开关电源器件选型
如何选择和使用合适的开关器件

如何选择和使用合适的开关器件开关器件是电路中非常重要的组成部分,用于控制电路的开关状态。
合适的开关器件的选择和使用,能够为电路的正常运行和性能提供保障。
本文将介绍如何选择和使用合适的开关器件,涵盖了选择标准、常见类型以及使用注意事项等内容。
一、选择标准1. 电流和电压承受能力:在选择开关器件时,首先需要考虑电流和电压的承受能力。
根据实际电路的工作电流和电压,选择合适的开关器件能够确保器件正常工作,避免器件过载烧毁的风险。
2. 开关速度:开关速度是指开关器件在开关状态之间切换的速度。
根据实际需求,选择开关速度合适的器件能够确保信号传输的稳定和准确性,避免因速度不匹配而导致的信号失真等问题。
3. 效率和功耗:不同类型的开关器件在功耗和效率方面具有差异。
选择功耗较低、效率较高的器件,能够帮助电路降低能耗,并提高整体工作效率。
4. 经济性:在选择开关器件时,还需要考虑其经济性。
合理平衡性能和成本,选择性价比较高的开关器件,能够在满足需求的同时,有效控制成本开支。
二、常见类型1. 机械开关:机械开关是最传统和常见的开关器件,通过机械结构实现开关状态的切换。
它具有结构简单、成本低廉、可靠性高等特点,适用于一些低频率的开关控制场景。
2. 晶体管开关:晶体管开关是利用晶体管作为开关器件,通过控制晶体管的导通和截断状态来实现开关控制。
它具有响应速度快、体积小、功耗低等特点,在高频率电路中应用广泛。
3. MOSFET开关:MOSFET开关是一种基于金属氧化物半导体场效应管的开关器件。
它具有低电压驱动、高开关速度、低开关损耗等特点,广泛应用于LED照明、电源管理等领域。
4. 继电器开关:继电器开关是可以通过电磁吸合和释放来实现开关状态切换的器件。
它具有较高的电流承受能力、可靠性高等特点,适用于需要较大电流控制的场合。
三、使用注意事项1. 温度和散热:开关器件在工作时会产生一定的热量,因此需要注意器件的温度和散热问题。
开关电源普通元器件设计选用..

选用滤波电容说明
在开关稳压电源中作为输出滤波用的电解 电容器,其上锯齿波电压的频率高达数十 千赫,甚至数十兆赫,它的要求和低频应 用时不同,电容量并不是主要指标,衡量 它好坏的则是它的阻抗一频率特性,要求 它在开关稳压电源的工作频段内要有低的 等的阻抗,同时,对于电源内部,由于半 导体器件开始工作所产生高达数百千赫的 尖峰噪声,亦能有良好的滤波作用,一般 低频用普通电解电容器在10千赫左右,其阻 抗便开始呈现感性,无法满足开关电源使 用要求。
7
电容
电容的主要作用有哪些? 抑制噪声,尖峰吸收,滤波,储能。 输入电容的设计: C=I×t/ΔV 这里的C:电容值(F); I:负载电流(A); t:电容提供电流的时间(s); ΔV:允许的纹波电压(V)。 举例:计算50W开关电源的输入滤波电容的 值,输入交流电压为110V,50Hz。
9
电解电容特别说明
滤波时电解电容容量大一些,可有效的减 少直流电压纹波。 可根据公式计算得到的数值稍低一些 5~10W 4.7~10UF 10~50W 2~3UF/W 50~100W 2.5~3.5UF/W
10
怎样选用滤波电容 ?
许多人都知道滤波电容在电源中起的作用, 但在开关电源输出端用的滤波电容上,与 工频电路中选用的滤波电容并不一样,在 工频电路中用作滤波的普通电解电容器, 其上的脉动电压频率仅有100赫芝,充放电 时间是毫秒数量级,为获得较小的脉动系 数,需要的电容量高达数十万微法,因而 一般低频用普通铝电解电容器制造,目标 是以提高电容量为主,电容器的电容量、 损耗角正切什以及漏电流是鉴别其优劣的 主要参数。
2
二极管
稳压二极管 稳压二极管又叫齐纳二极管(zener diod),具有 单向导电性,它工作在电压反向击穿状态。当反 向电压达到并超过稳定电压时,反向电流突然增 大,而二极管两端的电压恒定,这就是稳压。 稳压二极管主要参数: 1)稳定电压Vz,这也是根据设计人员的需要选用; 2)稳定电流Iz; 3)温度系数at(温度越高,稳压误差越大); 如1N6001B(11V稳压管), Vz=11V, Iz=5mA, at =0.088。
开关电源电感选型计算

开关电源电感选型计算开关电源电感是一种重要的元件,用于存储能量和滤波。
正确选择合适的电感对于开关电源的性能和稳定性至关重要。
我们需要确定电感的额定电流。
额定电流是指电感所能承受的最大电流。
一般来说,电感的额定电流应大于电路中最大负载电流的1.2倍,以保证电感的正常工作。
接下来,我们需要确定电感的工作频率范围。
开关电源工作频率一般在几十kHz到几MHz之间,不同的工作频率需要选择不同的电感。
然后,我们需要根据开关电源的输出功率来确定电感的大小。
电感的大小决定了开关电源的输出电流波形的平滑程度。
一般来说,输出功率越大,电感的大小也应越大。
开关电源电感的电感值还应满足以下要求:1. 电感的直流电阻应尽可能小,以减小功率损耗;2. 电感的铁芯材料应具有较高的饱和磁感应强度和较低的磁滞损耗;3. 电感的铁芯材料应具有较低的温升和较高的工作温度范围。
根据以上要求,我们可以计算出电感的具体数值。
计算方法如下:1. 首先,根据开关电源的输出功率和工作频率,确定电感的工作电流。
工作电流一般为输出功率除以输出电压;2. 然后,根据电感的工作电流和额定电流的比值,确定电感的安全系数。
安全系数一般为1.2到1.5之间;3. 接下来,根据电感的安全系数和工作电流,计算出电感的额定电流;4. 根据电感的额定电流和工作频率,确定电感的工作电感值。
工作电感值一般为额定电流除以工作频率。
我们还需要注意一些其他因素来选择合适的电感。
例如,开关电源的尺寸和重量限制,以及成本因素等。
开关电源电感的选型计算方法包括确定额定电流、工作频率范围,根据输出功率确定电感大小,并考虑电感的直流电阻、铁芯材料特性和安全系数等。
选择合适的电感对于确保开关电源的性能和稳定性至关重要。
开关电源主要元器件选用精品PPT课件

tr和tf:分别为MOS管的上升时间和下降时间,s; dV/dt:驱动源的电压变化率,V/s; G-S电压无,MOS管关闭,D-S程高阻状态,抑制
电流通过。 请看IRF640.PDF
28.10.2020
设计MOS管遵守的原则
MOS各脚连线尽量短,特别是G极的长度,如实 在无法减少其长度,可以用一小磁环或一小电阻与 MOS管串接起来。
NMOS); 高增益,存储时间不受限制,不会热击穿。
28.10.2020
MOS管主要工作特性(缺点)
导通电阻(Rds(on))较大,具有正温度系 数,用在大电流开关状态时,导通损耗较大;
开启门限驱动电压较高(一般2~4V); P沟道MOS管耐压还不是很高,很难找到与
N沟道配对的“图腾柱”输出。
28.10.2020
稳压管TL431
从该器件的符号看。3个引脚分别为:阴极 (CATHODE)、阳极(ANODE)和参考端 (REF)。
从下图可以看到,VI是一个内部的2.5V基准源, 接在运放的反相输入端。由运放的特性可知,只有 当REF端(同相端)的电压非常接近VI(2.5V) 时,三极管中才会有一个稳定的非饱和电流通过, 而且随着REF端电压的微小变化,通过三极管 图1 的电流将从1到100mA变化。当然,该图绝不是 TL431的实际内部结构,所以不能简单地用这种 组合来代替它。但如果在设计、分析应用TL431 的电路时,这个模块图对开启思路,理解电路都是 很有帮助的,本文的一些分析也将基于此模块而展 开。
开关功率MOS管
MOSFET分为P沟道增强型、 P沟道耗尽型 和N沟道增强型、N沟道耗尽型4种类型。增 强型MOS具有应用方便的“常闭”特性 (即驱动信号为零时,输出电流等于零)。 在开关电源中使用的MOS管几乎全是N 沟 道增强型器件。
【很完整】牛人教你开关电源各功能部分原理分析、计算与选型

【很完整】⽜⼈教你开关电源各功能部分原理分析、计算与选型1 开关电源介绍此⽂档是作为张占松⾼级开关电源设计之后的强化培训,基于计划安排,由申⼯讲解了变压器设计之后,在此⽂章中简单带过变压器设计原理,重点讲解电路⼯作原理和设计过程中关键器件计算与选型。
开关电源的⼯作过程相当容易理解,其拥有三个明显特征:开关:电⼒电⼦器件⼯作在开关状态⽽不是线性状态⾼频:电⼒电⼦器件⼯作在⾼频⽽不是接近⼯频的低频直流:开关电源输出的是直流⽽不是交流也可以输出⾼频交流如电⼦变压器1.1 开关电源基本组成部分1.2 开关电源分类:开关电源按照拓扑分很多类型:buck boost 正激反激半桥全桥 LLC 等等,但是从本质上区分,开关电源只有两种⼯作⽅式:正激:是开关管开通时传输能量,反激:开关管关断时传输能量。
下⾯将以反激电源为例进⾏讲解。
1.3 反激开关电源简介反激⼜被称为隔离buck-boost 电路。
基本⼯作原理:开关管打开时变压器存储能量,开关管关断时释放存储的能量反激开关电源根据开关管数⽬可分为双端和单端反激。
根据反激变压器⼯作模式可分为CCM 和DCM 模式反激电源。
根据控制⽅式可分为PFM 和PWM 型反激电源。
根据驱动占空⽐的产⽣⽅式可分为电压型和电流型反激开关电源。
我们所要讲的反激电源精确定义为:电流型PWM 单端反激电源。
1.4 电流型PWM 单端反激电源此类反激电源优点:结构简单价格便宜,适⽤⼩功率电源。
此类反激电源缺点:功率较⼩,⼀般在150w 以下,纹波较⼤,电压负载调整率低,⼀般⼤于5%。
此类反激电源设计难点主要是变压器的设计,特别是宽输⼊电压,多路输出的变压器。
2 举例讲解设计过程为了更清楚了解设计中详细计算过程,我们将以220VAC-380VAC 输⼊,+5V±3%(5A),±15±5%(0.5A)三路共地输出反激电源为例讲解设计过程。
提出上⾯要求,选择思路如下:提出上⾯要求,选择思路如下:电源总输出功率P=5*5W+15*0.5*2=40W 功率较⼩,可以选择反激开关电源。
开关电源元器件选型—反激变压器

* +, ' - . (
(
"
匝比的计算 次级线圈的计算 辅助绕组线圈的计算 反推验证 气隙的计算 关为什么要开气隙? 于反激变压器的气隙 反激变换器中,变压器起着电感和变压器的双重作用,因而变压器磁芯处于直流 偏磁状态,为防磁饱和因此要加入气隙。 防止磁芯饱和不仅只有开气隙一种方法,另外一种是增加磁心的体积;不过通常 设计时空间已经限制了磁芯的大小,所以实际设计中开气隙的方法应用的比较多; 这两种方法都可以使磁心的磁滞回线变得 扁平 ,这样对于相同的直流偏压,就 降低了工作磁通的密度。
8@ 8'8$& $? $&? $"(8@ ? $"> = ( ? $">-=. ( ( ( ? ( /, 1) (8'1 (45-/0 A B
变压器的线径选择
变压器的线径计算是有规定的,特别是反激式电源变压器更应该注意? 自然冷却时 ,强迫冷风时 。 在不同的频率下选取 也是不同的,在 以下时,一般为 ,在 以上时,一般为 。
C ! 4! 4D EF ! 4! 4EF
变压器的绕制方法
为了减少漏感,目前最好的、工艺最简单的绕制方法是初次级交错绕法也就是大家常说 的三明治绕法。
开关电源元器件选型

开关电源元器件选型A:反激式变换器:1.MOS管:Id=2Po/Vin; Vdss=1.5Vin(max)2.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=8Vout3.缺点:就是输出纹波较大,故不能做大功率(一般≦150W),所以输出电容的容量要大.4.优点:输入电压范围较宽(一般可做到全电压范围90Vac-264Vac),电路简单.5.最佳控制方法:应选择电流型IC幷采用电流型控制.B:正激式变换器:6.MOS管:Id=1.5Po/Vin; Vdss=2Vin(max)7.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=3Vout8.缺点:成本上升,如要全电压得加PFC,电路稍比反激复杂.9.优点:纹丝小,功率可做到0~200W.10.最佳控制方法:应选择电流型IC幷采用电流型控制.C:推挽式变换器:11.MOS管: Id=1.2Po/Vin; Vdss=2Vin(max)12.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout13.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.不太合适离线式.14.优点: 功率可做到100W~1000W.DC-DC用此电路很好!15.最佳控制方法:应选择电流型IC幷采用电流型控制.D:半桥式变换器:16.MOS管: Id=1.5Po/Vin; Vdss=Vin(max)17.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout18.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.19.优点: 功率可做到100W~500W.20.最佳控制方法:应选择电流型IC幷采用电流型控制.E:全桥式变换器:21.MOS管: Id=1.2Po/Vin; Vdss=Vin(max)22.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout23.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.24.优点: 功率可做到400W~2000W以上.25.最佳控制方法:应选择电流型IC幷采用电流型控制.拟定:胡成才2005-1-13。
多路输出反激开关电源器件选型

供电模块电路器件选型交流输入保险线选型:耐压:有效值220V 。
选一定裕量,有效值300V 左右就行。
电流:由功率来选。
我们的开关电源,最大输出20W 。
电流选的裕量大一些。
我们按40W 算。
AU P I18.022040===。
这是电流有效值,保险线再选大些,选到0.5到1A 均可,这里选1A 。
直流输入保险线选型:耐压:直流最大输入为650V 。
选800V 到1000V ,都可以。
我们这里对于耐压的裕量选的大一些。
选1000V 。
电流:开关电源最大输出功率20W ,按40W 选。
在最小直流电压,最大功率输出时,产生最大电流。
有A VW I 267.015040max ==。
加上裕量,我们选1A 的。
交流输入滤波X 安规电容:耐压:接在交流侧220的输入,耐压选个250到275V 就可以。
一定要选安规电容,不能用别的电容代替。
容值:这里只是用来滤波,消除电磁干扰。
容值选个小一点的就可以。
不用考虑太多。
这里定为:MKP X2 104的。
(一般电容容值的确定考虑如下:1.与附近电感配合,要求去增益和滤波的,或算个截止频率的一起选。
2.没有要求就考虑寄生电感和漏电流的要求。
)交流侧共模电感器耐压:共模电感接入电路中相当于一个导线,耐压一般没有问题。
查资料大概看了看。
都在DC1500V 以上。
最大电流:也就是额定电流。
算出这里会流过的最大电流AVW I 18.022040max ==。
选一定的裕量,我们这里选择额定电流一定要大于0.5A 的电感。
电感量:没有太多时间从理论上计算到底选多大的电感。
一般在共模电感的型号中选。
在满足电流的基础上。
选一个大一点电感,这样效果会更明显些。
这里选15mH ,额定电流为3A 。
型号:CMI15mH/3AY/H25。
整流二极管220V 交流输入二极管不控整流,是十分常用的。
这里的二极管也常用。
耐压:最高电压要到311V 以上。
为了安全,一般耐压选择会大一些。
这里为了与直流侧的型号统一,一起选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源元器件选型
A:反激式变换器:
1.MOS管:Id=2Po/Vin; Vdss=1.5Vin(max)
2.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=8Vout
3.缺点:就是输出纹波较大,故不能做大功率(一般≦150W),所以输出电容的容量要大.
4.优点:输入电压范围较宽(一般可做到全电压范围90Vac-264Vac),电路简单.
5.最佳控制方法:应选择电流型IC幷采用电流型控制.
B:正激式变换器:
6.MOS管:Id=1.5Po/Vin; Vdss=2Vin(max)
7.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=3Vout
8.缺点:成本上升,如要全电压得加PFC,电路稍比反激复杂.
9.优点:纹丝小,功率可做到0~200W.
10.最佳控制方法:应选择电流型IC幷采用电流型控制.
C:推挽式变换器:
11.MOS管: Id=1.2Po/Vin; Vdss=2Vin(max)
12.整流:Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout
13.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.不太合适离线式.
14.优点: 功率可做到100W~1000W.DC-DC用此电路很好!
15.最佳控制方法:应选择电流型IC幷采用电流型控制.
D:半桥式变换器:
16.MOS管: Id=1.5Po/Vin; Vdss=Vin(max)
17.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout
18.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.
19.优点: 功率可做到100W~500W.
20.最佳控制方法:应选择电流型IC幷采用电流型控制.
E:全桥式变换器:
21.MOS管: Id=1.2Po/Vin; Vdss=Vin(max)
22.整流: Vr>Vin+(Ns/Np)*Vin(max); If≧Iout 一般取Vr=2Vout
23.缺点: 成本上升,如要全电压得加PFC,电路稍复杂.
24.优点: 功率可做到400W~2000W以上.
25.最佳控制方法:应选择电流型IC幷采用电流型控制.。