寿命评估公式

史上最全的电子产品寿命评估公式Af = ( [RHt / RHu] p ) × e (Ea/K)× (1/Tu - 1/Tt)MTBF=(N*T*Af)/R RHt——试验湿度*注:R为泊松分布期望值;N为试验样品数;T为RHu——使用湿度Tu——使用温度(K)Tt——试验温度(K)p ——指数,典型的数值为 2.66;2~3Ea ——活化能,对电子设备 Ea = 0.67K ——Boltzman 波尔兹曼常数= 8.617×10-5eV/k;*注:推算年份与对应失效率含义为,产品使用t按使用环境条件25℃/60%RH来算的话,加速系数大概是200,就是试验一小时对应实际使用200小时。

不过已知累计失效率和统计年份,倒推实验数量和试验时间,*试验失效数设置为0,置信度水平90%指数分布时的可靠度t=2.302*(lg(1/r))/λ可靠度r=0.9失效率λ0.09年失效率t= 1.17037t时产品的可靠度为90%Af)/R 失效率t为失效率推算时间,与MTBF单位相同值;N为试验样品数;T为试验时间,单位为小时;Af为试验加速系数1 23456784.74396.29587.75399.153610.513311.842413.148114.43463.8898 5.3223 6.68087.99369.274910.532211.770912.9947加速系数失效数R系数90%R系数95%200.220 2.3026 2.9958MTBF=(N*T*Af)/R 小时1470326.05小时年167.85年推算年份失效率失效率10 5.78%t为失效率推算时间,与MTBF单位相同失效率含义为,产品使用t年后的失效率加速系数失效数R系数90%R系数95%200.220 2.3026 2.9958MTBF(年)年平均失效率218.370.46%167.850.60%对应实际使用200小时。

开关损耗计算公式

开关损耗计算公式

开关损耗计算公式1.开关损耗的概念开关电源作为一种常见的电源类型,其在使用过程中会伴随着损耗。

而其中重要的一种就是开关损耗,这种损耗是由于开关管在反复进行开关过程中,会产生电感、电容、二极管等等的反向电流,从而产生能量损耗,这些损耗就是开关损耗。

2.开关损耗的分类开关损耗可分为导通损耗和开关损耗两种。

导通损耗是指开关管导通时的损耗,其大小取决于开关管的导通电阻及电源电压;而开关损耗是指开关管有明显的反向阻抗及电子载流子的迁移,从而在反向断路时产生的损耗,其大小取决于开关管的开关频率及负载电容。

3.开关损耗的计算公式开关损耗的计算公式为:Psw=0.5fvho*(Eon+Eoff)*Iload其中,Psw代表开关损耗功率,f为开关频率,vho为开关管输出电压幅值,Eon为开管损失,Eoff为关管损失,Iload为负载电流。

4.各项参数的解释开关损耗公式中的各项参数解释如下:(1)fvho:开关管输出电压幅值,由于开关管导通时,肯定有较小的电压掉电,因此这里要用输出电压的幅值来计算。

(2)Eon:开关管开启损耗,是指开关管在导通时产生的损耗,由于导通阻抗的存在,电流只能通过少量的电阻降,因此产生一定的损耗。

(3)Eoff:开关管关闭损耗,是指开关管在关断时产生的损耗,因为关断过程中会出现电容放电、电感储能等现象,所以会产生相应的能量损耗。

(4)Iload:负载电流,开关管所控制的负载电流,与电路中电阻和电容等元器件有关。

5.开关损耗的影响因素(1)开关频率:开关频率越高,开关管的损耗就越大,这是由于开关管在高频率下会出现更多的反向电流。

(2)开关管特性:开关管的导通阻抗、关断速度等特性,都会对开关损耗产生影响。

(3)电源电压:电源电压高,开关损耗也会随之增大。

6.如何降低开关损耗为了降低开关损耗,可以从以下几个方面入手:(1)选择适合的开关管型号,如IGBT、MOS、SBD等,根据具体场合,选用性价比高的产品。

开关电源电路中每个元件的作用及参数计算

开关电源电路中每个元件的作用及参数计算

开关电源电路中每个元件的作用及参数计算开关电源电路中每个元件的作用及计算本次讲解电源以一个1 3.2W电源为例输入:AC90~264V 输出:3. 3V/4A 原理图SZ r/77 ΓT1 Γ∏变圧器是整个电源供应器的重要核心,所以变压器的计算及验证是很重耍的。

决定变压器的材质及尺寸:依据变圧器计算公式-S(IlIaX) = ^^xlOO GClItSSNPXAe■B(InaX)= 铁心饱介的磁通密度(GaUSS)■LP = —次侧电感值(UH)^IP ≡次侧峰侑电流(A)^NP ≡一次側(主线圈)圈数^Ae- 铁心戯而^(ClIr)P B(InaX)依铁心的材质及木自的温度来决立?以TDK FeniteCOre PC40为例? 100*C时的B(max)为3900 Gauss.设汁时应考虑零件误差?所以一般取3000-3500 GauSS 21间?托所段汁的POWer为AdaPter(?外先测应取3000GMlSS左右.以避免佚心因局温向饱合? 一股血言铁心的尺寸越大. Ae越A??所以可以做较大瓦数的POwer=决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的POWer ,但相对价格亦较高。

决定变压器线径及线数:当变压器决定后,变压器的BObbin即可决定,依据BObbin的槽竞,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A∕mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

决定DUty CyCle (工作周期):由以下公式可决定DUty CyCle , DUty CyCle的设计一般以50%为基准,DUty CyCle若超过50%易导致振荡的发生。

NS _(Fo + T D)X(I-D)NP P‰(min);TD>NS=二次侧圈数>NP= 一次侧圈数》VO=输出电丿卡.>Λ?=二极管顺向电压>VilI(1】Iln)=滤波电容上的谷点电压> D =匸作周期(D Uty CyCle)决定IP值:J T 1 W T POHt Fn7(Inin) PIP = IaV + —ΔZ IaV =---- : ------ Δ/ = ------------- X—2 VJH(nyin)xDxηLP f ” IP= 一次侧峰值电流厂IaV= 一次侧平均电流” PoUt =输岀瓦数> η =效率, f = P?VM震荡频率决定辅助电源的圈数:依据变圧器的圈比关系,可决定辅助电源的圈数及电圧。

开关电源变压器损耗计算

开关电源变压器损耗计算

开关电源变压器损耗计算
计算开关电源变压器的损耗,可以采用下面的方法:
1. 计算铁心损耗:开关电源变压器的铁心损耗包括磁滞损耗和涡流损耗,可以通过铁心材料的特性曲线和变压器铁心的磁通密度来计算。

一般情况下,铁心损耗占总损耗的比重较小,通常在5%以下。

2. 计算铜损耗:开关电源变压器的铜损耗是由变压器线圈中的电流通过导线时产生的热量而导致的。

铜损耗的大小取决于变压器的额定电流和绕组的电阻值。

在设计开关电源变压器时,需要根据变压器线圈的截面积和电阻值来计算铜损耗。

3. 计算其他损耗:开关电源变压器还可能存在其他的损耗,如液体绝缘材料的损耗、绝缘损耗以及机械损耗等。

这些损耗的大小往往比较难以估算,可以通过实验来确定。

总的来说,开关电源变压器的损耗计算是一个较为复杂的过程,需要掌握一定的电路和材料知识。

为了确保变压器的工作稳定和可靠,需要对其损耗进行适当的估算和优化设计。

开关电源损耗计算方法

开关电源损耗计算方法

开关电源损耗计算方法开关电源是现代电子设备中常见的一种电源转换装置,其工作原理主要是通过控制开关的通断来调节输出电压。

然而,在开关电源的工作过程中,不可避免地会产生一定的损耗,这些损耗会影响电源的效率和稳定性。

因此,如何计算和降低开关电源的损耗,成为电源设计中的重要问题。

本文将详细探讨开关电源损耗的计算方法。

一、开关电源的基本结构与工作原理开关电源主要包括输入整流滤波电路、功率开关管、变压器、输出整流滤波电路等部分。

工作时,通过控制功率开关管的通断,使得变压器初级线圈上的电流发生变化,进而改变次级线圈上的感应电动势,从而实现电压的变换。

在这个过程中,功率开关管、变压器以及其他元器件都会产生损耗。

二、开关电源的主要损耗类型1. 开关损耗:这是由于功率开关管在导通和截止过程中产生的损耗,主要包括开通损耗和关断损耗。

2. 导通损耗:当功率开关管处于导通状态时,其内部电阻会消耗一部分能量,形成导通损耗。

3. 变压器损耗:包括磁滞损耗、涡流损耗和铜损。

磁滞损耗是由磁性材料的磁滞特性引起的;涡流损耗是由于交变磁场在导体中产生的涡流所消耗的能量;铜损是由于电流通过变压器绕组产生的热量。

4. 整流损耗:这是由整流二极管在反向恢复期间产生的损耗。

5. 其他损耗:如驱动电路的损耗、电容的ESR损耗等。

三、开关电源损耗的计算方法1. 开关损耗的计算:开关损耗主要取决于开关频率、开关速度和电压、电流的变化率。

通常采用SPICE仿真软件进行计算。

2. 导通损耗的计算:导通损耗等于导通电流与导通电阻的乘积。

3. 变压器损耗的计算:磁滞损耗和涡流损耗可以使用B-H曲线和E-J曲线进行计算,铜损则等于电流的平方与电阻的乘积。

4. 整流损耗的计算:整流损耗等于二极管的正向压降与电流的乘积。

5. 其他损耗的计算:需要根据具体的电路参数进行计算。

四、降低开关电源损耗的方法1. 选择低导通电阻的开关管,以降低导通损耗。

2. 提高开关频率,减小变压器的体积和重量,但可能会增加开关损耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

决定开关电源寿命的元器件,各部件寿命的评估计算
 1、决定开关电源寿命的元器件
 ①电解电容器
 电解电容器的封口部位会漏出气化的电解液,这种现象会随着温度的升高而加速,一般认为温度每上升10℃,泄漏速度会提高至2倍。

因此可以说电
解电容器决定了电源装置的寿命。

 ②风扇
 球形轴承及轴承的润滑油枯竭、机械装置部件的磨损,会加速风扇的老化。

加之近年的DC风扇的驱动回路开始使用电解电容器等部件,所以有必要将
回路部件寿命等因素也一并考虑进去。

 ③光电耦合器。

相关文档
最新文档