人教版九年级上册22.3实际问题与二次函数练习卷 (解析版)
人教版九年级上册数学 22.3实际问题与二次函数练习

人教版九年级上册数学22.3实际问题与二次函数练习选择题用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为A.20 B.40? ? C.100 D.120【答案】D.【解析】试题分析:设围成面积为acm2的长方形的长为xcm,由长方形的周长公式得出宽为(40÷2-x)cm,根据长方形的面积公式列出方程x(40÷2-x)=a,整理得x2-20x+a=0,由△=400-4a≥0,求出a≤100,即可求解.试题解析:设围成面积为acm2的长方形的长为xcm,则宽为(40÷2-x)cm,依题意,得x(40÷2-x)=a,整理,得x2-20x+a=0,∵△=400-4a≥0,解得a≤100,故选D.选择题用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是(? )A. m2B. m2C. m2D. 4m2【答案】C【解析】试题分析:设窗的高度为xm,宽为m,则根据矩形面积公式列出二次函数求函数值的最大值即可.解:设窗的高度为xm,则宽为m,故S= ,∴.∴当x=2m时,S最大值为m2.故选C.选择题如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B.C. D.【答案】B【解析】试题分析:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y==;②当1<x≤2时,重叠三角形的边长为2?x,高为,y==;③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选B.填空题如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=______ m时,矩形场地的面积最大,最大值为______.【答案】? 20? 800m2【解析】试题分析:根据题意可以列出矩形场地的面积,从而可以得到当AD为多少时,矩形场地的面积最大,求出相应的最大值.解:设AB得长为xm,矩形场地的面积是: ,∴当x=40时, =20,矩形场地的面积最大,最大值是800m2,故答案为:20,800m2.填空题如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A 开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C 点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ 的面积为最大时,运动时间t为______s.【答案】2s【解析】试题分析:用含t的代数式表示出PB、QB再根据三角形的面积公式计算.解:根据题意得三角形面积为:S=(8?2t)t=?t2+4t=?(t?2)2+4,∴当t=2时,△PBQ的面积最大为4cm2.故答案为:2s.填空题将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是______cm2.【答案】cm2【解析】试题分析:设一段铁丝的长度为x,另一段为(20?x),则边长分别为,(20?x),则S==,∴由函数当x=10cm时,S最小,为12.5cm2.故答案为:12.5.解答题某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).【答案】当抽屉底面宽为45cm时,抽屉的体积最大,最大体积为40500cm3【解析】解:已知抽屉底面宽为x cm,则底面长为180÷2-x=(90-x)cm.由题意得:。
人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3实际问题与二次函数同步训练一、单选题1.飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米 2.据省统计局公布的数据,合肥市2021年一月GDP 总值约为6百亿元人民币,若合肥市三月GDP 总值为y 百亿元人民币,平均每个月GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .y =6(1+2x )B .y =6(1﹣x )2C .y =6(1+x )2D .y =6+6(1+x )+6(1+x )2 3.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x 元,则依据题意可列方程为( )A .(5040)(500)8000-+-=x xB .(40)(50010)8000+-=x xC .(5040)(50010)8000-+-=x xD .(50)(50010)8000--=x x 4.在平面直角坐标系中,O 为坐标原点.二次函数致2y x bx c =++的图象与x 轴只有一个交点,且经过点()2,A m c -,()2,B m c +,则AOB 的面积为( ) A .8 B .12 C .16 D .4 5.已知关于x 的方程20x bx c ++=的两个根分别是-1和3,若抛物线22y x bx c =+-与y 轴交于点A ,过A 作AB y ⊥轴,交抛物线于另一交点B ,则AB 的长为( ) A .2 B .3 C .1 D .1.5 6.平面直角坐标系中,点A 的坐标为()0,1,点B 的坐标为()2,1,连接AB ,当抛物线2y x c =+与线段AB 有公共点时,c 的取值范围为( )A .3c <-B .31c -≤≤C .1c >D .01c ≤≤ 7.如图,在长为20m 、宽为14m 的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m ,则花圃中的阴影部分的面积有( )A .最小值247B .最小值266C .最大值247D .最大值266 8.如图,正方形ABCD 中,AB =4cm ,动点E 从点A 出发,沿折线AB BC -运动到点C 停止,过点E 作EF AE ⊥交CD 于点F ,设点E 的运动路程为x cm ,DF =y cm ,则y 与x 对应关系的图象大致是( )A .B .C .D .二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.11.如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB 为x 米,面积为S 平方米,则S 与x 的之间的函数表达式为 __;自变量x 的取值范围为 __.12.亮亮推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为()215312y x =--+,则小明推铅球的成绩是______m . 13.随着经济的发展和人们生活水平的提高,越来越多的人选择乘飞机出行.某种型号的飞机着陆后滑行的距离s (单位:m )与滑行的时间(单位:s )的函数关系式为260 1.5s t t =-,那么飞机着陆后滑行_____s 停下.14.如图,物体从点A 抛出,物体的高度y (m )与飞行时间t (s )近似满足函数关系式y =−15(t −3)2+5.(1)OA =______m .(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t 的取值范围是________.15.跳台滑雪是2022年北京冬奥会比赛项目之一.一名参赛运动员起跳后,他的飞行路线可以看作是抛物线21240453y x x =-++的一部分(如图所示),则这名运动员起跳后的最大飞行高度是______m .16.某企业研发出了一种新产品准备销售,已知研发、生产这种产品的成本为30元/件,据调查年销售量y (万件)关于售价x (元/件)的函数解析式为:()()21404060806070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,则当该产品的售价x 为________.(元/件)时,企业销售该产品获得的年利润最大.三、解答题17.甲、乙两家水果店经销同一种水果,采取不同的降价措施增加销售额,提高利润.(1)甲水果店原售价每千克20元,连续两次降价后每千克12.8元,每次降价的百分率相同.求每次降价的百分率;(2)乙水果店原来每千克盈利6元,每天可售出60千克.经市场调查发现,若每千克降价0.5元,日销售量将增加10千克.在进货价不变的情况下,乙水果店决定采取适当的降价措施增加销售盈利.乙水果店降价多少元时,每天销售这种水果获利最多?最多可获利多少元?18.朝天城区某水果店王阿姨到水果批发市场打算购进一种水果销售,经过讨价还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;①请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?19.精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:设第x天的售价为y元/千克,y关于x的函数关系满足如下图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?20.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区分成两个区域,中间用塑料膜隔开.学校利用围墙作为一边,用总长为48m的塑料膜围成了如图所示的两块矩形区域;已知围墙的可用长度不超过21m,设AB的长为x m,矩形区域ABCD的面积y m2.(1)求y与x之间的函数解析式,并求出自变量x的取值范围;(2)当矩形ABCD的面积为84m2时,求AB的长度;(3)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?答案第1页,共1页 参考答案:1.A2.C3.C4.A5.A6.B7.A8.A9.81011. 2324S x x =-+1463≤<x 12.1113.2014.1650≤t ≤6且t ≠3 15.4516.5017.(1)20%(2)乙水果店每千克该种水果降价1.5元时,销售盈利最多,每天可获利405元 18.(1)实际购进这种水果每千克20元(2)①11440y x y =-+;①销售单价定为30元时利润最大,最大利润为1100元 19.(1)见解析(2)y =119(020)29(2030)x x x ⎧-+<≤⎪⎨⎪<≤⎩ (3)销售草莓的第30天时,当天的利润最大,最大利润是272元 20.(1)y =﹣3x 2+48x ,9≤x <16(2)14米(3)AB 的长度是9m 时,矩形区域ABCD 的面积y 取得最大值,最大值是189m 2。
人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案

人教版九年级数学上册22.3实际问题与二次函数同步练习题一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.162.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.03.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.54.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.75.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+1008.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.59.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m210.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是.12.二次函数y=2x2﹣2x+6的最小值是.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:.(注意标注自变量x的取值范围)14.正方形的边长是x,面积是A,请写出A与x的关系式:.它与y=x2的图象有什么不同?.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是.17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s(单位:m)相对于车速v(单位:km/h)的图象.(2)证明汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v(3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为45,72,105,144及189m,在这种情况下,(2)中的函数关系应如何调整?23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为,G 点坐标为;(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.人教版九年级数学上册22.3实际问题与二次函数同步练习题参考答案一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.16【解答】解:y=﹣x2﹣8x+c=﹣(x﹣4)2+16+c,∵最大值为0,∴16+c=0,解得c=﹣16.故选:C.2.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.0【解答】解:因为函数的最大值是0,所以=0,则|a|+=|a|=﹣a.故选:C.3.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.5【解答】解:∵S=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,S有最小值5.故选:A.4.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.7【解答】解:因为二次函数y=x2﹣6x+c的最小值为1,所以==1,解得c=10.故选:A.5.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x【解答】解:圆面积是16π,正方形面积是x2,则函数关系式是:y=16π﹣x2.故选:B.6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.【解答】解:由正方形面积公式得:y=x2.故选:B.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+100【解答】解:由题意,得y=(10+x﹣9)(100﹣10x),y=﹣10x2+90x+100.故选:D.8.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5【解答】解:新增加的投资额x万元,则增加产值万元.这函数关系式是:y=2.5x+15.故选:C.9.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m2【解答】解:设窗框的长为x,∴宽为,∴y=x,即y=﹣x2+4x,∵<0∴y有最大值,即:y最大===6m2.故选:B.10.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.【解答】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a ﹣x).根据三角形面积公式则有:y=ax﹣x2,以上是二次函数的表达式,图象是一条抛物线,故选B.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是﹣2.【解答】解:∵二次函数y=kx2+k2﹣3有最大值1,∴k<0,k2﹣3=1,解得,k=﹣2,故答案为:﹣2.12.二次函数y=2x2﹣2x+6的最小值是.【解答】解:y=2x2﹣2x+6=2(x2﹣x)+6=2(x﹣)2+,可见,二次函数的最小值为.故答案为.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:y=﹣x2+20x(10≤x<20).(注意标注自变量x的取值范围)【解答】解:矩形的另一边长是:(20﹣x)cm;则面积y=x(20﹣x)=﹣x2+20x,根据线段为正值可得到:x>0,20﹣x>0,20﹣x≤x,解得10≤x<20.故答案为:y=﹣x2+20x(10≤x<20).14.正方形的边长是x,面积是A,请写出A与x的关系式:A=x2.它与y=x2的图象有什么不同?它与y=x2的图象完全一样.【解答】解:∵正方形的边长是x,面积是A,∴A与x的关系式为:A=x2,∴它与y=x2的图象完全一样.故答案为:A=x2,它与y=x2的图象完全一样.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).【解答】解:设所求的函数的解析式为y=ax2+bx+c,由已知,函数的图象过(﹣1,1),(0,1.5),(3,1)三点,易求其解析式为y=﹣x2+x+,∵丁头顶的横坐标为1.5,∴代入其解析式可求得其纵坐标为m.16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是(4﹣).【解答】解:设矩形的宽为x,长为(﹣x),则剪去三角形后剩下的面积为(﹣x)x﹣x•x,经整理,得:y=x2+x,当x==4﹣时,y取得最大值,y最大=(4﹣),此时长为(+).17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=﹣1或3.【解答】解:依题意,在y=﹣x2+6x中,x=0时,y=0;在y=x2﹣2(m﹣1)x+m2﹣2m﹣3中,x=0时,y=m2﹣2m﹣3=0;即m2﹣2m﹣3=0,解得m=﹣1或3.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.【解答】解:当x=2时,y=1,当x=2时,y=﹣15,又∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3.∴x=1时,y最大值=3,综上所述若2≤x≤4时,y=﹣2x2+4x+1的最大值是1、最小值是﹣15.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)【解答】(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.【解答】解:∵用一根长为40cm的铁丝围成一个半径为r的扇形,∴扇形的弧长为:(40﹣2r)cm,∴扇形的面积y与它的半径r之间的函数关系式为:y=r(40﹣2r)=﹣r2+20r,此函数是二次函数,<r<20.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.【解答】解:根据题意得:A (﹣0.8,﹣2.4),设涵洞所在抛物线解析式为y =ax 2,把x =﹣0.8,y =﹣2.4代入得:a =﹣, 则涵洞所在抛物线解析式为y =﹣x 2.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s (单位:m )相对于车速v (单位:km /h )的图象.(2)证明汽车滑行的距离s (单位:m )及车速v (单位:km /h )之间有如下的关系: s =v (3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为 45,72,105,144及189m ,在这种情况下,(2)中的函数关系应如何调整?【解答】解:(1)如图,(2)设函数解析式为y =av 2+bv +c ,代入(48,22.5),(64,36),(80,52.5)得,,解得,函数解析式为s=v,因此汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v;(3)如表:(4)在路况不良时,表中的滑行距离须分别修正后的数据恰好是对应原数据的2倍,因此将(2)中的每一项对乘以2即可,所得关系式为s=v+.23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?【解答】解:令y=﹣x2+x+=0,整理得:x2﹣8x﹣20=0,(x﹣10)(x+2)=0,解得x1=10,x2=﹣2(舍去),答:该运动员此次掷铅球的成绩是10m.24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(﹣1,﹣2),G点坐标为(﹣1,2);(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.【解答】解:(1)解方程x2+2x﹣3=0得x1=﹣3,x2=1.∴抛物线与x轴的两个交点坐标为:C(﹣3,0),B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1).∵A(3,6)在抛物线上,∴6=a(3+3)•(3﹣1),∴a=,∴抛物线解析式为y=x2+x﹣.(2)由y=x2+x﹣=(x+1)2﹣2,∴抛物线顶点P的坐标为(﹣1,﹣2),对称轴方程为x=﹣1.设直线AC的解析式为y=kx+b,∵A(3,6),C(﹣3,0)在该直线上,∴,∴直线AC的解析式为:y=x+3.将x=﹣1代入y=x+3得y=2,∴G点坐标为(﹣1,2).(3)作A关于x轴的对称点A′(3,﹣6),连接A′G,A′G与x轴交于点M即为所求的点.设直线A′G的解析式为y=kx+b.∴,∴直线A′G的解析式为y=﹣2x,令x=0,则y=0.∴M点坐标为(0,0).25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.【解答】解:∵y=﹣x2+4x﹣3=﹣(x﹣3)(x﹣1),∴抛物线和x轴交于A(1,0),B(3,0)两点,当x=0时,y=﹣3,∴抛物线与y轴交于C(0,﹣3),对称轴为x==2,顶点纵坐标y=﹣4+4×2﹣3=1,顶点坐标D(2,1),∴OC=OB,∴△OBC是等腰直角三角形,∴∠OCB=∠OBC=45°,连结MN,BN.则OM=ON,∵∠COB=∠MOA=90°,∴∠COB﹣∠MOB=∠MON﹣∠MOB,∴∠COM=∠BON,在△OCM与△OBN中,,∴△OCM≌△OBN(SAS),∴∠OCB=∠OBN=45°,∴∠NBC=90°,由B(3,0),C(0,﹣3)可得直线BC解析式为:y=x﹣3,设直线BN的解析式为y=﹣x+m,由B(3,0),可得﹣3+m=0,解得m=3,则直线BN的解析式为y=﹣x+3,联立抛物线和直线解析式可得,解得或(不合题意,舍去)∴N坐标为:N(2,1).。
人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

22.3实际问题与二次函数一、单选题1.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )] 2.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 3.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加( )A .1 mB .2 mC .3 mD .6 m 4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .4 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A.不大于4m B.恰好4m C.不小于4m D.大于4m,小于8m6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A.45B.83C.4D.567.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43 (0≤x≤30).y值越大,表示接受能力越强.如果学生的接受能力逐步增强,则x的取值范围是()A.0≤x≤13B.13≤x≤26C.0≤x≤26D.13≤x≤30 8.如图1,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm29.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.140元B.150元C.160元D.180元10.如图所示,已知ABC 中,8BC BC =,上的高4h D =,为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点(F EF 不过A 、)B ,设E 到BC 的距离为x ,则DEF 的面积y 关于x 的函数的图象大致为( ).A .B .C .D .二、填空题11.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.12.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .13.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x元,可列方程为_________.15.某体育公园的圆形喷水池的水柱如图△所示,如果曲线APB表示落点B离点O最远的一条水流(如图△),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.三、解答题16.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.17.一条隧道的截面如图所示,它的上半部分是一个半圆,下半部分是一个矩形,矩形的一边长为2.5m.(1)求隧道截面的面积S()2m关于半圆半径r()m的函数解析式;(2)当半圆半径为2m时,求截面的面积.(π取3.14,结果精确到0.1)18.在足球比赛中,当守门员远离球门时,进攻队员常常会使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30m的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14m时,足球达到最大高度323m.若以球门底部为坐标原点建立平面直角坐标系,球门PQ的高度为2.44m.(1)通过计算,说明球是否会进球门.(2)如果守门员站在距离球门2m远处,而守门员跳起后最多能摸到2.75m高处,他能否在空中截住这次吊射?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.C2.C3.B4.D5.A6.B7.A8.B9.C10.C11.1.212.64713.2400x + 2252024000x x -+-14.(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭15.9216.正确. 22003x y =或236200y x =-+ 17.(1)21π52S r r =+;(2)当2r 时,2π1016.3S =+≈()2m . 18.(1)球不会进球门;(2)守门员不能在空中截住这次吊射. 19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。
人教版九年级上册数学实际问题与二次函数——增长率问题专题训练(含答案)

A.(1+x)2= B.x+2x= C.(1+x)2= D.1+2x=
三、解答题
17.某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率x,写出第3年的销售量y关于每年增加的百分率x的函数解析式.
18.为积极响应国家“旧房改造”工程,该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设.
(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;
销售单价 (元
3.5
5.5
销售量 (袋
280
120
(1)请求出 与 之间的函数关系式;
(2)设每天的利润为 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?
20.某工厂前年的生产总值为10万元,去年比前年的年增长率为x,预计今年比去年的年增长率仍为x,今年的总产值为y万元.
(1)求y关于x的函数关系式.
7.某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()
A.y=x2+aB.y=a(x-1)2C.y=a(1-x)2D.y=a(l+x)2
8.一件商品的原价是100元,经过两次提价后的价格为y元,每次提价的百分率是x,则y与x的函数关系式是( )
(2)当x=20%时,今年的总产值为多少?
人教版九年级上册:22.3《实际问题与二次函数》同步练习卷 含答案

人教版九年级上册22.3《实际问题与二次函数》同步练习卷【有答案】一.选择题1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)2.用一根长60cm的铁丝围成一个矩形,那么矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为()A.y=x2﹣30x(0<x<30)B.y=﹣x2+30x(0≤x<30)C.y=﹣x2+30x(0<x<30)D.y=﹣x2+30x(0<x≤30)3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=4.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m5.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1B.2C.3D.48.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或9.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值610.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤二.填空题12.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y美元.设2017年到2019年该地区居民年人均收入平均增长率为x,那么y与x的函数关系式是.13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加m.14.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.15.如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M 是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.16.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.三.解答题17.某店销售一种小工艺品.该工艺品每件进价12元,售价为20元.每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高x 元,每周从销售这种工艺品中获得的利润为y元.(1)填空:每件工艺品售价提高x元后的利润为元,每周可售出工艺品件,y关于x的函数关系式为;(2)若y=384,则每件工艺品的售价应确定为多少元?18.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.19.已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=﹣3时,求二次函数的最小值;(2)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.20.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.2.解:由题意得:矩形的另一边长=60÷2﹣x=30﹣x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30﹣x)=﹣x2+30x (0<x<30).故选:C.3.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.5.解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),1≤n≤12且n为整数,∴当y=0时,n=2或n=12,当y<0时,n=1,故选:D.6.解:①由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故①错误;。
人教版九年级上册:22.3.3 建立适当坐标系解决实际问题 同步练习(含答案)

22.3实际问题与二次函数同步练习第3课时建立适当坐标系解决实际问题一、选择题1.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,则在线段AB上离中心M处5米的地方,桥的高度是()A.15米B.14米C.13米D.12米第1题图第2题图2.某公园草坪的防护栏是由150段形状相同的抛物线组成的.如图是其中一段抛物线,为了牢固起见,每段护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m,则这条防护栏需要不锈钢支柱的总长度至少为()A.240 mB.200 mC.160 mD.150 m3.小明在进行物理实验时竖直向上抛一个小球,小球上升的高度h(m)与运动时间t(s)的函数关系式为h=at2+bt,图象如图所示.若小球在抛出后第2 s与第6 s时的高度相等,则下列时刻中小球的高度最高的是()A.第3 sB.第3.9 sC.第4.5 sD.第6.5 s4.滑雪者从山坡上滑下,其滑行距离s(m)与滑行时间t(s)之间的关系可以近似地用二次函数刻画,其图象如图所示,根据图象,当滑行时间为4 s时,滑行距离为()A.40 mB.48 mC.56 mD.72 m5.位于中国贵州省内的射电望远镜(FAST)是目前世界上口径最大、精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点C到口径面AB的距离是100米.若按如图2建立平面直角坐标系,则抛物线的解析式是()A .y =1625x 2-100 B .y =-1625x 2-100 C .y =1625x 2D .y =-1625x 26.超市有一种果冻礼盒,内装两个上下倒置的果冻,果冻高为4 cm,底面是个直径为6 cm 的圆,轴截面可以近似地看作一个抛物线.为了节省成本,包装应尽可能的小,这个包装盒的长AD (不计重合部分,两个果冻之间没有挤压)至少为( )A.(6+3√2)cmB.(6+2√3)cmC.(6+2√5)cmD.(6+3√5)cm7.(2020·山西)竖直上抛物体离地面的高度h (m)与运动时间t (s)之间的关系可以近似地用公式h =-5t 2+v 0t +h 0表示,其中h 0(m)是物体抛出时离地面的高度,v 0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5 m 的高处以20 m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为( ) A .23.5 m B .22.5 m C .21.5 mD .20.5 m8.(中考·临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m)与足球被踢出后经过的时间t (单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =92; ③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度是11 m. 其中正确结论的个数是( ) A .1 B .2 C .3D .49.(中考·巴中)一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线对应的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m10.(2020·绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同(如图).当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .43米B .52米C .213米D .7米 二、填空题11.图1是一款优雅且稳定的抛物线型落地灯.防滑螺母C 为抛物线支架的最高点,灯罩D 距离地面1.86 m,灯柱AB 及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE 为 m .12.某飞机着陆后滑行的路程s (m)与滑行时间t (s)的函数关系式为s =60t -1.5t 2,则飞机着陆后直至完全停下来,滑行了 m .13.一位运动员在距篮下4m 处跳起投篮,球运行的路线是抛物线.当球运行的水平距离为2.5m 时,达到最大高度3.5m,然后准确落入篮圈.如图所示,已知篮圈中心到地面的距离为3.05m,该运动员身高1.9m .在这次跳投中,球在头顶上方0.25m 处出手,则球出手时,他跳离地面的高度是 .14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状.身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点到地面的距离为米.15.(中考·武汉)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-32t2.在飞机着陆滑行中,最后4 s滑行的距离是________m.三、解答题16.如图是丁丁设计的一款杯子的平面图,建立平面直角坐标系后杯子的上半部分是二次函数y=2x2+8的图象的一部分.若AB=4,DE=3,求杯子的高CE.17.如图,一名男生推铅球,铅球行进的高度y(m)与水平距离x(m)之间的关系是二次函数的关系.铅球行进起点的高度为53m,行进到水平距离为4 m时达到最高处,最大高度为3 m.(1)以地面为x轴,以过铅球行进起点且垂直于地面的直线为y轴建立如图所示的平面直角坐标系,求该二次函数的解析式(化成一般形式);(2)求铅球推出的距离.18.如图,某隧道的横截面由抛物线和长方形构成,长方形的长是8 m 、宽是2 m,抛物线的解析式为y =-14x 2+4.一辆高4 m 、宽2 m 的货车正准备进入该隧道. (1)如果该隧道为单行道,这辆货车能安全通过吗?(2)如果该隧道内设双行道,中间遇车间隙为0.4 m,那么这辆货车是否可以通过?19.如图1,在地面上有两根等长的立柱AB ,CD ,它们之间悬挂了一根抛物线形状的绳子,按照图中的平面直角坐标系,这条绳子可以用y=110x 2-45x+3表示. (1)求这条绳子的最低点到地面的距离;(2)现由于实际需要,要在两根立柱之间再加一根立柱EF 对绳子进行支撑(如图2),已知立柱EF 到AB 的距离为3 m,两旁的绳子也是抛物线形状,且立柱EF 左侧绳子的最低点到EF 的距离为1 m,到地面的距离为1.8 m,求立柱EF 的长.20.如图,需在一面墙上绘制几个相同的“抛物线”形图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34m ,到墙边OA 的距离分别为12m ,32m.(1)求该抛物线对应的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m ,则最多可以连续绘制几个这样的“抛物线”形图案?21.(2020·绍兴)如图①,排球场长为18 m ,宽为9 m ,网高为2.24 m ,队员站在底线O 点处发球,球从点O 的正上方1.9 m 的C 点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88 m ,即BA =2.88 m ,这时水平距离OB =7 m ,以直线OB 为x 轴,直线OC 为y 轴,建立平面直角坐标系,如图②所示.(1)若球向正前方运动(即x 轴垂直于底线),求球运动的高度y (m)与水平距离x (m)之间的函数关系式(不必写出x 的取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P (如图①,点P 距底线1 m ,边线0.5 m),问发球点O 在底线上的哪个位置(参考数据:2取1.4)?22.(2020·台州)用各种盛水容器可以制作精致的家用流水景观如图①.科学原理:如图②,始终盛满水的圆柱体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H-h).应用思考:现用高度为20 cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离h cm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b(单位:cm),要使两孔射出水的射程相同,求a,b之间的关系式.(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16 cm,求垫高的高度及小孔离水面的竖直距离.23.某校进行了一场足球比赛,比赛场上守门员小王在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据试验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的解析式.(2)足球第一次落地点C距守门员多少米?(取4√3≈7)(3)运动员乙要抢到足球第二个落地点D,他应再向前跑多少米?(取2√6≈5)参考答案一、选择题1.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,则在线段AB上离中心M处5米的地方,桥的高度是(A)A.15米B.14米C.13米D.12米第1题图第2题图2.某公园草坪的防护栏是由150段形状相同的抛物线组成的.如图是其中一段抛物线,为了牢固起见,每段护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m,则这条防护栏需要不锈钢支柱的总长度至少为(A)A.240 mB.200 mC.160 mD.150 m3.小明在进行物理实验时竖直向上抛一个小球,小球上升的高度h(m)与运动时间t(s)的函数关系式为h=at2+bt,图象如图所示.若小球在抛出后第2 s与第6 s时的高度相等,则下列时刻中小球的高度最高的是(B)A.第3 sB.第3.9 sC.第4.5 sD.第6.5 s4.滑雪者从山坡上滑下,其滑行距离s(m)与滑行时间t(s)之间的关系可以近似地用二次函数刻画,其图象如图所示,根据图象,当滑行时间为4 s时,滑行距离为(B)A.40 mB.48 mC.56 mD.72 m5.位于中国贵州省内的射电望远镜(FAST)是目前世界上口径最大、精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点C到口径面AB的距离是100米.若按如图2建立平面直角坐标系,则抛物线的解析式是(A)A .y =1625x 2-100 B .y =-1625x 2-100 C .y =1625x 2D .y =-1625x 2 6.超市有一种果冻礼盒,内装两个上下倒置的果冻,果冻高为4 cm,底面是个直径为6 cm 的圆,轴截面可以近似地看作一个抛物线.为了节省成本,包装应尽可能的小,这个包装盒的长AD (不计重合部分,两个果冻之间没有挤压)至少为( A )A.(6+3√2)cmB.(6+2√3)cmC.(6+2√5)cmD.(6+3√5)cm7.(2020·山西)竖直上抛物体离地面的高度h (m)与运动时间t (s)之间的关系可以近似地用公式h =-5t 2+v 0t +h 0表示,其中h 0(m)是物体抛出时离地面的高度,v 0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5 m 的高处以20 m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为( C ) A .23.5 m B .22.5 m C .21.5 mD .20.5 m8.(中考·临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m)与足球被踢出后经过的时间t (单位:s)之间的关系如下表:下列结论:①足球距离地面的最大高度为20 m ;②足球飞行路线的对称轴是直线t =92; ③足球被踢出9 s 时落地;④足球被踢出1.5 s 时,距离地面的高度是11 m. 其中正确结论的个数是( B ) A .1 B .2 C .3 D .49.(中考·巴中)一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线对应的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m【点拨】A.∵抛物线的顶点坐标为(0,3.5),∴可设抛物线对应的函数解析式为y =ax 2+3.5. ∵篮圈中心(1.5,3.05)在抛物线上,将它的坐标代入上式,得3.05=a ×1.52+3.5,∴a =-15.∴y =-15x 2+3.5.故本选项正确.B .由题图知,篮圈中心的坐标是(1.5,3.05),故本选项错误.C .由题图知,此抛物线的顶点坐标是(0,3.5),故本选项错误.D .设这次跳投时,篮球出手时离地面的高度是h m ,∵y =-15x 2+3.5, ∴当x =-2.5时,h =-15×(-2.5)2+3.5=2.25.∴这次跳投时,篮球出手时离地面的高度是2.25 m .故本选项错误. 【答案】A10.(2020·绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同(如图).当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .43米B .52米C .213米D .7米 【点拨】建立如图所示的平面直角坐标系.由题意可得MN =4米,EF =14米,BC =10米,DO =32米. 设大孔所在抛物线的解析式为y =ax 2+32. ∵点B (-5,0),∴0=a ×(-5)2+32. ∴a =-350.∴大孔所在抛物线的解析式为y =-350x 2+32.设点A (b ,0),顶点为A 的小孔所在抛物线的解析式为y =m (x -b )2. ∵EF =14米,∴点E 的横坐标为-7. ∴点E 的坐标为⎝⎛⎭⎫-7,-3625.令-3625=m (x -b )2,解得x =65-1m +b 或x =-65-1m +b .∵MN =4米,∴⎪⎪⎪⎪⎪⎪65-1m +b -⎝ ⎛⎭⎪⎫-65-1m +b =4.∴m =-925.∴顶点为A 的小孔所在抛物线的解析式为y =-925(x -b )2. ∵大孔水面宽度为20米,∴当x =-10时,y =-92. 令-92=-925(x -b )2,解得x =522+b 或x =-522+b .∴单个小孔的水面宽度=[⎝⎛⎭⎫522+b -⎝⎛⎭⎫-522+b ]=52(米).【答案】B二、填空题11.图1是一款优雅且稳定的抛物线型落地灯.防滑螺母C 为抛物线支架的最高点,灯罩D 距离地面1.86 m,灯柱AB 及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE 为 2.7 m .12.某飞机着陆后滑行的路程s (m)与滑行时间t (s)的函数关系式为s =60t -1.5t 2,则飞机着陆后直至完全停下来,滑行了 600 m .13.一位运动员在距篮下4m 处跳起投篮,球运行的路线是抛物线.当球运行的水平距离为2.5m 时,达到最大高度3.5m,然后准确落入篮圈.如图所示,已知篮圈中心到地面的距离为3.05m,该运动员身高1.9m .在这次跳投中,球在头顶上方0.25m 处出手,则球出手时,他跳离地面的高度是 0.1 m .14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状.身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点到地面的距离为 0.5 米.15.(中考·武汉)飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是________m. 【点拨】当y 取得最大值时,飞机停下来.因为y =60t -32t 2=-32(t -20)2+600,所以t =20时,飞机着陆后滑行600 m 才能停下来. 因此t 的取值范围是0≤t ≤20.当t =16时,y =576,所以600-576=24(m). 【答案】24 三、解答题16.如图是丁丁设计的一款杯子的平面图,建立平面直角坐标系后杯子的上半部分是二次函数y =2x 2+8的图象的一部分.若AB =4,DE =3,求杯子的高CE.解:由题意可得,点D 的坐标为(0,8).∵AB =4,∴点B 的横坐标为2,当x =2时,y =2×4+8=16,即点B 的坐标为(2,16), ∴CD =16-8=8,∴CE =CD +DE =8+3=11.17.如图,一名男生推铅球,铅球行进的高度y (m)与水平距离x (m)之间的关系是二次函数的关系.铅球行进起点的高度为53 m,行进到水平距离为4 m 时达到最高处,最大高度为3 m .(1)以地面为x 轴,以过铅球行进起点且垂直于地面的直线为y 轴建立如图所示的平面直角坐标系,求该二次函数的解析式(化成一般形式); (2)求铅球推出的距离.解:(1)设二次函数的解析式为y =a (x -4)2+3, 把点(0,53)代入y =a(x -4)2+3,解得a =-112, 则二次函数的解析式为y =-112(x -4)2+3=-112x 2+23x +53. (2)由题意得-112x 2+23x +53=0, 解得x 1=-2(舍去),x 2=10, 即铅球推出的距离为10 m .18.如图,某隧道的横截面由抛物线和长方形构成,长方形的长是8 m 、宽是2 m,抛物线的解析式为y =-14x 2+4.一辆高4 m 、宽2 m 的货车正准备进入该隧道.(1)如果该隧道为单行道,这辆货车能安全通过吗?(2)如果该隧道内设双行道,中间遇车间隙为0.4 m,那么这辆货车是否可以通过? 解:(1)由题意,当x =1时,y =-14×12+4=3.75. ∵3.75+2=5.75>4, ∴这辆大货车能通过该隧道.(2)由题意,当x =2.2时,y =-14×(2.2)2+4=2.79. ∵2.79+2=4.79>4, ∴这辆华车可以通过该隧道.19.如图1,在地面上有两根等长的立柱AB ,CD ,它们之间悬挂了一根抛物线形状的绳子,按照图中的平面直角坐标系,这条绳子可以用y=110x 2-45x+3表示. (1)求这条绳子的最低点到地面的距离;(2)现由于实际需要,要在两根立柱之间再加一根立柱EF 对绳子进行支撑(如图2),已知立柱EF 到AB 的距离为3 m,两旁的绳子也是抛物线形状,且立柱EF 左侧绳子的最低点到EF 的距离为1 m,到地面的距离为1.8 m,求立柱EF 的长.解:(1)因为y=110x 2-45x+3=110(x-4)2+75,所以抛物线的顶点坐标为(4,75),则这条绳子的最低点到地面的距离为75 m .(2)对于y=110x 2-45x+3,当x=0时,y=3,即点A 的坐标为(0,3).由题意,立柱EF 左侧绳子所在抛物线的顶点为(2,1.8),所以可设其解析式为y=a (x-2)2+1.8, 把x=0,y=3代入,得3=a (0-2)2+1.8,解得a=310, 所以y=310(x-2)2+1.8.当x=3时,y=310×(3-2)2+1.8=2.1, 所以立柱EF 的长为2.1 m .20.如图,需在一面墙上绘制几个相同的“抛物线”形图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32 m.(1)求该抛物线对应的函数关系式,并求图案最高点到地面的距离; 解:根据题意得B 点的坐标为⎝⎛⎭⎫12,34,C 点的坐标为⎝⎛⎭⎫32,34.把B ,C 两点的坐标分别代入y =ax 2+bx , 得⎩⎨⎧14a +12b =34,94a +32b =34,解得⎩⎨⎧a =-1,b =2,∴此抛物线对应的函数关系式为y =-x 2+2x ;图案最高点到地面的距离为-224×(-1)=1(m).(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的“抛物线”形图案?解:令y=0,即-x2+2x=0,解得x1=0,x2=2.∴10÷2=5(个).∴最多可以连续绘制5个这样的“抛物线”形图案.21.(2020·绍兴)如图①,排球场长为18 m,宽为9 m,网高为2.24 m,队员站在底线O点处发球,球从点O的正上方1.9 m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88 m,即BA=2.88 m,这时水平距离OB=7 m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图②所示.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x的取值范围).并判断这次发球能否过网?是否出界?说明理由.解:设抛物线的解析式为y=a(x-7)2+2.88,将x=0,y=1.9代入上式并解得a=-150,故抛物线的解析式为y=-150(x-7)2+2.88.当x=9时,y=-150(x-7)2+2.88=2.8>2.24;当x=18时,y=-150(x-7)2+2.88=0.46>0,故这次发球过网,但是出界了.(2)若球过网后的落点是对方场地①号位内的点P(如图①,点P距底线1 m,边线0.5 m),问发球点O在底线上的哪个位置(参考数据:2取1.4)?解:如图,过点P作底线的平行线PQ,过点O作边线的平行线OQ,两线交于点Q,连接PO.易知∠PQO=90°.在Rt△OPQ中,OQ=18-1=17(m).当y=0时,y=-150(x-7)2+2.88=0,解得x=19或x=-5(舍去),∴OP=19 m.而OQ=17 m,∴PQ=62≈8.4(m).∴9-8.4-0.5=0.1(m).答:发球点O 在底线上且距右边线0.1 m 处.22.(2020·台州)用各种盛水容器可以制作精致的家用流水景观如图①.科学原理:如图②,始终盛满水的圆柱体水桶水面离地面的高度为H (单位:cm),如果在离水面竖直距离为h (单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s (单位:cm)与h 的关系为s 2=4h (H -h ).应用思考:现用高度为20 cm 的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离h cm 处开一个小孔.(1)写出s 2与h 的关系式;并求出当h 为何值时,射程s 有最大值,最大射程是多少? 解:∵s 2=4h (H -h ),∴当H =20时,s 2=4h (20-h )=-4(h -10)2+400. ∴当h =10时,s 2有最大值400. ∴s 有最大值20.∴当h 为10时,射程s 有最大值,最大射程是20 cm.(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a ,b (单位:cm),要使两孔射出水的射程相同,求a ,b 之间的关系式.解:要使两孔射出水的射程相同,则有4a (20-a )=4b (20-b ), ∴20a -a 2=20b -b 2, 即(a -b )(a +b -20)=0. ∴a -b =0或a +b -20=0. ∴a =b 或a +b =20.(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16 cm ,求垫高的高度及小孔离水面的竖直距离.解:设垫高的高度为m (单位:cm),则s 2=4h (20+m -h )=-4(h -20+m 2)2+(20+m )2,∴当h =20+m2时,s 有最大值,为20+m =20+16. ∴m =16,此时h =20+m2=18.答:垫高的高度为16 cm ,小孔离水面的竖直距离为18 cm.23.某校进行了一场足球比赛,比赛场上守门员小王在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据试验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的解析式.(2)足球第一次落地点C距守门员多少米?(取4√3≈7)(3)运动员乙要抢到足球第二个落地点D,他应再向前跑多少米?(取2√6≈5)解:(1)根据题意,该抛物线的解析式为y=-112(x-6)2+4(或y=−112x2+x+1).(2)令y=0,得-112(x-6)2+4=0,解得x1=4√3+6≈13,x2=-4√3+6<0(舍去),所以足球第一次落地点C距守门员13米.(3)如图,足球第二次弹出后的距离为CD,根据题意知CD=EF(即相当于将抛物线AEMFC向下平移了2个单位长度),所以-112(x-6)2+4=2,解得x1=6-2√6,x2=6+2√6,所以CD=x2-x1=4√6≈10,所以BD=13-6+10=17(米).答:运动员乙要抢到足球第二个落地点D,他应再向前跑17米.。
专题22.3.2 实际问题与二次函数(销售最大利润问题)(练习)(解析版)

第二十二章二次函数22.3.2 实际问题与二次函数(销售最大利润问题)精选练习答案基础篇一、单选题(共12小题)1.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元【答案】C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.2.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元【答案】D【解析】设利润为w,由题意得,每天利润为:w=(2+x)(20–2x)=–2x2+16x+40=–2(x–4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选D.3.某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件.若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系为()A.y=10x2﹣100x﹣160B.y=﹣10x2+200x﹣360C.y=x2﹣20x+36D.y=﹣10x2+310x﹣2340【答案】B【分析】根据等量关系“利润=(售价﹣进价)×(50+10×降价)”列出函数关系式即可.【详解】根据题意得:y=(x ﹣2)[50+10(13﹣x )]整理得:y=﹣10x 2+200x ﹣360.故选:B .【点睛】此题考查了从实际问题中抽象出二次函数关系式,掌握销售问题中的基本数量关系是解决问题的关键.4.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( )A .y =−10x 2+110x +10B .y =−10x 2+100xC .y =−10x 2+100x +110D .y =−10x 2+90x +100【答案】D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x -9)(100-10x ),y=-10x 2+90x+100.故选:D .【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.5.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 【答案】C【解析】y=x (6-x )=-x 2+6x,x =-2b a =32=3.故选C. 6.在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )A .1月份B .2月份C .5月份D .7月份【答案】C【分析】先根据图中的信息用待定系数法表示出每千克售价的一次函数以及每千克成本的二次函数,然后每千克收益=每千克售价﹣每千克成本,得出关于收益和月份的函数关系式,根据函数的性质得出收益的最值以及相应的月份.【详解】设x 月份出售时,每千克售价为y 1元,每千克成本为y 2元,根据图甲设y 1=kx+b ,∴ {3k +b =56k +b =3, ∴ {k =−23b =7, ∴y 1=﹣23x+7,根据图乙设y 2=a (x ﹣6)2+1,∴4=a (3﹣6)2+1,∴a=13,∴y 2=(13x ﹣6)2+1,∵y=y 1﹣y 2,∴y=﹣23x+7﹣[13(x ﹣6)2+1], ∴y=﹣13x 2+103x ﹣6.∵y=﹣13x 2+103x ﹣6,∴y=﹣13(x ﹣5)2+73.∴当x=5时,y 有最大值,即当5月份出售时,每千克收益最大.故选C .【点睛】本题主要考查了一次函数和二次函数的应用,要注意需先根据图中得出两个函数解析式,然后再表示出收益与月份的函数式,再求解.7.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )]【答案】C【解析】分析:设销售单价定为每千克x 元,获得利润为y 元,则可以根据成本,求出每千克的利润.以及按照销售价每涨1元,月销售量就减少10千克,可求出销量.从而得到总利润关系式.详解:设销售单价为每千克x 元,此时的销售数量为500−10(x −50),每千克赚的钱为x −40, 则y =(x −40)[500−10(x −50)].故选C.点睛:此题主要考查了二次函数在实际问题中的运用,根据利润=(售价-进价)×销量,列出函数解析式,求最值是解题关键.8.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x 元,则可列方程为( )A .()()8020088450x x -+=B .()()4020088450x x -+=C .()()40200408450x x -+=D .()()402008450x x -+=【答案】B【解析】利润=售价﹣进价,由每降价1元,每星期可多卖出8件,可知每件售价降低x 元,每星期可多卖出8x 件,从而列出方程即可.解:原来售价为每件80元,进价为每件40元,利润为每件40元,所以每件售价降价x 元后,利润为每件(40﹣x )元.每降价1元,每星期可多卖出8件,因为每件售价降低x 元,每星期可多卖出8x 件,现在的销量为(200+8x ).根据题意得:(40﹣x )×(200+8x ) =8450.故选B .点睛:本题主要考查列一元二次方程解决实际问题.解题的关键在于要理解题意,并根据题中的数量关系建立方程.9.某商店经营皮鞋,所获利润y(元)与销售单价x(元)之间的关系为2242956y x x =-++,则获利最多为( ).A .3144B .3100C .144D .2956【答案】B【解析】试题解析:利润y (元)与销售的单价x (元)之间的关系为2242956y x x =-++, 2(12)3100.y x ∴=--+∵−1<0∴当x =12元时,y 最大为3100元,故选B.10.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y=﹣n 2+14n ﹣24,则企业停产的月份为( )A .2月和12月B .2月至12月C .1月D .1月、2月和12月【答案】D【分析】知道利润y 和月份n 之间函数关系式,求利润y 大于0时x 的取值.【详解】由题意知,利润y 和月份n 之间函数关系式为y=-n 2+14n -24,∴y=-(n -2)(n -12),当n=1时,y <0,当n=2时,y=0,当n=12时,y=0,故停产的月份是1月、2月、12月.故选:D .【点睛】考查二次函数的实际应用,判断二次函数y >0、y=0、y <0,要把二次函数写成交点式,看看图象与x 轴的交点,结合开口分析,进行判断.11.某产品进货单价为90元,按100元一件出售时能售出500件.若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A .5000元B .8000元C .9000元D .10000元 【答案】C【解析】设单价定为x ,总利润为W ,则可得销量为:500-10(x -100),单件利润为:(x -90),由题意得,W=(x -90)[500-10(x -100)]=-10x2+2400x -135000=-10(x -120)2+9000,故可得当x=120时,W 取得最大,为9000元,故选C .【点睛】本题考查了二次函数的应用,解答本题的关键是表示出销量及单件利润,得出W 关于x 的函数解析式,注意掌握配方法求二次函数最值的应用.12.(2019·黑龙江中考真题)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ).A .20%;B .40%;C .18%;D .36%. 【答案】A【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20%故选:A .【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.二、填空题(共5小题)13.(2018·北京101中学初三月考)数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 … 月销量(件) 200 180 160 140 …已知该运动服的进价为每件60元,设售价为x (x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x 的式子表示).【答案】 2x +400 −2x 2+520x −24000【解析】分析:运用待定系数法求出月销量;根据月利润=每件的利润×月销量列出函数关系式. 详解:设月销量y 与x 的关系式为y=kx+b ,由题意得,{100k +b =200110k +b =180, 解得{k =−2b =400 . 则y=-2x+400;由题意得,y=(x -60)(-2x+400)=-2x 2+520x -24000点睛:本题考查的是二次函数的应用,一次函数的运用,掌握待定系数法求函数解析式是解题的关键. 14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x 元,可列方程为_________.【答案】(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭【解析】利润=单件利润⨯数量,本题中,单件利润=售价-成本单价 (50)30x =--提升篇5030x =--. 数量100205x =+⨯. ∴利润为1400时,单价利润⨯数量1400=,得到(5030)1002014005x x ⎛⎫--+⋅= ⎪⎝⎭. 15.(2008·吉林中考真题)某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.【答案】70【解析】解:设销售单价定为每千克x 元,获得利润为y 元,则:y=(x -40)[500-(x -50)×10],=(x -40)(1000-10x ),=-10x 2+1400x -40000,=-10(x -70)2+9000,∴当x=70时,利润最大为9000元.16.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件,当x=____时才能使利润最大.【答案】70【分析】根据题意可以得到利润与售价之间的函数关系式,然后化为顶点式即可解答本题.【详解】解:设获得的利润为w 元,由题意可得,w=(x ﹣40)(100﹣x )=﹣(x ﹣70)2+900,∴当x=70时,w 取得最大值,故答案是:70.【点睛】考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.17.某旅行社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种变化方法变化下去,每床每日提高____元可获最大利润。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册22.3实际问题与二次函数练习卷
一.选择题
1.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为()
A.y=﹣x2+20x B.y=x2﹣20x C.y=﹣x2+10x D.y=x2﹣10x
2.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度h(m)与发球后球飞行的时间t(s)满足关系式h=﹣t2+2t+1.5,则该运动员发球后1s时,羽毛球飞行的高度为()
A.1.5m B.2m C.2.5m D.3m
3.如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为()
A.10米B.15米C.20米D.25米
4.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为()
A.m B.6m C.15m D.m
5.如图1是一只葡萄酒杯,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,若AB=4,CD=3,以顶点C为原点建立如图2所示的平面直角坐标系,则抛物线的表达式为()
A.B.C.D.
6.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()
A.1 m B.2 m C.3 m D.6 m
7.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:
x/分… 2.66 3.23 3.46…
y/米…69.1669.6268.46…
下列选项中,最接近摩天轮转一圈的时间的是()
A.7分B.6.5分C.6分D.5.5分
8.把一个足球垂直于水平地面向上踢,该足球距离地面的高度h(米)与所经过的时间t (秒)之间的关系为h=10t﹣t2(0≤t≤14).若存在两个不同的t的值,使足球离地面的高度均为a(米),则a的取值范围()
A.0≤a≤42B.0≤a<50C.42≤a<50D.42≤a≤50 9.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()
A.2月和12月B.2月至12月
C.1月D.1月、2月和12月
10.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.5米,最高点C距灯柱的水平距离为1.6米,灯柱AB=1.5米,若茶几摆放在灯。