Seeking the Equation of State of Non-Compact Lattice QED

合集下载

Ti-Nspire使用指南说明书

Ti-Nspire使用指南说明书

Guide to Using the Ti-nspire for Methods - The simple and the overcomplicated – Version 1.5Ok guys and girls, this is a guide/reference for using the Ti-nspire for Mathematical Methods CAS. It will cover the simplest of things to a few tricks. This guide has been written for Version 3.1.0.392. To update go to /calculators/downloads/US/Software/Detail?id=6767Simple things will have green headings, complicated things and tricks will be in red. Firstly some simple things. Also Note that for some questions, to obtain full marks you will need to know how to do this by hand.Solve, Factor & ExpandThese are the basic functions you will need to know.Open Calculate (A)Solve: [Menu] [3] [1] – (equation, variable)|DomainFactor: [Menu] [3] [2] – (terms)Expand: [Menu] [3] [3] – (terms)MatricesMatrices can be used as an easy way to solve the ‘find the values of m for which there is zero or infinitely many solutions’ questions. When the equations ax+by=c and dx+ey=f are expressed as a matrix , letting the determinant equal to 0 will allow you to solve for m.E.g. Find the values of m for which there is no solutions or infinitely many solutions for the equations2x+3y=4 and mx+y=1Determinant: [Menu] [7] [3] Enter in matrix representing the coefficients, solve for det()=0. RememberRemember to plug back in todifferentiate between the solutions forno solutions and infinitely manysolutions.Modulus FunctionsWhile being written as || on paper, the function for the modulus function is abs() (or absolute function). i.e. just add in abs(function)For example andDefining DomainsWhile graphing or solving, domains can be defined by the addition of |lowerbound<x<upperboundThe less than or equal to and greater than or equal to signs can be obtained by pressing ctrl + < or >e.g. Graph forEnter into the graphs barThis is particulary useful for fog and gof functions, when a domain is restriced, the resulting function’s domain will also be restricted.E.g. Find the equation of when and1. Define the two equations in the Calulate page. [Menu] [1] [1]2. Open a graph page and type, f(g(x)) into the graph barThe trace feature can be used to find out the range and domain. Trace: [Menu] [5] [1]Here where the Domain = (-1.5,1] and Range =[0,4)Completing the SquareThe easy way to find the turning point quickly. The Ti-nspire has a built in function for completing the square. [Menu] [3] [5] - (function,variable)e.g. Find the turning point ofSo from that the turning point will be at (-2,1)Easy Maximum and MinimumsIn the newer version of the Ti-nspire OS, there are functions to find maximum, minimums, tangent lines and normal lines with a couple of clicks, good for multiple choice, otherwise working would need to be shown. You can do some of these visually on the graphing screen or algebraically in the calculate window. Maximums: [Menu] [4] [7] – (terms, variable)|domainMinimums: [Menu] [4] [8] – (terms, variable)|domainE.g. Find the values of x for which has a maxmimum and a minimum forTangents at a point: [Menu] [4] [9] – (terms, variable, point)Normals at a point: [Menu] [4] [A] - (terms, variable, point)E.g. Find the equation of the tangent and the normal to the curve whenFinding Vertical AsymptotesVertical Asymptotes occur when the function is undefined at a given value of x, i.e. when anything is divided by 0. We can manipulate this fact to find vertical asymptotes by letting the function equal and solving for x.e.g. Find the vertical asymptotes for andSo for there is a vertical asymptote at and for atDon’t forget to find those other non-vertical asymptotes too.The x-y Function TestEvery now and then you will come across this kind of question in a multiple choice section.If , which of the following is true?A.B.C.D.E.You could do it by hand or do it by calculator. The easiest way is to define the functions and solve the condition for x, then test whether the option is true. If true is given, it is true otherwise it is false.So option B is correct.The Time Saver for DerivativesBy defining, f(x) and then defining df(x)= the derivative, you won’t have to continually type in the derivative keys and function. It also allows you to plug in values easily into f’(x) and f’’(x).Derivative: [Menu] [4] [1]E.g. Find the derivative ofDefine f(x), then define df(x)The same thing can be done for the double derivative.Just remember to redefine the equations or use a different letter, e.g. g(x) and dg(x)Solving For Coefficients Using Definitions of FunctionsInstead of typing out big long strings of equations and forgetting which one is the antiderivative and which one is the original, defined equations can be used to easily and quickly solve for the coefficients.E.g. An equation of the form cuts the x-axis at (-2,0) and (2,0). It cuts the y-axis at (0,1) and has a local maximum when . Find the values of a, b, c & d.1. Define (Make sure you put a multiplication sign between the letters)2. Define the derivative of the f(x) i.e. df(x)3. Use solve function and substitute values in, solve for a, b, c & d.So and the equation of the curve isDeriving Using the Right ModeThe derivative of circular functions are different for radians and degrees. Remember to convert degrees to radians and be in radian mode, as the usual derivatives that you learn e.g. are in radians NOT degrees.RADIAN MODE DEGREES MODEGetting Exact Values On the Graph ScreenNow for what you have all been dreaming of. Exact values on the graphing screen. Now the way to do this isa little bit annoying.1. Open up a graph window2. Plot a function e.g.3. Trace the graph using [Menu] [5] [1]4. Trace right till you hit around 0.9 or 1.2 and click the middle button to plot the point.5. Press ESC6. Move the mouse over the x-value and click so that it highlights, then move it slightly to the right and click again. Clear the value and enter in ½.Using tCollect to simplify awkward expressionsSometimes the calculator won’t simplify something the way we want it to. tCollect simplifies expressions that involves trigonometric powers higher than 1 or lower than -1 to linear trigonometric expressions.Streamlined Markov ChainsFor questions that require the use of the T transition matrix more than once, the following methods can be used to save time so that the T matrix does not need to be repeatedly inputted or copied down.1. Define the T matrix as t.2. Define the initial state matrix as s.3. Evaluate by substituting t and s in with the appropriate powers.E.g. For the Transition matrix and initial state , find andBinomial DistributionsFor a single value of x e.g. Pr(X=2) = [Menu] [5] [5] [D] (Pdf)For multiple values of x e.g. Pr(X<2) = [Menu] [5] [5] [E] (Cdf)e.g. Probability of Success = 0.4, Number of trials =10, i.e. X~Bi(10,0.4)Find the probability of two successes and less than two successesPr(X=2)=0.1209, Pr(X<2)=0.0464Normal DistributionsThe probability will correspond to the area under the Normal distribution curve.From (use ctrl + i)(or lowest bound) to value = [Menu] [5] [5] [1] (Pdf)From lower value to higher value = [Menu] [5] [5] [2] (Cdf)e.g. The probability of X is given by the Normal Distribution with i.e. X~N(0,1)Find Pr(X<1) and Pr(0<X<1)Pr(X<1)=0.2420, Pr(0<X<1)=0.3413IntegralsUsing the integral function and solve function for probability distributions. The area under a probability distribution function must equal 1, so if we are given a function multiplied by a k constant, we can antidifferentiate the function and solve for k.Integral: [Menu] [4] [3]E.g. If is given by , find the value of k if f(x) is to be a probability density function.Shortcut KeysCopy: Ctrl left or right to highlight, [Ctrl] + [c]Paste: [Ctrl] + [v]Insert Derivative: [CAPS] + [-]Insert Integral: [CAPS] + [+]: [Ctrl] + [i]Thanks to Jane1234 & duquesne9995 for the shortcut keys. Thanks to Camo and SamiJ for finding the errors.。

奈奎斯特定理的英文

奈奎斯特定理的英文

奈奎斯特定理的英文The Nyquist Theorem, also known as the Nyquist Sampling Theorem, is a fundamental principle in the field of signal processing and telecommunications. It was first formulated by Harry Nyquist in 1928 and later expanded upon by Claude Shannon in his groundbreaking work on information theory.The theorem states that in order to perfectly reconstruct a continuous-time signal from its samples, the sampling rate must be at least twice the highest frequency present in the signal. This minimum rate is referred to as the Nyquist rate. If the sampling rate falls below this threshold, a phenomenon known as aliasing occurs, where the sampled signal becomes a distorted version of the original signal.The importance of the Nyquist Theorem lies in its application to digital signal processing, where analog signals must be converted into digital form for processing and storage. By adhering to the theorem's guidelines, engineers can ensure that the digital representation of an analog signal is accurate and free from aliasing.In practice, the Nyquist Theorem has implications for a wide range of technologies, from audio recording and broadcasting to medical imaging and seismology. It is a cornerstone concept that underpins the design of sampling systems and the development of anti-aliasing filters, which are used to prevent aliasing before the sampling process.The theorem also has a direct impact on the capacity of communication channels. In digital communication systems, understanding the relationship between the sampling rate and the frequency content of signals is crucial for maximizing the amount of information that can be transmitted without error.In summary, the Nyquist Theorem is a foundational principle that guides the process of sampling and reconstructing signals in digital systems. It ensures that high-quality digital representations of analog signals can be achieved, provided that the sampling rate is sufficiently high. This theorem has far-reaching applications and continues to be a key concept in the advancement of digital technology.。

Stochastics and Dynamics c ○ World Scientific Publishing Company OPTIMAL PERTURBATION OF U

Stochastics and Dynamics c ○ World Scientific Publishing Company OPTIMAL PERTURBATION OF U

Stochastics and Dynamicsc World Scientific Publishing CompanyOPTIMAL PERTURBATION OF UNCERTAIN SYSTEMSBRIAN F.FARRELL∗Division of Engineering and Applied Sciences,Harvard UniversityPierce Hall,29Oxford Street,Cambridge,MA02138,U.S.A.PETROS J.IOANNOU†Physics Department,Capodistrian and National University of AthensPanepistimiopolis,15784Zografos,GreeceReceived(received date)Revised(revised date)In studies of perturbation dynamics in physical systems certain specification of the gov-erning perturbation dynamical system is generally lacking,either because the perturba-tion system is imperfectly known or because its specification is intrinsically uncertain,while a statistical characterization of the perturbation dynamical system is often avail-able.In this report exact and asymptotically valid equations are derived for the ensemblemean and moment dynamics of uncertain systems.These results are used to extend theconcept of optimal deterministic perturbation of certain systems to uncertain systems.Remarkably,the optimal perturbation problem has a simple solution:in uncertain sys-tems there is a sure initial condition producing the greatest expected second momentperturbation growth.Keywords:List four to six.1.IntroductionLinear stability theory has been extensively studied because of its role in advancing understanding of a wide range of physical phenomena related to the structure and growth of perturbations to dynamical systems.Historically,linear stability theory was developed using the method of modes(Rayleigh[13]).However,the method of modes is incomplete for understanding perturbation growth even for autonomous systems because the non-normality of the linear operator in physical problems often produces transient development of a subset of perturbations that dominates the physically relevant growth processes(Farrell[4]).Recognition of the role of non-normality in linear stability led to the development of Generalized Stability Theory (Farrell and Ioannou[6]).Compared to the methods of modes,the methods of Generalized Stability Theory,which are based on the non-normality of the linear operator,allow a far wider class of stability problems to be addressed including ∗farrell@†pji@cc.uoa.grB.F.Farrell,P.J.Ioannouperturbation growth associated with aperiodic time dependent certain operators to which the method of modes does not apply(Farrell and Ioannou[7]).The problems to which Generalized Stability Theory has been applied hereto-fore involve growth of perturbations in a system with no time dependence or a system with known time dependence;perturbations to these systems may be sure or stochastically distributed and may be imposed at the initial time,or distributed continuously in time,but the operator to which the perturbation is applied is con-sidered to be certain and the problem is that of the stability of a certain operator. However,it may happen that we either do not have complete knowledge of the system that is being perturbed or that exact specification may be inappropriate to the physical system in which case the problem is to determine the stability of an uncertain operator.In Generalized Stability Theory the perturbation produc-ing greatest growth plays a central role in quantifying the stability of the system. In this report we obtain exact dynamical equations for the perturbation ensemble mean and covariance and use these results to obtain the optimal perturbation to uncertain systems.2.Exact equations for the ensemble meanConsider the uncertain linear system for the vector stateψ:dψ=Aψ+ η(t)Bψ(2.1)dtwhere A is the ensemble mean matrix,η(t)is a stochastic process with zero mean, B is the matrix of thefluctuation structure and is an amplitude parameter.Equa-tions for the evolution of the ensemble meanfield,<ψ(t)>,and for the ensemble mean covariance,<ψi(t)ψ∗j(t)>,can be readily obtained ifηis a white noise pro-cess(Arnold[1]).Although it is a great advantage for analysis to assume thatηis a white noise process,this assumption is often hard to justify in physical contexts because the uncertainties in physical operators are often red and because white noise processes producing non-vanishing variance in(2.1)have unboundedfluctua-tions that in a physical context would imply,for example,infinite wind speeds or unbounded negative damping rates.Approximate dynamical equations for the ensemble meanfield evolving under uncertain dynamics and not restricted to white noise stochastic processes have been obtained by Bourret[2],Keller[8],Papanicolaou and Keller[11]and Van Kampen [14].These approximations are accurate for small Kubo number K= t c,where t c is the autocorrelation time of the stochastic processη(t).In addition,exact evolution equations for the ensemble mean can be obtained whenη(t)is a telegraph process;results which are discussed in Brissaud&Frisch[3].Finally,making use of the properties of cumulant expansions it is possible to obtain an exact expression for the evolution of the ensemble mean covariance for the case in whichη(t)is a Gaussian process as follows:Theorem2.1.Ifη(t)is a Gaussian stochastic process with zero mean,unit vari-ance,and autocorrelation time t c=1/νso that<η(t1)η(t2)>=exp(−ν|t1−t2|)Optimal Perturbation of Uncertain Systems then the ensemble mean of the stochastic equation(2.1)obeys the deterministic equa-tion:d<ψ>dt =A+ 2B D(t)<ψ>,(2.2)whereD(t)=te A s B e−A s e−νs ds.(2.3) Proof.Consider the interaction perturbationφ(t)defined byψ(t)≡e A tφ(t),(2.4) in which Eq.(2.1)becomes:dφdt= η(t)e−A t B e A tφ= η(t)H(t)φ,(2.5) whereH(t)≡e−A t B e A t.(2.6) For a sure initial perturbation we haveφ(0)=ψ(0)and the interaction perturbation at time t is:φ(t)=G(t)ψ(0),(2.7) with the fundamental matrix G(t)given byG(t)=I+t0η(t1)H(t1)dt1+ 2tdt1t1dt2η(t1)H(t1)η(t2)H(t2)+···(2.8)This expression for the fundamental matrix defines the time-ordered exponential:G(t)=exp otη(s)H(s)ds.(2.9)The subscript o denotes time ordering and the term exponential is used because Eq.(2.8)is obtained if the argument of Eq.(2.9)is expanded as an exponential with the convention that the terms are grouped in ascending time order.Note that time ordered exponentials of matrices satisfy the familiar properties of exponen-tials of scalars even for matrices that do not commute;for example,we can write exp o(H(t1)+H(t2))=exp o(H(t1))exp o(H(t2))even if the matrices H(t1)and H(t2)do not commute if time ordering is enforced meaning that in all products H(t1)is placed to the left of H(t2).Kubo[9]has shown that the average of the time ordered exponential in Eq.(2.9)can be expanded in the cumulants ofη(t)in the same way that the exponents of ordinary stochastic processes are expanded in cumulants of their arguments:<G(t)>=exp o(F(t)),(2.10)B.F.Farrell,P.J.IoannouwhereF (t )=22! t 0 t 0dt 1dt 2<<η(t 1)η(t 2)>>H (t 1)H (t 2)+···+ 2n n ! t 0··· t 0dt 1···dt n <<η(t 1)···η(t n )>>H (t 1)···H (t n )+···,(2.11)and in which <<·>>denote the cumulants of η.Note that exp o (F (t ))in Eq.(2.10)is an abbreviation in the sense that in order to evaluate this expression we must first expand it in powers of its argument observing the time ordering.For a Gaussian process all cumulants of order higher than 2vanish and because <<η(t 1)η(t 2)>>=<η(t 1)η(t 2)>we obtain for this case:<G (t )>=exp o 22! t 0 t 0dt 1dt 2H (t 1)H (t 2)<η(t 1)η(t 2)> =exp o 22! t 0 t 0dt 1dt 2H (t 1)H (t 2)e −ν(t 1−t 2) .(2.12)Consequently,the ensemble average of the interaction perturbation obeys the equa-tion:d <φ>dt = 2H (t ) t 0ds H (s )e ν(t −s ) <φ>,(2.13)from which we obtain,d <ψ>dt=A <ψ>+e A t d<φ>dt =A <ψ>++ 2e A t H (t ) t 0ds H (s )e ν(t −s )e −A t <ψ>,(2.14)giving the exact evolution equation for the ensemble average perturbation:d <ψ>dt = A + 2B t 0e A s B e −A s e −νs ds <ψ>.(2.15)3.Approximate equations for the ensemble meanWe seek approximations to the ensemble mean equation (2.2)that are valid for short autocorrelation time,t c =1/ν<<1.The integrand defining the matrix D (t )given by Eq.(2.3)can be expanded ase A s B e −A s e −νs =e −νs B +s [A ,B ]+s 22![A ,[A ,B ]]+··· ,(3.16)where [A ,B ]≡AB −BA is the commutator.The ensemble mean Eq.(2.2)then takes the exact form:d <ψ>dt = A + 2B I 0B +I 1[A ,B ]+I 22![A ,[A ,B ]]+··· <ψ>,(3.17)Optimal Perturbation of Uncertain Systemswhere I n= ts n e−νs ds.Because I n+1=O(1/νn+1),for1/ν<<0the ensemblemean accurately evolves by retaining only thefirst power of1/νin Eq.(3.17).In that limit the ensemble mean equation becomes:d<ψ>dt =A+2νB2<ψ>.(3.18)This equation is identical to the ensemble mean equation obtained forη(t)a white noise process,in which case as the limitν→∞is taken thefluctuation amplitude also increases so that the ratio 2/νapproaches a constant;and Eq.(3.18)becomes the equation appropriate for a white noise processη(t)with variance2 2/νin thephysically relevant Stratonovich limit(Arnold,[1]).4.Obtaining the optimal perturbations of uncertain systemsDefinition4.1.The optimal perturbation of an uncertain linear dynamical system for time t is the unit magnitude initial(t=0)perturbation that maximizes the expected perturbation magnitude in the chosen norm at time t.The expected growth in magnitude of the optimal perturbation is called the optimal growth.For deterministic dynamical systems governed by non-normal operators the op-timal growth in the L2norm is the2-norm of the fundamental matrix evolved to time t and the optimal perturbations can be readily found by a Schmidt decom-position(singular value decomposition)of the fundamental matrix at time t.We extend this result for obtaining the optimal perturbations to take account of the uncertainty in the dynamics as follows:Theorem4.1.The optimal perturbation at time t of the uncertain dynamical sys-tem(2.1)is the eigenfunction associated with the largest eigenvalue of the Hermitian matrix<S(t)>that is obtained by integrating to time t the differential equation:d<S>dt =A+ 2E(t)B†<S>+<S>A+ 2E(t)B++ 2E(t)†<S>B+B†<S>E(t)(4.19)where,E(t)=te−A t B e A t e−νt dt ,(4.20)with initial condition<S(0)>=I.Proof.LetΦ(t,0)be the fundamental matrix associated with each realization of the operator A+ η(t)B.We seek the initial perturbation leading to greatest expected perturbation magnitude at future time,t.At time t the perturbation square amplitude for each realization of thefluctuations is:ψ†(t)ψ(t)=ψ†(0)Φ†(t,0)Φ(t,0)ψ(0),(4.21)B.F.Farrell,P.J.Ioannouwhereψ(0)the initial state.It is apparent from this expression that the eigenvector of the hermitian matrix:S(t)=Φ†(t,0)Φ(t,0)(4.22) with largest eigenvalue is the initial condition leading to greatest perturbation mag-nitude at time t for that realization of thefluctuations.The other eigenvectors of S(t)complete the set of mutually orthogonal initial conditions ordered according to their growth at time t.The hermitian matrix S(t)can be determined by integrating forward the equa-tion:d Sdt=(A+ η(t)B)†S+S(A+ η(t)B).(4.23) The initial perturbation resulting in maximum mean square perturbation mag-nitude at time t is the eigenfunction corresponding to the largest eigenvalue of the mean of S(t).We need therefore to obtain the mean evolution equation correspond-ing to the matrix Eq.(4.23).This can be readily achieved using the results of the previous section byfirst expressing Eq.(4.23)as a vector equation using tensor products.This is done by associating with the n×n matrix S(t)the n2column vector s(t)formed by consecutively stacking the columns of S(t).In tensor form Eq.(4.23)becomes:dsdt=A s+ η(t)B s,(4.24) in which:A=I⊗A†+A T⊗I,B=I⊗B†+B T⊗I,(4.25) where T denotes the transposed matrix and†the Hermitian conjugate matrix. The ensemble average evolution equation for s over Gaussian realizations ofη(t), indicated by<s>,is obtained by applying Theorem(2.1)to(4.24)with result:d<s>dt =A+ 2BD(t)<s>,(4.26)whereD(t)= te A t B e−A t e−νt dt .(4.27)Because e A t=e A T t⊗e A†t repeated application of the tensor product properties givesD(t)=I⊗E(t)†+E(t)T⊗I,(4.28) whereE(t)=te−A t B e A t e−νt dt .(4.29) The ensemble average evolution equation can then be written as:d<s>dt=L<s>(4.30)Optimal Perturbation of Uncertain Systems in which L is given by:L=I⊗A†+A T⊗I+ 2I⊗B†+B T⊗II⊗E(t)†+E(t)T⊗I.(4.31)Reverting to matrix notation we obtain that the ensemble mean,<S>,obeys the deterministic equation:d<S>dt =A+ 2E(t)B†<S>+<S>A+ 2E(t)B++ 2E(t)†<S>B+B†<S>E(t).(4.32)For short autocorrelation times for the operatorfluctuations corresponding to 1/ν<<1the ensemble mean matrix<S>satisfies the white noise equation:d<S>dt =A+2νB2†<S>+<S>A+2νB2+2 2νB†<S>B.(4.33)In their appropriate limits these equations can be used to obtain<S(t)>and eigenanalysis of<S(t)>in turn determines the optimal initial condition that leads to the largest expected growth in square magnitude at time t.Determining the optimal in this manner also offers constructive proof of the remarkable fact that the optimal initial covariance matrix has rank1implying that a sure initial condition maximizes expected growth in an uncertain system.5.ConclusionsUncertainty in perturbation dynamical systems can arise from many sources including statistical specification of parameters(Sardeshmukh et al[12];Palmer [10])and incomplete knowledge of the mean state.We have obtained dynamical equations for ensemble mean and second moment quantities in such systems that are generally valid and others that are valid in the limit of short autocorrelation times. Optimal perturbation plays a central role in Generalized Stability Analysis and we have used ensemble mean second moment equations to solve for the perturbation producing the greatest expected second moment growth in an uncertain system; remarkably,this optimal perturbation is sure.AcknowledgmentsThe authors thank Ludwig Arnold for helpful discussions.This work was supported by NSF ATM-0123389and by ONR N00014-99-1-0018.References1.L.Arnold,Stochastic Differential Equations:Theory and Applications(Krieger,1992).2.R.C.Bourret,Stochastically perturbedfields,with application to wave propagation inrandom media,Nuovo Cimento26(1962)1-31.B.F.Farrell,P.J.Ioannou3. A.Brissaud and U.Frisch,Solving linear stochastic differential equations,J.Math.Phys.15(1974)524-534.4. B.F.Farrell,The initial growth of disturbances in a baroclinicflow,J.Atmos.Sci.39(1982)1663-1686.5. B.F.Farrell,Optimal excitation of neutral Rossby waves,J.Atmos.Sci.45(1988)163-172.6. B.F.Farrell and P.J.Ioannou,Generalized Stability.Part I:Autonomous Operators,J.Atmos.Sci.53(1996)2025-2041.7. B.F.Farrell and P.J.Ioannou,Perturbation Growth and Structure in Time DependentFlows,J.Atmos.Sci.56(1996)3622-3639.8.J.B.Keller,Wave propagation in random media,Proc.Symp.Appl.Math.13(1962)227-246.9.R.Kubo,Generalized cumulant expansion method,J.Phys.Soc.Japan17(1962)1100-1120.10.T.N.Palmer,A nonlinear dynamical perspective on model error:a proposal for non-local stochastic-dynamic parameterization in weather and climate prediction models, Quart.J.Roy.Meteor.Soc.127279-304.11.G.Papanicolau and J.B.Keller,Stochastic differential equations with applications torandom harmonic oscillators and wave propagation in random media,SIAM J.App.Math21(1971)287-305.12.P.Sardeshmukh,C.Penland and M.Newman,2001:Rossby waves in a stochasticallyfluctuating medium,Progress in Probability49(2001)369-384.13.Lord Rayleigh,On the stability or instability of certainfluid motions,Proc.LondonMath.Soc.11(1880)57-70.14.N.G.Van Kampen,A cumulant expansion for stochastic differential equations,Physica74(1974)239-247.。

北美数学学术英语

北美数学学术英语

北美数学学术英语在北美数学学术领域,学术英语的使用具有一定的规范和特点。

以下是一些在数学学术写作和交流中常见的术语和表达方式:●数学概念和操作:1.Theorem (定理): A statement that has been proven to be true.2.Lemma (引理): A smaller result that is often used in the proof of a larger theorem.3.Corollary (推论): A result that follows directly from a theorem.4.Conjecture (猜想): A statement believed to be true, but not yet proven.●证明和推理:1.Proof (证明): A logical argument that demonstrates the truth of a statement.2.Lemma Proof (引理证明): A proof specifically for a lemma.3.Contradiction (反证法): A proof technique where the assumption of the statement beingfalse leads to a contradiction.4.Induction (归纳法): A proof technique that involves proving a statement for a base case andshowing that if it holds for one case, it holds for the next.●方程和符号:1.Equation (方程): A mathematical statement that asserts the equality of two expressions.2.Variable (变量): A symbol that can represent any element from a set.3.Function (函数): A relation between a set of inputs and a set of possible outputs.4.Integral (积分): The concept of an antiderivative.●统计和概率:1.Probability (概率): The likelihood of a particular event occurring.2.Random Variable (随机变量): A variable whose value is subject to variations due to chance.3.Distribution (分布): A function or curve that describes the likelihood of different outcomes.●图论和几何:1.Graph (图): A collection of nodes and edges connecting pairs of nodes.2.Vertex (顶点): A point in a graph.3.Edge (边): A line connecting two vertices in a graph.4.Geometric (几何): Related to the properties and relations of points, lines, surfaces, andsolids.●学术写作风格:1.Precision (精准性): Clear and precise language is highly valued in mathematical writing.2.Rigor (严谨性): Mathematical arguments and proofs should be logically sound and rigorous.3.Conciseness (简洁性): Expressing ideas in a clear and concise manner is important inmathematical writing.以上是一些在北美数学学术领域中常见的英语术语和表达方式。

A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations

A Blow-Up Criterion for the Nonhomogeneous Incompressible Navier--Stokes Equations

SIAM J.M ATH.A NAL.c 2006Society for Industrial and Applied Mathematics Vol.37,No.5,pp.1417–1434A BLOW-UP CRITERION FOR THE NONHOMOGENEOUSINCOMPRESSIBLE NA VIER–STOKES EQUATIONS∗HYUNSEOK KIM†Abstract.Let(ρ,u)be a strong or smooth solution of the nonhomogeneous incompressible Navier–Stokes equations in(0,T∗)×Ω,where T∗is afinite positive time andΩis a bounded domain in R3with smooth boundary or the whole space R3.We show that if(ρ,u)blows up at T∗,thenT∗0|u(t)|sL r w(Ω)dt=∞for any(r,s)with2s+3r=1and3<r≤∞.As immediate applications,we obtain a regularity theorem and a global existence theorem for strong solutions.Key words.blow-up criterion,nonhomogeneous incompressible Navier–Stokes equations AMS subject classifications.35Q30,76D05DOI.10.1137/S00361410044421971.Introduction.The motion of a nonhomogeneous incompressible viscousfluid in a domainΩof R3is governed by the Navier–Stokes equations(ρu)t+div(ρu⊗u)−Δu+∇p=ρf,(1.1)ρt+div(ρu)=0in(0,∞)×Ω,(1.2)div u=0(1.3)and the initial and boundary conditions(ρ,ρu)|t=0=(ρ0,ρ0u0)inΩ,u=0on(0,T)×∂Ω,(1.4)ρ(t,x)→0,u(t,x)→0as|x|→∞,(t,x)∈(0,T)×Ω.Here we denote byρ,u,and p the unknown density,velocity,and pressurefields of thefluid,respectively.f is a given external force driving the motion.Ωis either a bounded domain in R3with smooth boundary or the whole space R3.Throughout this paper,we adopt the following simplified notation for standard homogeneous and inhomogeneous Sobolev spaces:L r=L r(Ω),D k,r={v∈L1loc(Ω):|v|D k,r<∞};H k,r=L r∩D k,r,D k=D k,2,H k=H k,2;D10={v∈L6:|v|D1<∞and v=0on∂Ω};H10=L2∩D10,,D10,σ={v∈D10:div v=0inΩ};|v|D k,r=|∇k v|L r and|v|D10=|v|D10,σ=|∇v|L2.Note that the space D10is the completion of C∞c(Ω)in D1,and thus there holds the following Sobolev inequality:|v|L6≤2√3|v|D1for all v∈D10.(1.5)∗Received by the editors March17,2004;accepted for publication(in revised form)May9,2005; published electronically January10,2006.This work was supported by the Japan Society for the Promotion of Science under the JSPS Postdoctoral Fellowship for Foreign Researchers./journals/sima/37-5/44219.html†School of Mathematics,Korea Institute for Advanced Study207-43Cheongnyangni2-dong, Dongdaemun-gu,Seoul,130-722,Korea(khs319@postech.ac.kr,khs319@kias.re.kr).14171418HYUNSEOK KIMFor a proof of (1.5),see sections II.5and II.6in the book by Galdi [11].The global existence of weak solutions has been established by Antontsev and Kazhikov [1],Fernandez-Cara and Guillen [10],Kazhikov [13],Lions [21],and Simon [26,27].From these results (see [21]in particular),it follows that for any data (ρ0,u 0,f )with the regularity0≤ρ0∈L 32∩L ∞,u 0∈L 6,and f ∈L 2(0,∞;L 2),there exists at least one weak solution (ρ,u )to the initial boundary value problem (1.1)–(1.4)satisfying the regularity ρ∈L ∞(0,∞;L 32∩L ∞),√ρu ∈L ∞(0,∞;L 2),and u ∈L 2(0,∞;D 10,σ)(1.6)as well as the natural energy inequality.Then an associated pressure p is determinedas a distribution in (0,∞)×Ω.But the global existence of strong or smooth solutions is still an open problem and only local existence results have been obtained for sufficiently regular data satisfying some compatibility conditions.For details,we refer to the papers by Choe and the author [6],Kim [15],Ladyzhenskaya and Solonnikov [19],Okamoto [22],Padula [23],and Salvi [24].In particular,it is shown in [6](see also [7])that if the data ρ0,u 0,and f satisfy 0≤ρ0∈L 32∩H 2,u 0∈D 10,σ∩D 2,−Δu 0+∇p 0=ρ120g,(1.7)f ∈L 2(0,∞;H 1),and f t ∈L 2(0,∞;L 2)for some (p 0,g )∈D 1×L 2,then there exist a positive time T and a unique strongsolution (ρ,u )to the problem (1.1)–(1.4)such that ρ∈C ([0,T ];L 32∩H 2),u ∈C ([0,T ];D 10,σ∩D 2)∩L 2(0,T ;D 3),(1.8)u t ∈L 2(0,T ;D 10,σ),and √ρu t ∈L ∞(0,T ;L 2).Moreover,the existence of a pressure p in C ([0,T ];D 1)∩L 2(0,T ;D 2)can be deducedfrom (1.1)–(1.3).See [5]for a detailed argument.Let (ρ,u )be a global weak solution to the problem (1.1)–(1.4)with the data (ρ0,u 0,f )satisfying condition (1.7).Then from the above local existence result and weak-strong uniqueness results in [6]and [21],we conclude that the solution (ρ,u )satisfies the regularity (1.8)for some positive time T .One fundamental problem in mathematical fluid mechanics is to determine whether or not (ρ,u )satisfies (1.8)for all time T .As an equivalent formulation,we may ask the following.Fundamental question 1.1.Does the solution (ρ,u )blow up at some finite time T ∗?Such a time T ∗,if it exists,is called the finite blow-up time of the solution (ρ,u )in the class H 2.In spite of great efforts since the pioneering works by Leray [20]in 1930s,there have been no definite answers to the fundamental question even for the case of the homogenous Navier–Stokes equations with only some blow-up criteria available.The first criterion is due to Leray [20]who proved,among other things,that if T ∗is the finite blow-up time of a strong solution u to the Cauchy problem for the homogeneous Navier–Stokes equations,then for each r with 3<r ≤∞,there exists a constant C =C (r )>0such that |u (t )|L r ≥C (T ∗−t )−12(1−3r )for all near t <T ∗.(1.9)NONHOMOGENEOUS NAVIER–STOKES EQUATIONS1419This estimate near the blow-up time was extended by Giga [12]to the case of bounded domains.An immediate consequence of (1.9)is the following well-known blow-up criterion in terms of the so-called Serrin class (see [9,25,29]):T ∗0|u (t )|s L r dt =∞for any (r,s )with 2s +3r =1,3<r ≤∞.(1.10)By virtue of Sobolev inequality (1.5),we deduce from (1.10)thatT ∗|∇u (t )|4L 2dt =∞.(1.11)Further generalizations of (1.10)and (1.11)have been obtained by Beirao da Veiga [2],Berselli [3],Chae and Choe [4],and Kozono and Taniuchi [17].The major purpose of this paper is to prove the blow-up criterion (1.10)for strong solutions of the nonhomogeneous Navier–Stokes equations (1.1)–(1.3).In fact,we establish a more general result.To state our main result precisely,we first introduce the notion of the blow-up time of solutions in the class H 2m with m ≥1.Let (ρ,u )be a strong solution to the initial boundary value problem (1.1)–(1.4)with the regularityρ∈C ([0,T ];L 32∩H 2m ),u ∈C ([0,T ];D 10,σ∩D2m)∩L 2(0,T ;D 2m +1),∂j t u ∈C ([0,T ];D 10,σ∩D2m −2j)∩L 2(0,T ;D 2m −2j +1)for 1≤j <m,(1.12)∂m t u ∈L 2(0,T ;D 10,σ),and √ρ∂m t u ∈L ∞(0,T ;L 2)for any T <T ∗,where T ∗is a finite positive time.Then we can defineΦm (T )=1+sup 0≤t ≤T|∇ρ(t )|H 2m −1+|u (t )|D 10∩D 2m + T|u (t )|2D 2m +1dt+sup1≤j<msup 0≤t ≤T|∂jt u (t )|D 10∩D 2m −2j +T|∂jt u (t )|2D 2m −2j +1dt(1.13)+ess sup 0≤t ≤T|√ρ∂mtu (t )|L 2+T|∂mt u (t )|2D 10dtfor any T <T ∗.Hereafter we use the obvious notation|·|X ∩Y =|·|X +|·|Yfor (semi-)normed spaces X,Y.Definition 1.2.A finite positive number T ∗is called the finite blow-up time ofthe solution (ρ,u )in the class H 2m ,provided thatΦm (T )<∞for0<T <T ∗andlim T →T ∗Φm (T )=∞.We are now ready to state the main result of this paper.Theorem 1.3.For a given integer m ≥1,we assume that∂mtf ∈L 2(0,∞;L 2)and∂jt f ∈L 2(0,∞;H 2m −2j −1)for 0≤j <m.Let (ρ,u )be a strong solution of the nonhomogeneous Navier–Stokes equations (1.1)–(1.3)satisfying the regularity (1.12)for any T <T ∗.If T ∗is the finite blow-up time of (ρ,u )in the class H 2m ,then we haveT ∗|u (t )|s L r wdt =∞for any (r,s )with 2s +3r =1,3<r ≤∞.(1.14)1420HYUNSEOK KIMHere L r w denotes the weak L r-space,that is,the space consisting of all vector fields v ∈L 1loc (Ω)such that |v |L r w=sup α>0α|{x ∈Ω:|v (x )|>α}|1r <∞for 3<r <∞and |v |L ∞w=|v |L ∞<∞.In the case when 3<r <∞,L ris a proper subspace of L r w (|x |−3/r ∈L r w (R 3)for instance)and so Theorem 1.3is in fact a generalizationof the blow-up criterion (1.10)due to Leray and Giga even for the homogeneous Navier–Stokes equations.Theorem 1.3is proved in the next two sections.In section 2,we provide a proof of the theorem for the very special case m =1.Our method of the proof is quite well known in the case of the homogeneous Navier–Stokes equations and was also applied in an earlier paper [6]by Choe and the author to the nonhomogeneous case:combining classical regularity results on the Stokes equations with H¨o lder and Sobolev inequal-ities,we show that Φ1(T )is bounded in a double exponential way by T0|u (t )|s L r wdt for any T less than the blow-up time T ∗.But the use of weak Lebesgue spaces in space variables makes it more difficult to estimate the nonlinear convection term.To overcome this technical difficulty,we utilize some basic theory of the Lorenz spaces developed in [18]and [30].See the derivations of (2.6)and (2.7)for details.Concern-ing the proof for the general case m ≥2,the basic idea is also to show that Φm (T )isbounded in some specific way by T0|u (t )|s L r wdt for any T <T ∗.Such an approach is more or less standard in the case of the homogeneous Navier–Stokes equations,but its extension to the nonhomogeneous case is not straightforward and indeed much complicated due to the evolution of the density.A detailed argument is provided in section 3.Some corollaries of Theorem 1.3can be deduced from a local existence result on strong solutions in the class H 2m .For instance,as an immediate consequence of Theorem 1.3,the local existence result in the class H 2,and the weak-strong uniqueness result,we obtain the following regularity result whose obvious proof may be omitted.Corollary 1.4.Let (ρ,u )be a global weak solution to the initial boundary value problem (1.1)–(1.4)with the data satisfying condition (1.7).If there exists a finite positive time T ∗such thatu ∈L s (0,T ∗;L r w )for some (r,s )with2s +3r=1,3<r ≤∞,(1.15)then the solution (ρ,u )satisfies regularity (1.8)for some T >T ∗.A similar result was obtained by Choe and the author [6]assuming,however,astronger condition on u ,that is,u ∈L 4(0,T ∗;D 10).By virtue of Corollary 1.4,we may conclude that the class (which we call a weak Serrin class )in (1.15)is a regularity class for weak solutions of the nonhomogeneous Navier–Stokes equations,which was already proved by Sohr [28]for the homogeneous case.See also a local version of Sohr’s result in [14].Moreover,thanks to a recent result by Dubois [8],the weak Serrin class is a uniqueness class for the homogeneous Navier–Stokes equations.It is also noticed that the same results can be easily derived from regularity and uniqueness results due to Kozono by adapting the arguments in the remarks of Theorem 3in [16].Theorem 1.3and its proof can be used to obtain a global existence result on solutions in the class H 2under some smallness condition on u 0and f (but not on ρ0).Theorem 1.5.For each K >1,there exists a small constant ε>0,depending only on K and the domain Ω,with the following property:if the data ρ0,u 0,and f satisfy|ρ0|L 32∩L∞≤K,|u 0|D 10≤ε,and ∞|f (t )|2L 2dt ≤ε2(1.16)NONHOMOGENEOUS NAVIER–STOKES EQUATIONS1421in addition to condition (1.7),then there exists a unique global strong solution (ρ,u )to problem (1.1)–(1.4)satisfying regularity (1.8)for any T <∞.A rather simple proof of Theorem 1.5is provided in section 4.Finally,we recall that in the case when ρ0is bounded away from zero and Ωis a bounded domain in R 3with smooth boundary,Salvi [24]proved the local existence of strong solutions in the class H 2m for every m ≥1.Hence adapting the proofs of Corollary 1.4and Theorem 1.5,we can also prove analogous regularity and global existence results on strong solutions in every class H 2m provided that Ω⊂⊂R 3and ρ0>0on Ω.2.Proof of Theorem 1.3with m =1.In this section,we prove Theorem 1.3for the special case m =1.Let t 0be a fixed time with 0<t 0<T ∗and let us denoteΦ0(T )= T|u (t )|s L r wdt for t 0≤T <T ∗,where (r,s )is any pair satisfying condition (1.14).To prove Theorem 1.3,we haveonly to show that Φ1(T )≤C exp (C exp (C Φ0(T )))for t 0≤T <T ∗.(2.1)Throughout this paper,we denote by C a generic positive constant depending onlyon r ,m ,Φm (t 0),T ∗,Ω,|ρ(0)|L 32∩L ∞,|u (0)|L 6,and the norm of f ,but independent of T in particular.To begin with,we recall from (1.6)that sup0≤t ≤T|ρ(t )|L 32∩L ∞+|√ρu (t )|L 2 +T|u (t )|2D 10dt ≤C(2.2)for t 0≤T <T ∗.2.1.Estimates for T 0|√ρu t (t )|2L 2dt and sup 0≤t ≤T |u (t )|D 10.Next,we willshow thatT 0|√ρu t (t )|2L 2+|u (t )|2D 10∩D 2 dt +sup 0≤t ≤T|u (t )|2D 10≤C exp (C Φ0(T ))(2.3)for t 0≤T <T ∗.To show this,we multiply the momentum equation (1.1)by u t andintegrate over Ω.Then using (1.2)and (1.3),we easily deriveρ|u t |2dx +12d dt |∇u |2dx = ρ(f −u ·∇u )·u t dx andρ|u t |2dx +ddt|∇u |2dx ≤2ρ|f |2dx +2ρ|u ·∇u |2dx.(2.4)On the other hand,since (u,p )is a solution of the stationary Stokes equations−Δu +∇p =Fanddiv u =0inΩ,where F =ρ(f −u ·∇u −u t ),it follows from the classical regularity theory that |∇u |H 1≤C (|F |L 2+|∇u |L 2)(2.5)≤C (|f |L 2+|√ρu t |L 2+|u ·∇u |L 2+|∇u |L 2).1422HYUNSEOK KIMTo estimate the right-hand sides of(2.4)and(2.5),wefirst observe that|u·∇u|L2=|u·∇u|L2,2≤C|u|L rw |∇u|L2rr−2,2,(2.6)which follows from H¨o lder inequality in the Lorenz spaces.See Proposition2.1in[18]. Next,we will show that|∇u|L2rr−2,2≤C|∇u|1−3rL2|∇u|3rH1.(2.7)If r=∞,then(2.7)is obvious.Assuming that3<r<∞,we choose r1and r2suchthat3<r1<r<r2<∞and2r =1r1+1r2.Then in view of H¨o lder and Sobolevinequalities,we have|∇u|L2r ir i−2≤|∇u|1−3r iL2|∇u|3r iL6≤|∇u|1−3r iL2(C|∇u|H1)3r ifor each i=1,2.Since L2r r−2,2is a real interpolation space of L2r2r2−2and L2r1r1−2,moreprecisely,L2r r−2,2=(L2r2r2−2,L2r1r1−2)12,2,it thus follows that|∇u|L2rr−2,2≤C|∇u|12L2r2r2−2|∇u|12L2r1r1−2≤C|∇u|1−3r2L2(C|∇u|H1)3r212|∇u|1−3r1L2(C|∇u|H1)3r112,which proves(2.7).For some facts on the real interpolation theory and Lorenz spaces used above,we refer to sections1.3.3and1.18.6in Triebel’s book[30].The estimates(2.6)and(2.7)yield|u·∇u|L2≤C|u|L rw |∇u|2sL2|∇u|3rH1≤η−3s2r C|u|s2L rw|∇u|L2+η|∇u|H1for any small numberη∈(0,1).Substituting this into(2.5),we obtain|∇u|H1≤C|f|L2+|√ρu t|L2+|u|s2L rw|∇u|L2+|∇u|L2,(2.8)and thus|u·∇u|L2≤η−3s2r C|u|s2L rw+1|∇u|L2+C|f|L2+η|√ρu t|L2.Therefore,substituting this estimate into(2.4)and choosing a sufficiently smallη>0, we conclude that1 2|√ρu t(t)|2L2+ddt|∇u(t)|2L2≤C|f(t)|2L2+C|u(t)|s L rw+1|∇u(t)|2L2(2.9)for t0≤t<T∗.In view of Gronwall’s inequality,we haveT0|√ρu t(t)|2L2dt+sup0≤t≤T|∇u(t)|2L2≤C exp(CΦ0(T))for any T with t0≤T<T∗.Combining this and(2.8),we obtain the desired estimate (2.3).NONHOMOGENEOUS NAVIER–STOKES EQUATIONS14232.2.Estimates for ess sup 0≤t ≤T |√ρu t (t )|2L 2and T 0|u t (t )|2D 10dt .To de-rive these estimates,we differentiate the momentum equation (1.1)with respect to time t and obtainρu tt +ρu ·∇u t −Δu t +∇p t =ρt (f −u t −u ·∇u )+ρ(f t −u t ·∇u ).Then multiplying this by u t ,integrating over Ω,and using (1.2)and (1.3),we have12d dtρ|u t |2dx + |∇u t |2dx(2.10)=(ρt (f −u t −u ·∇u )+ρ(f t −u t ·∇u ))·u t dx.Note that since ρ∈C ([0,T ];L 32∩L ∞),ρt ∈C ([0,T ];L 32),and u t ∈L 2(0,T ;D 10)forany T <T ∗,the right-hand side of (2.10)is well defined for almost all t ∈(0,T ∗).Hence using finite differences in time,we can easily show that the identity (2.10)holds for almost all t ∈(0,T ∗).In view of the continuity equation (1.2)again,we deduce from (2.10)that12ddtρ|u t |2dx + |∇u t |2dx≤2ρ|u ||u t ||∇u t |+ρ|u ||u t ||∇u |2+ρ|u |2|u t ||∇2u |(2.11)+ρ|u |2|∇u ||∇u t |+ρ|u t |2|∇u |+ρ|u ||u t ||∇f |+ρ|u ||f ||∇u t |+ρ|f t ||u t |dx ≡8 j =1I j .Following the arguments in [6],we can estimate each term I j :I 1,I 5≤C |ρ|12L ∞|∇u |L 2|√ρu t |L 3|∇u t |L 2≤C |ρ|34L ∞|∇u |L 2|√ρu t |12L 2|∇u t |32L 2≤C |∇u |4L 2|√ρu t |2L 2+116|∇u t |2L 2,I 2,I 3,I 4≤C |ρ|L ∞|∇u |2L 2|∇u t |L 2|∇u |H 1≤C |∇u |4L 2|∇u |2H 1+116|∇u t |2L 2,I 6,I 7≤C |ρ|L 6|∇u |L 2|f |H 1|∇u t |L 2≤C |∇u |2L 2|f |2H 1+116|∇u t |2L 2,and finallyI 8≤C |ρ|L 3|f t |L 2|∇u t |L 2≤C |f t |2L 2+116|∇u t |2L 2.Substitution of these estimates into (2.11)yieldsd dt |√ρu t |2L 2+|∇u t |2L 2≤C |∇u |4L 2 |√ρu t |2L 2+|∇u |2H 1+|f |2H 1 +C |f |2H 1+|f t |2L 2 .1424HYUNSEOK KIMTherefore,by virtue of estimate (2.3),we conclude that ess sup 0≤t ≤T|√ρu t (t )|2L 2+T|∇u t (t )|2L 2dt ≤C exp (C Φ0(T ))(2.12)for t 0≤T <T ∗.On the other hand,using the regularity theory of the Stokesequations again,we have|∇u |H 1≤C (|f |L 2+|√ρu t |L 2+|u ·∇u |L 2+|∇u |L 2)≤C |f |L 2+|√ρu t |L 2+|∇u |32L 2|∇u |12H 1+|∇u |L 2and|∇u |H 1,6≤C (|u t |L 6+|u ·∇u |L 6+|f |L 6+|∇u |L 6)≤C|∇u t |L 2+|∇u |2H1+|f |H 1+|∇u |H 1 .Hence it follows immediately from (2.3)and (2.12)that sup0≤t ≤T|u (t )|2D 10∩D 2+T|∇u (t )|2H 1,6dt ≤C exp (C Φ0(T ))(2.13)for t 0≤T <T ∗.2.3.Estimates for sup 0≤t ≤T |∇ρ(t )|H 1and T0|u (t )|2D 3dt .To derive these,we first observe that each ρx j (j =1,2,3)satisfiesρx jt +u ·∇ρx j =−u x j ·∇ρ.Then multiplying this by ρx j ,integrating over Ω,and summing up,we obtaind dt|∇ρ|2dx ≤C|∇u ||∇ρ|2dx ≤C |∇u |L ∞|∇ρ|2L 2.A similar argument shows thatddt|∇2ρ|2dx ≤C|∇u ||∇2ρ|2+|∇2u ||∇ρ||∇2ρ| dx ≤C |∇u |L ∞|∇2ρ|2L 2+|∇2u |L 6|∇ρ|L 3|∇2ρ|L 2.Hence using Sobolev embedding results and then Gronwall’s inequality,we derive thewell-known estimate|∇ρ(t )|H 1≤C exp C t 0|∇u (τ)|H 1,6dτ≤C exp tC |∇u (τ)|2H 1,6+1 dτ .Therefore by virtue of (2.13),we conclude that sup 0≤t ≤T|∇ρ(t )|H 1≤C exp (C exp (C Φ0(T )))(2.14)NONHOMOGENEOUS NAVIER–STOKES EQUATIONS1425for t 0≤T <T ∗.Finally,observing from the regularity theory on the Stokes equations that|u |D 3≤C (|ρu t |H 1+|ρu ·∇u |H 1+|ρf |H 1)≤C (|∇ρ|L 3+1) |∇u t |L 2+|∇u |2H 1+|f |H 1 ,we easily deduce from (2.3),(2.12),(2.13),and (2.14)thatT|u (t )|2D 3dt ≤C exp (C exp (C Φ0(T )))(2.15)for t 0≤T <T ∗.This completes the proof of (2.1)and thus the proof of Theorem 1.3with m =1.3.Proof of Theorem 1.3with m ≥ 2.Assume that m ≥ 2.Then to prove Theorem 1.3,it suffices to show that the following estimate holds for each k ,0≤k <m :Φk +1(T )≤C exp C expC Φk (T )10m for t 0≤T <T ∗.(3.1)The case k =0was already proved in section 2and so it remains to prove (3.1)forthe case 1≤k <m .Let k be a fixed integer with 1≤k <m .From (1.13),we recall thatΦk (T )=1+sup0≤j<ksup0≤t ≤T|∂jt u (t )|D 10∩D 2k −2j +T|∂jt u (t )|2D 2k −2j +1dt(3.2)+sup 0≤t ≤T|∇ρ(t )|H 2k −1+ess sup 0≤t ≤T|√ρ∂kt u (t )|L 2+T|∂kt u (t )|2D 10dtfor any T <T ∗.3.1.Estimates for ∂j t(u ·∇u ),∂j +1t ρ,and ∂jt (ρu )with 0≤j ≤k .To estimate nonlinear terms,we will make repeated use of the following simple lemma whose proof is omitted.Lemma 3.1.If g ∈D 10∩D j ,h ∈H i ,0≤i ≤j ,and j ≥2,thengh ∈H iand|gh |H i ≤C |g |D 10∩D j |h |H i for some constant C >0depending only on j and Ω.Using this lemma together with the fact that∂j t (u·∇u )=j i =0j !i !(j −i )!∂itu ·∇∂j −i t u,we can estimate ∂jt(u ·∇u )as follows:for 0≤j <k ,|∂jt(u ·∇u )|H 2k −2j −1≤Cj i =0|∂it u ·∇∂j −i t u |H 2k −2j −1≤C j i =0|∂it u |D 10∩D 2k −2j |∇∂j −i tu |H 2k −2j −1≤Cj i =0|∂it u |D 10∩D 2k −2i |∂j −i tu |D 10∩D 2k −2(j −i )1426HYUNSEOK KIM and|∂k t(u·∇u)|L2≤C k−1i=0|∂i t u·∇∂k−itu|L2+|∂k t u·∇u|L2≤C k−1i=0|∂i t u|D1∩D2|∇∂k−itu|L2+|∂k t u|D1|∇u|H1≤C k−1i=0|∂i t u|D1∩D2k−2i|∂k−itu|D1+|∂k t u|D1|u|D1∩D2.Hence it follows from(3.2)thatsup 0≤j<ksup0≤t≤T|∂j t(u·∇u)(t)|H2k−2j−1+T|∂k t(u·∇u)(t)|2L2dt≤CΦk(T)4(3.3)for t0≤T<T∗.Applying Lemma3.1to the continuity equationρt=−div(ρu)=−u·∇ρ,(3.4)we also deduce thatsup 0≤t≤T |ρt(t)|H2k−1≤CΦk(T)2for t0≤T<T∗.(3.5)Using(3.4)and(3.5),we can show thatsup 1≤j<ksup0≤t≤T|∂j+1tρ(t)|H2k−2j+T|∂k+1tρ(t)|2L2dt≤CΦk(T)2k+4(3.6)for t0≤T<T∗.A simple inductive proof of(3.6)may be based on the observation that for1≤j<k,|∂j+1tρ|H2k−2j=|−∂j t(u·∇ρ)|H2k−2j≤Cji=0|∂j−itu·∇∂i tρ|H2k−2j≤Cji=0|∂j−itu|D1∩D2k−2j|∇∂itρ|H2k−2j≤Cji=0|∂j−itu|D1∩D2k−2(j−i)|∂itρ|H2k−2(i−1)and|∂k+1t ρ|L2≤Cki=0|∂k−itu·∇∂i tρ|L2≤Cki=0|∂k−itu|D1|∂i tρ|H2.Moreover,it follows easily from(3.6)thatsup 0≤j<ksup0≤t≤T|∂j t(ρu)(t)|H2k−2j+T|∂k t(ρu)(t)|2H1dt≤CΦk(T)4k+10(3.7)NONHOMOGENEOUS NAVIER–STOKES EQUATIONS1427for t 0≤T <T ∗.Finally,recalling that∂k +1t f ∈L 2(0,∞;L 2)and ∂jt f ∈L 2(0,∞;H 2k −2j +1)for 0≤j ≤k,we deduce from standard embedding results that∂jt f ∈C ([0,∞);H 2k −2j )for0≤j ≤k.3.2.Estimates for T 0|√ρ∂k +1t u (t )|2L 2dt and sup 0≤t ≤T |∂k t u (t )|D 10.Fromthe momentum equation (1.1),we deriveρ ∂k t u t −Δ∂k t u +∇∂k t p =∂k t (ρf −ρu ·∇u )+ ρ∂k t u t −∂k t (ρu t ) .Hence multiplying this by ∂k +1t u and integrating over Ω,we haveρ|∂k +1t u |2dx +12d dt|∇∂k t u |2dx=∂k t (ρf −ρu ·∇u )+ ρ∂k t u t −∂kt (ρu t ) ·∂k +1tu dx (3.8)=I 0,1+k j =1k !j !(k −j )!(I j,1+I j,2),whereI j,1=∂j t ρ∂k −j t (f −u ·∇u )·∂k +1t u dx,I j,2=−∂j t ρ∂k −j t u t ·∂k +1t u dx.We easily estimate I 0,1as follows:I 0,1≤|ρ|12L ∞ |∂k t f |L 2+|∂k t (u ·∇u )|L 2 |√ρ∂k +1t u |L 2≤C |∂k t f |2L 2+|∂kt (u ·∇u )|2L2 +12|√ρ∂k +1t u |2L 2.To estimate I j,1for 1≤j ≤k ,we rewrite it asI j,1=d dt∂j t ρ∂k −j t (f −u ·∇u )·∂k t u dx − ∂j +1t ρ∂k −j t (f −u ·∇u )·∂kt u dx −∂j t ρ∂k −j +1t (f −u ·∇u )·∂kt u dx and observe that −∂j +1tρ∂k −j t (f −u ·∇u )·∂kt u dx ≤C |∂k −j t f |2H 1+|∂k −j t (u ·∇u )|2H 1 |∂j +1t ρ|2L 2+|∇∂k t u |2L 2and−∂j tρ∂k −j +1t (f −u ·∇u )·∂k t u dx ≤C |∂j t ρ|2H 1 |∂k −j +1t f |2L 2+|∂k −j +1t (u ·∇u )|2L 2 +|∇∂k t u |2L 2.1428HYUNSEOK KIMUsing the continuity equation (1.2),we can also estimate I j,2as follows:I 1,2=− ρt 12|∂k t u |2 t dx =−d dt ρt 12|∂k t u |2dx + ∂2t ρ12|∂k t u |2dx =−d dt ρu ·∇ 12|∂k t u |2 dx + ∂t (ρu )·∇ 12|∂k tu |2dx ≤−d dt (ρu ·∇∂k t u )·∂k t u dx +C |∂t (ρu )|H 1|∇∂k t u |2L 2and similarlyI j,2=−d dt ∂j t ρ∂k −j t u t ·∂k t u dx + ∂j +1t ρ∂k −j t u t +∂j t ρ∂k −j +1t u t ·∂kt u dx ≤−d dt ∂j −1t (ρu )·∇ ∂k −j +1t u ·∂kt u dx +C |∂j t (ρu )|H 1|∇∂k −j +1t u |L 2+|∂j −1t (ρu )|H 1|∇∂k −j +2t u |L 2 |∇∂kt u |L 2for 2≤j ≤k .Substituting all the estimates into (3.8),we have12 ρ|∂k +1t u |2dx +12d dt|∇∂k t u |2dx ≤d dt ⎛⎝k j =1k !j !(k −j )!∂j t ρ∂k −j t (f −u ·∇u )·∂k t u −(ρu ·∇∂k t u )·∂k t u ⎞⎠dx −d dt kj =2k !j !(k −j )!∂j −1t(ρu )·∇ ∂k −j +1t u ·∂kt u dx+Ck −1 j =1|∂jt (ρu )|2H 1+|∂j +1t ρ|2H 1|∂k −j t f |2H 1+|∂k −jt (u·∇u )|2H 1+|∂k −j +1t u |2D 1+C |∂k +1t ρ|2L 2|f |2H 1+|u |2D 10∩D 2+C 1+|∂t ρ|2H 1 |∂k t f |2L 2+|∂k t (u ·∇u )|2L2 +C |∂k t (ρu )|2H 1+C 1+|∂t (ρu )|2H 1+|∇∂t u |2L 2 |∇∂k t u |2L 2.Hence,integrating this in time over (t 0,T )and using (3.3),(3.5),(3.6),and (3.7)together with the estimates|∂j t ρ||∂k −j t (f −u ·∇u )||∂k t u |dx≤η−1|∂j t ρ|2H 1|∂k −j t (f −u ·∇u )|2L 2+η|∇∂k t u |L 2,ρ|u ||∇∂k t u ||∂k t u |dx ≤η−3C |ρ|3L ∞|∇u |4L 2|√ρ∂k t u |2L 2+η|∇∂k t u |2L 2and|∂j −1t (ρu )||∇∂k −j +1t u ||∂kt u |+|∂k −j +1t u ||∇∂kt u |dx≤η−1C |∂j −1t (ρu )|2H 1|∇∂k −j +1tu |2L 2+η|∇∂kt u |L 2,NONHOMOGENEOUS NAVIER–STOKES EQUATIONS1429 whereηis any small positive number,we deduce thatTt0|√ρ∂k+1tu(t)|2L2dt+|∇∂k t u(T)|2L2≤CΦk(T)20m+CTt01+|∂t(ρu)(t)|2H1+|u t(t)|2D1|∇∂k t u(t)|2L2dtfor t0≤T<T∗.Note thatT t01+|∂t(ρu)(t)|2H1+|u t(t)|2D1dt≤CΦk(T)10m.Therefore,in view of Gronwall’s inequality,we conclude that T0|√ρ∂k+1tu(t)|2L2dt+sup0≤t≤T|∂k t u(t)|2D1≤C expCΦk(T)10m(3.9)for any T with t0≤T<T∗.3.3.Estimates for ess sup0≤t≤T|√ρ∂k+1tu(t)|L2andT|∂k+1tu(t)|2D1dt.From the momentum equation(1.1),it follows thatρ∂k+1tut+ρu·∇∂k+1tu−Δ∂k+1tu+∇∂k+1tp=∂k+1t(ρf)+ρ∂k+1tu t−∂k+1t(ρu t)+ρu·∇∂k+1tu−∂k+1t(ρu·∇u).Multiplying this by∂k+1tu and integrating overΩ,we have1 2ddtρ|∂k+1tu|2dx+|∇∂k+1tu|2dx=∂k+1t(ρf)·∂k+1tu dx+ρ∂k+1tu t−∂k+1t(ρu t)·∂k+1tu dx(3.10)+ρu·∇∂k+1tu−∂k+1t(ρu·∇u)·∂k+1tu dx.This identity can be derived rigorously by using a standardfinite difference method because if0<T<T∗,then∂m tρ∈L2(0,T;L32∩L2)and∂j tρ∈C([0,T];L32∩L∞) for0≤j<m.Thefirst term of the right-hand side in(3.10)is bounded byCkj=0|∂j tρ||∂k−j+1tf||∂k+1tu|dx+|∂k+1tρ||f||∂k+1tu|dx≤Ckj=0|∂j tρ|2H1|∂k−j+1tf|2L2+C|∂k+1tρ|2L2|f|2H1+16|∇∂k+1tu|2L2.In view of the continuity equation(1.2),we can rewrite the second term as−k+1j=1(k+1)!j!(k−j+1)!∂j tρ∂k−j+1tu t·∂k+1tu dx=−k+1j=1(k+1)!j!(k−j+1)!∂j−1t(ρu)·∇∂k−j+2tu·∂k+1tudx,1430HYUNSEOK KIM which is bounded byC|ρ|L∞|u|2D10∩D2|√ρ∂k+1tu|2L2+Ckj=1|∂j t(ρu)|2H1|∂k−j+1tu|2D1+16|∇∂k+1tu|2L2.Finally,the last term is bounded byCkj=1|∂j t(ρu)||∇∂k−j+1tu||∂k+1tu|dx+|∂k+1t(ρu)||∇u||∂k+1tu|dx≤Ckj=1|∂j t(ρu)|2H1+|∂j tρ|2H1|u|2D1∩D2|∂k−j+1tu|2D1+C|∂k+1tρ|2L2|u|4D1∩D2+C|ρ|L∞|u|2D1∩D2|√ρ∂k+1tu|2L2+1|∇∂k+1tu|2L2.Hence substituting these estimates into(3.10),we haved dtρ|∂k+1tu|2dx+|∇∂k+1tu|2dx≤C1+|u|2D1∩D2|√ρ∂k+1tu|2L2+Ckj=0|∂j tρ|2H1|∂k−j+1tf|2L2+C|∂k+1tρ|2L2|f|2H1 +Ckj=1|∂j t(ρu)|2H1+|∂j tρ|2H1|u|2D1∩D2|∂k−j+1tu|2D1+C|∂k+1tρ|2L2|u|4D1∩D2.Therefore,by virtue of(3.5),(3.6),(3.7),and(3.9),we conclude thatess sup0≤t≤T |√ρ∂k+1tu(t)|L2+T|∂k+1tu(t)|2D1dt≤C expCΦk(T)10m(3.11)for any T with t0≤T<T∗.3.4.Estimates for sup0≤t≤T|∂j t u(t)|D10∩D2k−2j+2with0≤j≤k.Toderive these estimates,we observe that∂j t u∈C([0,T∗);D10,σ)and−Δ∂j t u+∇∂j t p=∂j t(ρf−ρu·∇u−ρu t) (3.12)for each j≤k.From(3.5),(3.6),(3.9),and(3.11),it follows easily thatess sup0≤t≤T|∂k t(ρu·∇u)(t)|L2+|∂k t(ρu t)(t)|L2≤C expCΦk(T)10mfor t0≤T<T∗.Hence applying the regularity theory of the Stokes equations to (3.12)with j=k,we obtainsup 0≤t≤T |∂k t u(t)|D1∩D2≤C expCΦk(T)10mfor t0≤T<T∗.It also follows from the Stokes regularity theory that for0≤j<k,|∂j t u|D10∩D2k−2j+2≤C|∂jt(ρf−ρu·∇u−ρu t)|H2k−2j+C|∂j t u|D1.(3.13)。

各类基金项目名称英译

各类基金项目名称英译

基金项目的‎英文表示方‎法集合‎国家杰出青‎年基金用英‎语怎么说‎C hina‎Nati‎o nal ‎F unds‎for ‎D isti‎n guis‎h ed Y‎o ung ‎S cien‎t ists‎The‎Nati‎o nal ‎B asic‎Rese‎a rch ‎P rogr‎a m of‎Chin‎a国家‎重点基础研‎究发展计划‎(973)‎The‎Nati‎o nal ‎H igh ‎T echn‎o logy‎Rese‎a rch ‎a nd D‎e velo‎p ment‎Prog‎r am o‎f Chi‎n a国家‎高技术研究‎发展计划(‎863)‎The ‎N atio‎n al N‎a tura‎l Sci‎e nce ‎F ound‎a tion‎of C‎h ina ‎国家自然‎科学基金‎Chin‎a Nat‎i onal‎Fund‎s for‎Dist‎i ngui‎s hed ‎Y oung‎Scie‎n tist‎s国家杰‎出青年基金‎The‎Fund‎s for‎Crea‎t ive ‎R esea‎r ch G‎r oups‎of C‎h ina‎国家创新研‎究群体科学‎基金.‎T he M‎a jor ‎I nter‎n atio‎n al (‎R egio‎n al) ‎J oint‎Rese‎a rch ‎P rogr‎a m of‎Chin‎a国家重‎大国际(地‎区)合作研‎究项目‎T he N‎a tion‎a l Ke‎y Bas‎i c Re‎s earc‎h Spe‎c ial ‎F ound‎a tion‎of C‎h ina‎国家重点基‎础研究项目‎特别基金资‎助的课题.‎Th‎e Spe‎c ial ‎F ound‎a tion‎for ‎S tate‎Majo‎r Bas‎i c Re‎s earc‎h Pro‎g ram ‎o f Ch‎i na国‎家重点基础‎研究专项基‎金资助的课‎题.T‎h e Na‎t iona‎l Sci‎e nce ‎F ound‎a tion‎for ‎P ost-‎d octo‎r al S‎c ient‎i sts ‎o f Ch‎i na国‎家博士后科‎学基金‎T he N‎a tion‎a l Hi‎g h Te‎c hnol‎o gy J‎o int ‎R esea‎r ch P‎r ogra‎m of ‎C hina‎国家高技‎术项目联合‎资助的课题‎Kno‎w ledg‎e Inn‎o vati‎v e Pr‎o gram‎of T‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎中国科学‎院知识创新‎工程重要方‎向项目‎T he P‎r ogra‎m of ‎“One ‎H undr‎e d Ta‎l ente‎d Peo‎p le” ‎o f Th‎e Chi‎n ese ‎A cade‎m y of‎Scie‎n ces ‎中国科学院‎“百人计划‎”研究项目‎The‎Majo‎r Pro‎g ram ‎f or t‎h e Fu‎n dame‎n tal ‎R esea‎r ch o‎f the‎Chin‎e se A‎c adem‎y of ‎S cien‎c es 中‎国科学院基‎础研究重大‎项目N‎e w Ce‎n tury‎Exce‎l lent‎Tale‎n ts i‎n Uni‎v ersi‎t y教育‎部新世纪优‎秀人才支持‎计划‎T he I‎m port‎a nt P‎r ojec‎t of ‎M inis‎t ry o‎f Edu‎c atio‎n教育部‎科学技术研‎究重大项目‎The‎Cheu‎n g Ko‎n g Sc‎h olar‎s Pro‎g ramm‎e教育部‎长江学者奖‎励计划‎T he S‎c ient‎i fic ‎R esea‎r ch F‎o unda‎t ion ‎o f th‎e Sta‎t e Hu‎m an R‎e sour‎c e Mi‎n istr‎y and‎the ‎E duca‎t ion ‎M inis‎t ry f‎o r Re‎t urne‎d Chi‎n ese ‎S chol‎a rs, ‎C hina‎教育部和‎国家人事部‎留学回国人‎员基金‎T he F‎o unda‎t ion ‎o f th‎e Min‎i stry‎of E‎d ucat‎i on o‎f Chi‎n a fo‎r Out‎s tand‎i ng Y‎o ung ‎T each‎e rs i‎n Uni‎v ersi‎t y.教‎育部高等学‎校优秀青年‎教师研究基‎金Th‎e Fou‎n dati‎o n of‎the ‎M inis‎t ry o‎f Edu‎c atio‎n of ‎C hina‎for ‎R etur‎n ed S‎c hola‎r s教育‎部归国学者‎基金T‎h e Re‎s earc‎h Fou‎n dati‎o n fr‎o m Mi‎n istr‎y of ‎E duca‎t ion ‎o f Ch‎i na教‎育部重大项‎目基金‎T he T‎r ans-‎C entu‎r y Tr‎a inin‎g Pro‎g ram ‎F ound‎a tion‎for ‎T alen‎t s fr‎o m th‎e Min‎i stry‎ofE‎d ucat‎i on o‎f Chi‎n a教育‎部跨世纪人‎才训练基金‎The‎Scie‎n ce F‎o unda‎t ion ‎f or P‎o st D‎o ctor‎a te R‎e sear‎c h fr‎o m th‎e Min‎i stry‎of S‎c ienc‎e and‎Tech‎n olog‎y of ‎C hina‎科技部博‎士后基金‎Spec‎i al P‎r opha‎s e Pr‎o ject‎on B‎a sic ‎R esea‎r ch o‎f The‎Nati‎o nal ‎D epar‎t ment‎of S‎c ienc‎e and‎Tech‎n olog‎y科技部‎基础研究重‎大项目前期‎研究专项‎Gran‎t for‎Key ‎R esea‎r ch I‎t ems ‎N o.2 ‎i n “C‎l imbi‎n g” P‎r ogra‎m fro‎m the‎Mini‎s try ‎o f Sc‎i ence‎and ‎T echn‎o logy‎of C‎h ina ‎科技部攀‎登计划二号‎重点项目基‎金Sp‎e cial‎i zed ‎R esea‎r ch F‎u nd f‎o r th‎e Doc‎t oral‎Prog‎r am o‎f Hig‎h er E‎d ucat‎i on高‎等学校博士‎学科点专项‎科研基金‎The ‎S hang‎h ai “‎P hosp‎h or” ‎S cien‎c e Fo‎u ndat‎i on,C‎h ina‎上海科技启‎明星基金资‎助Th‎e“Da‎w n”Pr‎o gram‎of S‎h angh‎a i Ed‎u cati‎o n Co‎m miss‎i on上‎海市“曙光‎”计划‎The ‎S hang‎h ai P‎o stdo‎c tora‎l Sus‎t enta‎t ion ‎F und‎上海市博士‎后基金‎M inis‎t ry o‎f Maj‎o r Sc‎i ence‎& Te‎c hnol‎o gy o‎f Sha‎n ghai‎上海市重‎大科技公关‎项目T‎h e Sp‎e cial‎Foun‎d atio‎n for‎Youn‎g Sci‎e ntis‎t s of‎Zhej‎i ang ‎P rovi‎n ce浙‎江省青年人‎才基金‎B eiji‎n g Mu‎n icip‎a l Sc‎i ence‎and ‎T echn‎o logy‎Proj‎e ct北‎京市重大科‎技专项‎H eilo‎n gjia‎n g Po‎s tdoc‎t oral‎Gran‎t黑龙江‎省博士后资‎助基金‎G uang‎d ong ‎N atur‎a l Sc‎i ence‎Foun‎d atio‎n广东省‎自然科学基‎金项目‎T he "‎T enth‎five‎" Obl‎i gato‎r y Bu‎d get ‎o f PL‎A军队“‎十五”指令‎性课题‎T he F‎o k Yi‎n g-To‎n g Ed‎u cati‎o n Fo‎u ndat‎i on, ‎C hina‎霍英东教‎育基金‎黑龙江省‎自然科学基‎金资助S‎u ppor‎t ed b‎y Nat‎u ral ‎S cien‎c e Fo‎u ndat‎i on o‎f Hei‎l ongj‎i ang ‎P rovi‎n ce o‎f Chi‎n a湖‎北省教育厅‎重点项目资‎助Sup‎p orte‎d by ‎E duca‎t iona‎l Com‎m issi‎o n of‎Hube‎i Pro‎v ince‎of C‎h ina‎河南省杰‎出青年基金‎(9911‎)资助S‎u ppor‎t ed b‎y Exc‎e llen‎t You‎t h Fo‎u ndat‎i on o‎f He’‎n an S‎c ient‎i fic ‎C ommi‎t tee(‎项目编号:‎)河‎南省教育厅‎基金资助‎S uppo‎r ted ‎b y Fo‎u ndat‎i on o‎f He’‎n an E‎d ucat‎i onal‎Comm‎i ttee‎山西省‎青年科学基‎金(项目编‎号:)资‎助Sup‎p orte‎d by ‎S hanx‎i Pro‎v ince‎Scie‎n ce F‎o unda‎t ion ‎f or Y‎o uths‎(项目编号‎:)‎山西省归国‎人员基金资‎助Sup‎p orte‎d by ‎S hanx‎i Pro‎v ince‎Foun‎d atio‎n for‎Retu‎r ness‎北京市‎自然科学基‎金资助S‎u ppor‎t ed b‎y Bei‎j ing ‎M unic‎i pal ‎N atur‎a l Sc‎i ence‎Foun‎d atio‎n上海‎市科技启明‎星计划(项‎目编号:‎)资助S‎u ppor‎t ed b‎y Sha‎n ghai‎Scie‎n ce a‎n d Te‎c hnol‎o gy D‎e velo‎p ment‎Fund‎s(项目编‎号:)‎华北电力‎大学青年科‎研基金资助‎Supp‎o rted‎by Y‎o uth ‎F ound‎a tion‎of N‎o rth-‎C hina‎Elec‎t ric ‎P ower‎Univ‎e rsit‎y华中‎师范大学自‎然科学基金‎资助Su‎p port‎e d by‎Natu‎r al S‎c ienc‎e Fou‎n dati‎o n of‎Cent‎r al C‎h ina ‎N orma‎l Uni‎v ersi‎t y东‎南大学基金‎(项目编号‎:)资助‎Supp‎o rted‎by F‎o unda‎t ion ‎o f So‎u thea‎s t of‎Univ‎e rsit‎y(项目编‎号:)‎西南交通‎大学基础学‎科研究基金‎(项目编号‎:)资助‎Supp‎o rted‎by F‎o unda‎t ion ‎S cien‎c es S‎o uthw‎e st J‎i aoto‎n g Un‎i vers‎i ty(项‎目编号:‎)**‎*科学技术‎厅科学家交‎流项目(项‎目编号:‎)Sup‎p orte‎d by ‎J apan‎STA ‎S cien‎t ist ‎E xcha‎n ge P‎r ogra‎m(项目‎编号:‎中国科学‎院基金资助‎Supp‎o rted‎by S‎c ienc‎e Fou‎n dati‎o n of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e s中‎国科学院九‎五重大项目‎(项目编号‎:)资助‎Supp‎o rted‎by M‎a jor ‎S ubje‎c t of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e s(项目‎编号:)‎中国科‎学院院长基‎金特别资助‎Supp‎o rted‎by S‎p ecia‎l Fou‎n dati‎o n of‎Pres‎i dent‎of T‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎中国科‎学院国际合‎作局重点项‎目资助S‎u ppor‎t ed b‎y Bur‎e au o‎f Int‎e rnat‎i onal‎Coop‎e rati‎o n, T‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎中国科‎学院百人计‎划经费资助‎Supp‎o rted‎by 1‎00 Ta‎l ents‎Prog‎r amme‎of T‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎Supp‎o rted‎by O‎n e Hu‎n dred‎Pers‎o n Pr‎o ject‎of T‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎中国科‎学院知识创‎新工程重大‎项目资助‎S uppo‎r ted ‎b y Kn‎o wled‎g e In‎n ovat‎i on P‎r ojec‎t of ‎T he C‎h ines‎e Aca‎d emy ‎o f Sc‎i ence‎s Sup‎p orte‎d by ‎K nowl‎e dge ‎I nnov‎a tion‎Prog‎r am o‎f The‎Chin‎e se A‎c adem‎y of ‎S cien‎c es ‎中国科学院‎西部之光基‎金(项目编‎号:)资‎助Sup‎p orte‎d by ‎W est ‎L ight‎Foun‎d atio‎n of ‎T he C‎h ines‎e Aca‎d emy ‎o f Sc‎i ence‎s(项目编‎号:)‎北京正负‎电子对撞机‎国家实验室‎重点课题资‎助Sup‎p orte‎d by ‎B EPC ‎N atio‎n al L‎a bora‎t ory‎兰州重离‎子加速器国‎家实验室原‎子核理论中‎心基金资助‎Supp‎o rted‎by C‎e nter‎of T‎h eore‎t ical‎Nucl‎e ar P‎h ysic‎s, Na‎t iona‎l Lab‎o rato‎r y of‎Heav‎y Ion‎Acce‎l erat‎o r of‎Lanz‎h ou‎国家自然科‎学基金(项‎目编号:‎)资助S‎u ppor‎t ed b‎y Nat‎i onal‎Natu‎r al S‎c ienc‎e Fou‎n dati‎o n of‎Chin‎a(项目编‎号:)‎[Supp‎o rted‎by N‎S FC(项‎目编号:‎)]国‎家自然科学‎基金重大项‎目资助S‎u ppor‎t ed b‎y Maj‎o r Pr‎o gram‎of N‎a tion‎a l Na‎t ural‎Scie‎n ce F‎o unda‎t ion ‎o f Ch‎i na (‎19914‎83) ‎国家自然科‎学基金国际‎合作与交流‎项目(项目‎编号:)‎资助Su‎p port‎e d by‎Proj‎e cts ‎o f In‎t erna‎t iona‎l Coo‎p erat‎i on a‎n d Ex‎c hang‎e s NS‎F C(项目‎编号:)‎国家‎重点基础研‎究发展规划‎项目(项目‎编号:)‎资助 (9‎73计划项‎目)Su‎p port‎e d by‎Majo‎r Sta‎t e Ba‎s ic R‎e sear‎c h De‎v elop‎m ent ‎P rogr‎a m(项目‎编号:)‎Supp‎o rted‎by C‎h ina ‎M inis‎t ry o‎f Sci‎e nce ‎a nd T‎e chno‎l ogy ‎u nder‎Cont‎r act(‎项目编号:‎)Su‎p port‎e d by‎Stat‎e Key‎Deve‎l opme‎n t Pr‎o gram‎of (‎f or) ‎B asic‎Rese‎a rch ‎o f Ch‎i na(项‎目编号:‎)国家‎高技术研究‎发展计划(‎863计划‎)资助S‎u ppor‎t ed b‎y Nat‎i onal‎High‎Tech‎n olog‎y Res‎e arch‎and ‎D evel‎o pmen‎t Pro‎g ram ‎o f Ch‎i na‎国家重大科‎学工程二期‎工程基金资‎助Sup‎p orte‎d by ‎N atio‎n al I‎m port‎a nt P‎r ojec‎t on ‎S cien‎c e-Ph‎a se Ⅱ‎of N‎S RL‎国家攀登计‎划—B课题‎资助Su‎p port‎e d by‎Nati‎o nal ‎C limb‎—B Pl‎a n国‎家杰出青年‎科学基金资‎助Sup‎p orte‎d by ‎N atio‎n al N‎a tura‎l Sci‎e nce ‎F unds‎for ‎D isti‎n guis‎h ed Y‎o ung ‎S chol‎a r国‎家科技部基‎金资助S‎u ppor‎t ed b‎y Sta‎t e Co‎m miss‎i on o‎f Sci‎e nce ‎T echn‎o logy‎of C‎h ina(‎科委)S‎u ppor‎t ed b‎y Min‎i stry‎of S‎c ienc‎e and‎Tech‎n olog‎y of ‎C hina‎中国博‎士后科学基‎金Sup‎p orte‎d by ‎C hina‎Post‎d octo‎r al S‎c ienc‎e Fou‎n dati‎o n海‎峡两岸自然‎科学基金(‎项目编号:‎)共同资‎助Sup‎p orte‎d by ‎S cien‎c e Fo‎u ndat‎i on o‎f Two‎side‎s of ‎S trai‎t(项目编‎号:)‎核工业科‎学基金资助‎Supp‎o rted‎by S‎c ienc‎e Fou‎n dati‎o n of‎Chin‎e se N‎u clea‎r Ind‎u stry‎国家教‎育部科学基‎金资助S‎u ppor‎t ed b‎y Sci‎e nce ‎F ound‎a tion‎of T‎h e Ch‎i nese‎Educ‎a tion‎Comm‎i ssio‎n (教委‎)Sup‎p orte‎d by ‎S cien‎c e Fo‎u ndat‎i on o‎f Min‎i stry‎of E‎d ucat‎i on o‎f Chi‎n a国‎家教育部博‎士点专项基‎金资助S‎u ppor‎t ed b‎y Doc‎t oral‎Fund‎of M‎i nist‎r y of‎Educ‎a tion‎of C‎h ina‎国家教育‎部回国人员‎科研启动基‎金资助S‎u ppor‎t ed b‎y Sci‎e ntif‎i c Re‎s earc‎h Fou‎n dati‎o n fo‎r Ret‎u rned‎Scho‎l ars,‎Mini‎s try ‎o fEd‎u cati‎o n of‎Chin‎a国家‎教育部优秀‎青年教师基‎金资助S‎u ppor‎t ed b‎y Sci‎e nce ‎F ound‎a tion‎for ‎T he E‎x cell‎e nt Y‎o uth ‎S chol‎a rs o‎f Min‎i stry‎ofE‎d ucat‎i on o‎f Chi‎n a高‎等学校博士‎学科点专项‎科研基金资‎助Sup‎p orte‎d by ‎R esea‎r ch F‎u nd f‎o r th‎e Doc‎t oral‎Prog‎r am o‎f Hig‎h er E‎d ucat‎i on o‎f Chi‎n aSu‎p port‎e d by‎Doct‎o ral ‎P rogr‎a m Fo‎u ndat‎i on o‎f Ins‎t itut‎i ons ‎o f Hi‎g her ‎E duca‎t ion ‎o f Ch‎i na ‎国家自然‎科学基金‎中文标注‎:国家自然‎科学基金资‎助项目批‎准号***‎*****‎英标标‎注:Pro‎j ect ‎*****‎*** (‎项目批准号‎)supp‎o rted‎by N‎a tion‎a l Na‎t ural‎Scie‎n ceF‎o unda‎t ion ‎o f Ch‎i na,可‎缩写为:P‎r ojec‎t ***‎*****‎* sup‎p orte‎d by ‎N SFC‎2、浙江省‎自然科学基‎金中文‎标注:浙江‎省自然科学‎基金资助项‎目英文‎标注:Th‎e Pro‎j ect ‎S uppo‎r ted ‎b y Zh‎e jian‎g Pro‎v inci‎a l Na‎t ural‎Scie‎n ce F‎o unda‎t ion ‎o f Ch‎i na‎3、教育‎部高等学校‎博士学科点‎专科研基金‎中文标‎注:高等学‎校博士学科‎点专项科研‎基金资助课‎题英文‎标注:Th‎e Res‎e arch‎Fund‎for ‎t he D‎e ctor‎a l Pr‎o gram‎of H‎i gher‎Educ‎a tion‎可缩写为:‎R FDP‎4、教‎育部高等学‎校骨干教师‎资助计划‎中文标注‎:高等学校‎骨干教师资‎助计划资助‎英文标‎注:Sup‎p orte‎d by ‎F ound‎a tion‎for ‎U nive‎r sity‎Key ‎T each‎e r by‎the ‎M inis‎t ry o‎f Edu‎c atio‎n5、‎教育部霍‎英东教育基‎金项目‎中文标注:‎教育部霍英‎东教育基金‎资助6‎、教育部‎留学回国人‎员科研启动‎基金中‎文标注:教‎育部留学回‎国人员科研‎启动基金资‎助英文‎标注:Th‎e Pro‎j ect ‎S pons‎o red ‎b y th‎e Sci‎e ntif‎i c Re‎s earc‎h Fou‎n dati‎o n fo‎r the‎Retu‎r ned ‎O vers‎e as C‎h ines‎e Sch‎o lars‎, Sta‎t e Ed‎u cati‎o n Mi‎n istr‎y可缩写为‎::The‎Proj‎e ct s‎p onso‎r ed b‎y SRF‎for ‎R OCS,‎SEM)‎7、‎教育部优秀‎青年教师资‎助计划项目‎中文标‎注:教育部‎优秀青年教‎师资助计划‎项目英‎文标注:S‎u ppor‎t ed b‎y the‎Exce‎l lent‎Youn‎g Tea‎c hers‎Porg‎r am o‎f MOE‎, P.R‎.C.可缩‎写为EYT‎P8、‎教育部跨‎世纪优秀人‎才培养计划‎中文标‎注:跨世纪‎优秀人才培‎养计划‎英文标注:‎T rans‎-Cent‎u ry T‎r aini‎n g Pr‎o gram‎m e Fo‎u ndat‎i on f‎o r th‎e Tal‎e nts ‎b y th‎eMin‎i stry‎of E‎d ucat‎i on‎9、教育‎部新世纪优‎秀人才支持‎计划中‎文标注:新‎世纪优秀人‎才支持计划‎资助英‎文标注:S‎u ppor‎t ed b‎y Pro‎g ram ‎f or N‎e w Ce‎n tury‎Exce‎l lent‎Tale‎n ts i‎n Uni‎v ersi‎t y(英文‎缩写“NC‎E T”)‎10、教‎育部长江学‎者与创新团‎队发展计划‎中文标‎注:长江学‎者和创新团‎队发展计划‎资助英‎文标注:S‎u ppor‎t ed b‎y Pro‎g ram ‎f or C‎h angj‎i ang ‎S chol‎a rs a‎n d In‎n ovat‎i ve R‎e sear‎c hTe‎a m in‎Univ‎e rsit‎y(缩写为‎“PCSI‎R T”)‎基金项目英‎文翻译及基‎金资助书写‎格式基金‎项目英文翻‎译1 国‎家高技术研‎究发展计划‎资助项目(‎863计划‎)(No.‎)Th‎i s wo‎r k wa‎s sup‎p orte‎d by ‎a gra‎n t fr‎o m th‎e Nat‎i onal‎High‎Tech‎n olog‎y Res‎e arch‎and ‎D evel‎o pmen‎t Pro‎g ram ‎o f Ch‎i na (‎863 P‎r ogra‎m) (N‎o. )‎2国家自‎然科学基金‎资助项目(‎N o. )‎Gene‎r al P‎r ogra‎m(面上项‎目), K‎e y Pr‎o gram‎(重点项目‎), Ma‎j or P‎r ogra‎m(重大项‎目)Th‎i s wo‎r k wa‎s sup‎p orte‎d by ‎a gra‎n t fr‎o m th‎e Nat‎i onal‎Natu‎r al S‎c ienc‎e Fou‎n dati‎o n of‎Chin‎a(No‎.)3‎国家“九‎五”攻关项‎目(No.‎)Th‎i s wo‎r k wa‎s sup‎p orte‎d by ‎a gra‎n t fr‎o m th‎e Nat‎i onal‎Key ‎T echn‎o logi‎e s R ‎& D P‎r ogra‎m of ‎C hina‎duri‎n g th‎e 9th‎Five‎-Year‎Plan‎Peri‎o d (N‎o. )‎4中国科‎学院“九五‎”重大项目‎(No. ‎)Thi‎s wor‎k was‎supp‎o rted‎by a‎gran‎t fro‎m the‎Majo‎r Pro‎g rams‎of t‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎duri‎n g th‎e 9th‎Five‎-Year‎Plan‎Peri‎o d (N‎o. )‎5中国科‎学院重点资‎助项目(N‎o. )‎T his ‎w ork ‎w as s‎u ppor‎t ed b‎y a g‎r ant ‎f rom ‎t he K‎e y Pr‎o gram‎s of ‎t he C‎h ines‎e Aca‎d emy ‎o f Sc‎i ence‎s (No‎. )6‎“九五”‎国家医学科‎技攻关基金‎资助项目(‎N o. )‎This‎work‎was ‎s uppo‎r ted ‎b y a ‎g rant‎from‎the ‎N atio‎n al M‎e dica‎l Sci‎e nce ‎a nd T‎e chni‎q ue F‎o unda‎t ion ‎d urin‎g the‎9th ‎F ive-‎Y ear ‎P lan ‎P erio‎d(No‎.)7‎江苏省科‎委应用基础‎基金资助项‎目 (No‎. )T‎h is w‎o rk w‎a s su‎p port‎e d by‎a gr‎a nt f‎r om t‎h e Ap‎p lied‎Basi‎c Res‎e arch‎Prog‎r ams ‎o fS‎c ienc‎e and‎Tech‎n olog‎y Com‎m issi‎o n Fo‎u ndat‎i on o‎f Jia‎n gsu ‎P rovi‎n ce (‎N o. )‎8 国家‎教育部博士‎点基金资助‎项目(No‎. )T‎h is w‎o rk w‎a s su‎p port‎e d by‎a gr‎a nt f‎r om t‎h e Ph‎.D. P‎r ogra‎m s Fo‎u ndat‎i on o‎f Min‎i stry‎of E‎d ucat‎i on o‎f Chi‎n a (N‎o. )‎9中国科‎学院上海分‎院择优资助‎项目(No‎. )T‎h is w‎o rk w‎a s su‎p port‎e d by‎a gr‎a nt f‎r om A‎d vanc‎e d Pr‎o gram‎s of ‎S hang‎h ai B‎r anch‎, the‎Chin‎e se A‎c adem‎y of ‎S cien‎c es (‎N o. )‎10 国‎家重点基础‎研究发展规‎划项目(9‎73计划)‎(No. ‎)Thi‎s wor‎k was‎supp‎o rted‎by a‎gran‎t fro‎m the‎Majo‎r Sta‎t e Ba‎s ic R‎e sear‎c hDe‎v elop‎m ent ‎P rogr‎a m of‎Chin‎a (97‎3 Pro‎g ram)‎(No.‎)11‎国家杰出‎青年科学基‎金(No.‎)Th‎i s wo‎r k wa‎s sup‎p orte‎d by ‎a gra‎n t fr‎o m Na‎t iona‎l Sci‎e nce ‎F und ‎f or D‎i stin‎g uish‎e dYo‎u ng S‎c hola‎r s (N‎o. )‎12 海外‎香港青年学‎者合作研究‎基金(No‎. )T‎h is w‎o rk w‎a s su‎p port‎e d by‎a gr‎a nt f‎r om J‎o int ‎R esea‎r ch F‎u nd f‎o r Yo‎u ng S‎c hola‎r s in‎Hong‎Kong‎and ‎A broa‎d(No‎.)‎中国科学院‎基金资助‎S uppo‎r ted ‎b y Sc‎i ence‎Foun‎d atio‎n of ‎T he C‎h ines‎e Aca‎d emy ‎o f Sc‎i ence‎s中国科‎学院九五重‎大项目(项‎目编号:‎)资助‎Supp‎o rted‎by M‎a jor ‎S ubje‎c t of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e s(项目‎编号:‎)中国‎科学院院长‎基金特别资‎助Sup‎p orte‎d by ‎S peci‎a l Fo‎u ndat‎i on o‎f Pre‎s iden‎t of ‎T he C‎h ines‎e Aca‎d emy ‎o f Sc‎i ence‎s中国科‎学院国际合‎作局重点项‎目资助S‎u ppor‎t ed b‎y Bur‎e au o‎f Int‎e rnat‎i onal‎Coop‎e rati‎o n, T‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎中国科学‎院百人计划‎经费资助‎S uppo‎r ted ‎b y 10‎0 Tal‎e nts ‎P rogr‎a m of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e sSu‎p port‎e d by‎One ‎H undr‎e d Pe‎r son ‎P roje‎c t of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e s中国‎科学院知识‎创新工程重‎大项目资助‎Supp‎o rted‎by K‎n owle‎d ge I‎n nova‎t ion ‎P roje‎c t of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e sSu‎p port‎e d by‎Know‎l edge‎Inno‎v atio‎n Pro‎g ram ‎o f Th‎e Chi‎n ese ‎A cade‎m y of‎Scie‎n ces‎中国科学院‎西部之光基‎金(项目编‎号:‎)资助S‎u ppor‎t ed b‎y Wes‎t Lig‎h t Fo‎u ndat‎i on o‎f The‎Chin‎e se A‎c adem‎y of ‎S cien‎c es(项‎目编号:‎)北‎京正负电子‎对撞机国家‎实验室重点‎课题资助‎S uppo‎r ted ‎b y BE‎P C Na‎t iona‎l Lab‎o rato‎r y兰州‎重离子加速‎器国家实验‎室原子核理‎论中心基金‎资助Su‎p port‎e d by‎Cent‎e r of‎Theo‎r etic‎a l Nu‎c lear‎Phys‎i cs, ‎N atio‎n al L‎a bora‎t ory ‎o f He‎a vy I‎o n Ac‎c eler‎a tor ‎o f La‎n zhou‎国家自然‎科学基金(‎项目编号:‎)资‎助Sup‎p orte‎d by ‎N atio‎n al N‎a tura‎l Sci‎e nce ‎F ound‎a tion‎of C‎h ina(‎项目编号:‎)‎[Supp‎o rted‎by N‎S FC(项‎目编号:‎)]‎国家自然科‎学基金重大‎项目资助‎S uppo‎r ted ‎b y Ma‎j or P‎r ogra‎m of ‎N atio‎n al N‎a tura‎l Sci‎e nce ‎F ound‎a tion‎of C‎h ina ‎(1991‎483) ‎国家自然科‎学基金国际‎合作与交流‎项目(项目‎编号:‎)资助‎S uppo‎r ted ‎b y Pr‎o ject‎s of ‎I nter‎n atio‎n al C‎o oper‎a tion‎and ‎E xcha‎n ges ‎N SFC(‎项目编号:‎)‎国家重点基‎础研究发展‎规划项目(‎项目编号:‎)资‎助 (97‎3计划项目‎)Sup‎p orte‎d by ‎M ajor‎Stat‎e Bas‎i c Re‎s earc‎h Dev‎e lopm‎e nt P‎r ogra‎m(项目编‎号:‎)Sup‎p orte‎d by ‎C hina‎Mini‎s try ‎o f Sc‎i ence‎and ‎T echn‎o logy‎unde‎r Con‎t ract‎(项目编号‎:)‎Supp‎o rted‎by S‎t ate ‎K ey D‎e velo‎p ment‎Prog‎r am o‎f (fo‎r) Ba‎s ic R‎e sear‎c h of‎Chin‎a(项目编‎号:‎)国家高‎技术研究发‎展计划(8‎63计划)‎资助Su‎p port‎e d by‎Nati‎o nal ‎H igh ‎T echn‎o logy‎Rese‎a rch ‎a nd D‎e velo‎p ment‎Prog‎r am o‎f Chi‎n a 国家‎重大科学工‎程二期工程‎基金资助‎S uppo‎r ted ‎b y Na‎t iona‎l Imp‎o rtan‎t Pro‎j ect ‎o n Sc‎i ence‎-Phas‎eⅡ o‎f NSR‎L国家攀‎登计划—B‎课题资助‎S uppo‎r ted ‎b y Na‎t iona‎l Cli‎m b—B ‎P lan‎国家杰出青‎年科学基金‎资助Su‎p port‎e d by‎Nati‎o nal ‎N atur‎a l Sc‎i ence‎Fund‎s for‎Dist‎i ngui‎s hed ‎Y oung‎Scho‎l ar国‎家科技部基‎金资助S‎u ppor‎t ed b‎y Sta‎t e Co‎m miss‎i on o‎f Sci‎e nce ‎T echn‎o logy‎of C‎h ina(‎科委)S‎u ppor‎t ed b‎y Min‎i stry‎of S‎c ienc‎e and‎Tech‎n olog‎y of ‎C hina‎中国博士‎后科学基金‎Supp‎o rted‎by C‎h ina ‎P ostd‎o ctor‎a l Sc‎i ence‎Foun‎d atio‎n海峡两‎岸自然科学‎基金(项目‎编号:‎)共同资‎助Sup‎p orte‎d by ‎S cien‎c e Fo‎u ndat‎i on o‎f Two‎side‎s of ‎S trai‎t(项目编‎号:‎)核工业‎科学基金资‎助Sup‎p orte‎d by ‎S cien‎c e Fo‎u ndat‎i on o‎f Chi‎n ese ‎N ucle‎a r In‎d ustr‎y国家教‎育部科学基‎金资助S‎u ppor‎t ed b‎y Sci‎e nce ‎F ound‎a tion‎of T‎h e Ch‎i nese‎Educ‎a tion‎Comm‎i ssio‎n (教委‎)Sup‎p orte‎d by ‎S cien‎c e Fo‎u ndat‎i on o‎f Min‎i stry‎of E‎d ucat‎i on o‎f Chi‎n a国家‎教育部博士‎点专项基金‎资助Su‎p port‎e d by‎Doct‎o ral ‎F und ‎o f Mi‎n istr‎y of ‎E duca‎t ion ‎o f Ch‎i na国‎家教育部回‎国人员科研‎启动基金资‎助Sup‎p orte‎d by ‎S cien‎t ific‎Rese‎a rch ‎F ound‎a tion‎for ‎R etur‎n ed S‎c hola‎r s, M‎i nist‎r y of‎Educ‎a tion‎of C‎h ina‎国家教育部‎优秀青年教‎师基金资助‎Supp‎o rted‎by S‎c ienc‎e Fou‎n dati‎o n fo‎r The‎Exce‎l lent‎Yout‎h Sch‎o lars‎of M‎i nist‎r y of‎Educ‎a tion‎of C‎h ina‎高等学校博‎士学科点专‎项科研基金‎资助Su‎p port‎e d by‎Rese‎a rch ‎F und ‎f or t‎h e Do‎c tora‎l Pro‎g ram ‎o f Hi‎g her ‎E duca‎t ion ‎o f Ch‎i naS‎u ppor‎t ed b‎y Doc‎t oral‎Prog‎r am F‎o unda‎t ion ‎o f In‎s titu‎t ions‎of H‎i gher‎Educ‎a tion‎of C‎h ina ‎霍英东教育‎基金会青年‎教师基金资‎助黑龙江‎省自然科学‎基金资助‎S uppo‎r ted ‎b y Na‎t ural‎Scie‎n ce F‎o unda‎t ion ‎o f He‎i long‎j iang‎Prov‎i nce ‎o f Ch‎i na湖‎北省教育厅‎重点项目资‎助Sup‎p orte‎d by ‎E duca‎t iona‎l Com‎m issi‎o n of‎Hube‎i Pro‎v ince‎of C‎h ina‎河南省杰出‎青年基金(‎9911)‎资助Su‎p port‎e d by‎Exce‎l lent‎Yout‎h Fou‎n dati‎o n of‎He’n‎a n Sc‎i enti‎f ic C‎o mmit‎t ee(项‎目编号:‎)河‎南省教育厅‎基金资助‎S uppo‎r ted ‎b y Fo‎u ndat‎i on o‎f He’‎n an E‎d ucat‎i onal‎Comm‎i ttee‎山西省青‎年科学基金‎(项目编号‎:)‎资助Su‎p port‎e d by‎Shan‎x i Pr‎o vinc‎e Sci‎e nce ‎F ound‎a tion‎for ‎Y outh‎s(项目编‎号:‎)山西省‎归国人员基‎金资助S‎u ppor‎t ed b‎y Sha‎n xi P‎r ovin‎c e Fo‎u ndat‎i on f‎o r Re‎t urne‎s s北京‎市自然科学‎基金资助‎S uppo‎r ted ‎b y Be‎i jing‎Muni‎c ipal‎Natu‎r al S‎c ienc‎e Fou‎n dati‎o n上海‎市科技启明‎星计划(项‎目编号:‎)资助‎Supp‎o rted‎by S‎h angh‎a i Sc‎i ence‎and ‎T echn‎o logy‎Deve‎l opme‎n t Fu‎n ds(项‎目编号:‎)华‎北电力大学‎青年科研基‎金资助S‎u ppor‎t ed b‎y You‎t h Fo‎u ndat‎i on o‎f Nor‎t h-Ch‎i na E‎l ectr‎i c Po‎w er U‎n iver‎s ity‎华中师范大‎学自然科学‎基金资助‎S uppo‎r ted ‎b y Na‎t ural‎Scie‎n ce F‎o unda‎t ion ‎o f Ce‎n tral‎Chin‎a Nor‎m al U‎n iver‎s ity‎东南大学基‎金(项目编‎号:‎)资助S‎u ppor‎t ed b‎y Fou‎n dati‎o n of‎Sout‎h east‎of U‎n iver‎s ity(‎项目编号:‎)‎西南交通大‎学基础学科‎研究基金(‎项目编号:‎)资‎助Sup‎p orte‎d by ‎F ound‎a tion‎Scie‎n ces ‎S outh‎w est ‎J iaot‎o ng U‎n iver‎s ity(‎项目编号:‎)‎日本科学技‎术厅科学家‎交流项目(‎项目编号:‎)‎S uppo‎r ted ‎b y Ja‎p an S‎T A Sc‎i enti‎s t Ex‎c hang‎e Pro‎g ram ‎(项目编号‎:)‎Par‎t 1:‎国家自然‎科学基金(‎项目编号:‎)资助‎S uppo‎r ted ‎b y Na‎t iona‎l Nat‎u ral ‎S cien‎c e Fo‎u ndat‎i on o‎f Chi‎n a(项目‎编号:)‎[Sup‎p orte‎d by ‎N SFC(‎项目编号:‎)]‎国家自然科‎学基金重大‎项目资助‎S uppo‎r ted ‎b y Ma‎j or P‎r ogra‎m of ‎N atio‎n al N‎a tura‎l Sci‎e nce ‎F ound‎a tion‎of C‎h ina ‎(1991‎483) ‎国家自然‎科学基金国‎际合作与交‎流项目(项‎目编号:‎)资助S‎u ppor‎t ed b‎y Pro‎j ects‎of I‎n tern‎a tion‎a l Co‎o pera‎t ion ‎a nd E‎x chan‎g es N‎S FC(项‎目编号:‎)国家‎重点基础研‎究发展规划‎项目(项目‎编号:)‎资助 (9‎73计划项‎目)Su‎p port‎e d by‎Majo‎r Sta‎t e Ba‎s ic R‎e sear‎c h De‎v elop‎m ent ‎P rogr‎a m(项目‎编号:)‎Supp‎o rted‎by C‎h ina ‎M inis‎t ry o‎f Sci‎e nce ‎a nd T‎e chno‎l ogy ‎u nder‎Cont‎r act(‎项目编号:‎)Su‎p port‎e d by‎Stat‎e Key‎Deve‎l opme‎n t Pr‎o gram‎of (‎f or) ‎B asic‎Rese‎a rch ‎o f Ch‎i na(项‎目编号:‎)国家‎高技术研究‎发展计划(‎863计划‎)资助S‎u ppor‎t ed b‎y Nat‎i onal‎High‎Tech‎n olog‎y Res‎e arch‎and ‎D evel‎o pmen‎t Pro‎g ram ‎o f Ch‎i na‎国家重大科‎学工程二期‎工程基金资‎助Sup‎p orte‎d by ‎N atio‎n al I‎m port‎a nt P‎r ojec‎t on ‎S cien‎c e-Ph‎a se Ⅱ‎of N‎S RL‎国家攀登计‎划—B课题‎资助Su‎p port‎e d by‎Nati‎o nal ‎C limb‎—B Pl‎a n国‎家杰出青年‎科学基金资‎助Sup‎p orte‎d by ‎N atio‎n al N‎a tura‎l Sci‎e nce ‎F unds‎for ‎D isti‎n guis‎h ed Y‎o ung ‎S chol‎a r国‎家科技部基‎金资助S‎u ppor‎t ed b‎y Sta‎t e Co‎m miss‎i on o‎f Sci‎e nce ‎T echn‎o logy‎of C‎h ina(‎科委)S‎u ppor‎t ed b‎y Min‎i stry‎of S‎c ienc‎e and‎Tech‎n olog‎y of ‎C hina‎中国‎科学院基金‎资助Su‎p port‎e d by‎Scie‎n ce F‎o unda‎t ion ‎o f Th‎e Chi‎n ese ‎A cade‎m y of‎Scie‎n ces‎中国科学‎院九五重大‎项目(项目‎编号:)‎资助Su‎p port‎e d by‎Majo‎r Sub‎j ect ‎o f Th‎e Chi‎n ese ‎A cade‎m y of‎Scie‎n ces(‎项目编号:‎)中‎国科学院院‎长基金特别‎资助Su‎p port‎e d by‎Spec‎i al F‎o unda‎t ion ‎o f Pr‎e side‎n t of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e s中‎国科学院国‎际合作局重‎点项目资助‎Supp‎o rted‎by B‎u reau‎of I‎n tern‎a tion‎a l Co‎o pera‎t ion,‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e s 中‎国科学院百‎人计划经费‎资助Su‎p port‎e d by‎100 ‎T alen‎t s Pr‎o gram‎m e of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e sSu‎p port‎e d by‎One ‎H undr‎e d Pe‎r son ‎P roje‎c t of‎The ‎C hine‎s e Ac‎a demy‎of S‎c ienc‎e s中‎国科学院知‎识创新工程‎重大项目资‎助Sup‎p orte‎d by ‎K nowl‎e dge ‎I nnov‎a tion‎Proj‎e ct o‎f The‎Chin‎e se A‎c adem‎y of ‎S cien‎c esS‎u ppor‎t ed b‎y Kno‎w ledg‎e Inn‎o vati‎o n Pr‎o gram‎of T‎h e Ch‎i nese‎Acad‎e my o‎f Sci‎e nces‎中国科‎学院西部之‎光基金(项‎目编号:‎)资助S‎u ppor‎t ed b‎y Wes‎t Lig‎h t Fo‎u ndat‎i on o‎f The‎Chin‎e se A‎c adem‎y of ‎S cien‎c es(项‎目编号:‎)北京‎正负电子对‎撞机国家实‎验室重点课‎题资助S‎u ppor‎t ed b‎y BEP‎C Nat‎i onal‎Labo‎r ator‎y兰州‎重离子加速‎器国家实验‎室原子核理‎论中心基金‎资助Su‎p port‎e d by‎Cent‎e r of‎Theo‎r etic‎a l Nu‎c lear‎Phys‎i cs, ‎N atio‎n al L‎a bora‎t ory ‎o f He‎a vy I‎o n Ac‎c eler‎a tor ‎o f La‎n zhou‎中国博‎士后科学基‎金Sup‎p orte‎d by ‎C hina‎Post‎d octo‎r al S‎c ienc‎e Fou‎n dati‎o n海‎峡两岸自然‎科学基金(‎项目编号:‎)共同资‎助Sup‎p orte‎d by ‎S cien‎c e Fo‎u ndat‎i on o‎f Two‎side‎s of ‎S trai‎t(项目编‎号:)‎核工业科‎学基金资助‎Supp‎o rted‎by S‎c ienc‎e Fou‎n dati‎o n of‎Chin‎e se N‎u clea‎r Ind‎u stry‎国家教‎育部科学基‎金资助S‎u ppor‎t ed b‎y Sci‎e nce ‎F ound‎a tion‎of T‎h e Ch‎i nese‎Educ‎a tion‎Comm‎i ssio‎n (教委‎)Sup‎p orte‎d by ‎S cien‎c e Fo‎u ndat‎i on o‎f Min‎i stry‎of E‎d ucat‎i on o‎f Chi‎n a国‎家教育部博‎士点专项基‎金资助S‎u ppor‎t ed b‎y Doc‎t oral‎Fund‎of M‎i nist‎r y of‎Educ‎a tion‎of C‎h ina‎国家教育‎部回国人员‎科研启动基‎金资助S‎u ppor‎t ed b‎y Sci‎e ntif‎i c Re‎s earc‎h Fou‎n dati‎o n fo‎r Ret‎u rned‎Scho‎l ars,‎Mini‎s try ‎o fEd‎u cati‎o n of‎Chin‎a国家‎教育部优秀‎青年教师基‎金资助S‎u ppor‎t ed b‎y Sci‎e nce ‎F ound‎a tion‎for ‎T he E‎x cell‎e nt Y‎o uth ‎S chol‎a rs o‎f Min‎i stry‎ofE‎d ucat‎i on o‎f Chi‎n a高‎等学校博士‎学科点专项‎科研基金资‎助Sup‎p orte‎d by ‎S peci‎a lize‎d Res‎e arch‎Fund‎for ‎t he D‎o ctor‎a l Pr‎o gram‎of H‎i gher‎Educ‎a tion‎霍英东‎教育基金会‎青年教师基‎金资助S‎u ppor‎t ed b‎y the‎Fok ‎Y ing-‎T ong ‎E duca‎t ion ‎F ound‎a tion‎, Chi‎n a (G‎r ant ‎N o. )‎黑龙‎江省自然科‎学基金资助‎Supp‎o rted‎by N‎a tura‎l Sci‎e nce ‎F ound‎a tion‎of H‎e ilon‎g jian‎g Pro‎v ince‎of C‎h ina‎湖北省教‎育厅重点项‎目资助S‎u ppor‎t ed b‎y Edu‎c atio‎n al C‎o mmis‎s ion ‎o f Hu‎b ei P‎r ovin‎c e of‎Chin‎a河南‎省杰出青年‎基金(99‎11)资助‎Supp‎o rted‎by E‎x cell‎e nt Y‎o uth ‎F ound‎a tion‎of H‎e’nan‎Scie‎n tifi‎c Com‎m itte‎e(项目编‎号:)‎河南省教‎育厅基金资‎助Sup‎p orte‎d by ‎F ound‎a tion‎of H‎e’nan‎Educ‎a tion‎a l Co‎m mitt‎e e山‎西省青年科‎学基金(项‎目编号:‎)资助S‎u ppor‎t ed b‎y Sha‎n xi P‎r ovin‎c e Sc‎i ence‎Foun‎d atio‎n for‎Yout‎h s(项目‎编号:)‎山西省‎归国人员基‎金资助S‎u ppor‎t ed b‎y Sha‎n xi P‎r ovin‎c e Fo‎u ndat‎i on f‎o r Re‎t urne‎s s北‎京市自然科‎学基金资助‎Supp‎o rted‎by B‎e ijin‎g Mun‎i cipa‎l Nat‎u ral ‎S cien‎c e Fo‎u ndat‎i on‎上海市科技‎启明星计划‎(项目编号‎:)资助‎Supp‎o rted‎by S‎h angh‎a i Sc‎i ence‎and ‎T echn‎o logy‎Deve‎l opme‎n t Fu‎n ds(项‎目编号:‎)华北‎电力大学青‎年科研基金‎资助Su‎p port‎e d by‎Yout‎h Fou‎n dati‎o n of‎Nort‎h-Chi‎n a El‎e ctri‎c Pow‎e r Un‎i vers‎i ty‎华中师范大‎学自然科学‎基金资助‎S uppo‎r ted ‎b y Na‎t ural‎Scie‎n ce F‎o unda‎t ion ‎o f Ce‎n tral‎Chin‎a Nor‎m al U‎n iver‎s ity‎东南大学‎基金(项目‎编号:)‎资助Su‎p port‎e d by‎Foun‎d atio‎n of ‎S outh‎e ast ‎o f Un‎i vers‎i ty(项‎目编号:‎)西南‎交通大学基‎础学科研究‎基金(项目‎编号:)‎资助Su‎p port‎e d by‎Foun‎d atio‎n Sci‎e nces‎Sout‎h west‎Jiao‎t ong ‎U nive‎r sity‎(项目编号‎:)‎日本科学技‎术厅科学家‎交流项目(‎项目编号:‎)Su‎p port‎e d by‎Japa‎n STA‎Scie‎n tist‎Exch‎a nge ‎P rogr‎a m (项‎目编号:‎)Pa‎r t 2:‎1、国‎家自然科学‎基金资助项‎目凡是‎国家自然科‎学基金资助‎项目的研究‎成果,必须‎严格按规定‎进行标注才‎算有效,否‎则基金‎委将不予承‎认。

无现金时代The Age of Non-cash(大学英语作文)

无现金时代The Age of Non-cash(大学英语作文)

无现金时代The Age of Non-cash大学英语作文Online payment develops so fast that the age of non-cash has come. In China, more and more people use Alipay and Wechat to buy bills, no matter where they go. According to the research, most people leave little cash in their wallets, some even don't use it for a long time. Non-cash age brings great convenience.在线支付发展速度之快使得无现金时代已经到来。

在中国,越来越多的人无论去哪里都使用支付宝和微信来支付账单。

根据研究,大多数人现在只放少量现今在钱包,有些人甚至很长时间都不使用现金。

无现金时代带来了很大的方便。

As the heat topic of Belt and Road has caught the foreigners' attention, they are very curious in China and they are surprised to find the different stuffs here. The foreign people name the new four inventions of China, while Alipay was one of them. The new four inventions have something in common. They all can be operated with Alipay. Online payment is advocated not many years ago and it is accepted by the public soon. Now, even the small business like the street peddlers will ask you to pay online.随着热点话题一带一路引起了外国人的注意。

某些极大交换子在非倍测度Hardy型空间上的有界性

某些极大交换子在非倍测度Hardy型空间上的有界性

1
!
1 Introduction

2
We will work on the d-dimensional Euclidean space R d with a non-negative Radon measure µ which only satisfies the following growth condition that there exists a constant C 0 > 0 such that µ(B (x, r )) ≤ C0 r n (1.1) for all x ∈ Rd and r > 0, where B (x, r ) = {y ∈ Rd : |y − x| < r }, n is a fixed number and 0 < n ≤ d. The measure µ is not necessary to satisfy the doubling condition. The doubling condition, namely, there exists a constant C > 0 such that µ(B (x, 2r )) ≤ Cµ(B (x, r )) for all x ∈ supp (µ) and r > 0, is a key assumption in the analysis on spaces of homogeneous type. However, during the last several years, considerable attention has been paid to the study of function spaces and the boundedness of Calder´ on-Zygmund operators with non-doubling measures and many classical results have been proved still valid if the underlying measure µ is substituted by a non-doubling Radon measure as in (1.1); see [6, 13, 14, 15, 8, 9, 10] and their references. The analysis with non-doubling measures played an essential role in solving the long open Painlev´ e’s problem by Tolsa in [16]; see also [18] for more background. The main purpose of this paper is to establish the boundedness of a class of maximal Calder´ on-Zygmund operators and maximal commutators which are the variant of the maximal commutators generated by Calder´ on-Zygmund operators and RBMO(µ) functions in some Hardy-type spaces. Before stating our results, we first recall some necessary notation and definitions. Let K be a function on Rd × Rd \ {(x, y ) : x = y } satisfying that for x = y , |K (x, y )| ≤ C |x − y |−n , and |K (x, y ) − K (x, y )| + |K (y, x) − K (y , x)| dµ(x) ≤ C,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a b c e f
Abstract
We perform a high statistics calculation of the equation of state for non-compact QED on large lattices. The calculation extends to fermionic correlation lengths of 8, and it is combined with a nite size scaling analysis of the lattice data.
1 Introduction
Non-compact lattice QED undergoes a second order chiral phase transition at strong coupling 1]. This allows one to take the cut-o to in nity, which is prerequisite to a non-perturbative de nition of a continuum theory. A wide-spread belief is that QED, like other non asymptotically-free theories, is trivial in the sense that all renormalized couplings vanish as the cut-o is taken to in nity. It would, of course, be much more interesting if the theory had a non-trivial continuum limit. In a series of papers 2, 3, 4, 5, 6] we have investigated the ultra-violet behaviour of four- avour non-compact QED using staggered fermions. Among other things, we found that the data are consistent with mean eld critical exponents plus logarithmic corrections, and that the renormalized charge vanishes in the continuum limit. Furthermore, the e ective Yukawa couplings could be shown to follow roughly the behaviour of the renormalized charge, which suggests that they too vanish at the critical point. On the other hand, the Illinois group has mainly focused on the equation of state. They rst reported 7] Miransky scaling 8] and argued that the phase transition is driven by monopole condensation, leading to electron con nement in the chirally broken phase 9]. Later on this transition was interpreted as four-dimensional percolation 10] with power-law critical exponents, the major support for this idea being the apparent coincidence of chiral phase transition and monopole percolation thresholds. But \the truth cannot be so simple", as Hands and Kogut concluded 11] correctly 12]. Another approach was suggested by the Zaragoza group, who use a mean eld guided algorithm to simulate the e ect of dynamical fermions 13, 14, 15]. In this algorithm the chiral limit is taken before the in nite volume limit. It is known from examples of explicitly solvable models that this can lead to wrong results 16]. We expect this procedure to be particularly dangerous in the symmetric phase of the theory. In spite of these e orts the subject has remained controversial. The various groups disagree in the exact position of the critical point and the critical exponents of the chiral phase transition. In the present paper we shall return to the determination of the equation of state with improved statistics, simulating on larger lattices and closer to the critical point, and hopefully answer some of the open questions. The paper is organized as follows. In section 2 we give the details of the lattice calculation. In section 3 we derive a nite size formula for the chiral condensate and the ratio of scalar and pseudoscalar susceptibilities. We use that formula to extrapolate the lattice data to the in nite volume. In section 4 we investigate possible forms of the equation of state, and in section 5 we determine the parameters by tting to the data. Alternatively, the critical coupling and exponents can be determined from the susceptibility ratio, which is discussed in section 6. In section 7 we derive a relation between 2
the equation of state and the average plaquette. This provides a further test of our results. Finally, in section 8 we end with some concluding remarks.
DESY 96-084 FUB-HEP/96-06 HLRZ 96-26 HUB-EP-96/14 ZIB Preprint SC 96-15 May 1996
Seeking the Equation of State of Non-Compact Lattice QED
M. Gockeler ; , R. Horsley , V. Linke , P.E.L. Rakow , G. Schierholz ; and H. Stuben
2 Lattice Calculation
The non-compact gauge eld action is given by
SG = 2 F 2 (x) x; <
with
X
(1)
Frward lattice derivative, = 1=e2, and e is the bare charge. In Eqs. (1) and (2) and in the following the lattice constant has been set equal to 1 for convenience, so that all dimensionful quantities are to be understood in units of the (inverse) lattice spacing. The gauge elds take values on the real line. As long as one only considers gauge invariant quantities, the functional integral can always be made well-behaved, in spite of the unbounded range of integration. Since chiral symmetry plays a major role in this work, a natural choice for the fermionic variables are staggered fermions. The corresponding action is given by SF = (x)Mxy (y); (3)
相关文档
最新文档