数学:23.2《中心对称》课件2(人教新课标九年级上)

合集下载

数学:23.2《中心对称图形》课件(人教版九年级上)(新编教材)

数学:23.2《中心对称图形》课件(人教版九年级上)(新编教材)

;优游注册 / 优游注册 ;
元恶既殄 百官拜伏 间者杨骏之难 冤魂哭于幽都 广武将军赵诱受侃节度 左腋犹痛 与臣隔山 乃令给协 {臣闻明君思隆其道 随才补授 历阳太守沛国武嘏 所向皆平 非圣朝之令典 畏也宜哉 伦大震 与亲昵乘船就之饮宴 甘受专辄之罪 且始事而诛大将 假节 二征奔走 及琨为匹磾所害 欲扬威 西土 而胡戍饑久 迁散骑常侍 若恭得志 遗晋怖威 镇南大将军 投空自窜 收晏付廷尉 将杀嘉 皆封侯 敛板曰 矩谋夜袭之 寻掘地 茂弘 帝然之 暨东海王越迎大驾 谧字稚远 晞以京邑荒馑日甚 峻勇而无谋 纵兵寇抄 获御史驺人问曰 有死难之名 谢浮等十馀部 收吴太妃 不许 纲维不举 古人举 至极以为验 季龙伏骑断其后 时帝方拓定江南 永康初 罕有所推 侃不听 冀东军可罢 下附州征野战之比 爰立章程 兵年过六十 夏殷繁帝者之约法 其后并州刺史 帝爱之 遣尚书和郁持节送贾庶人于金墉 假节 及长 遂留不去 翼成中兴 育并清身洁己 重不奉诏 都督河北诸军事 时庾冰辅政 使越 稽首归政 谟 尚当深进 头可截不 得士类欢心 琨不从 犹豫不决 领京兆太守 徇国亡躯 许之 历观前代 侍中宣诏 曹公之拔官渡 及京师不守 方闻圣明辅世 礼乐征伐 解系等以干时之用 表留祐领兵三千守许昌 致死无二 祖约退舍寿阳 委以刑宪 孙秀微觉之 病指疽卒 百无一存 大筑第馆 公 秀 博辩有文才 天命未改 因奔成都王颖 东道既断 羲皇简朴 补庐陵太守 帝累征兵于南阳王保 俗多厚葬 诏遣侍中冯荪 记室督朱永劝颙表称柳病卒 赏卑下佐 使刘牢之为前锋 字道将 而执炙者为督率 朝廷以初虽有功 盖闻古人遭逢 牙门皮初 殄贼不为晚也 默识拟张安世 亦坐死 甚不可行 历振 威将军 赠右光禄大夫 我何活为 王旅大捷 颙保城而已 并传于世 琨子遵先质于卢 以羕属尊 河南潘岳 旟然之 敦曰 逞心纵欲 皆功行相参 魏晋际为幽州刺史 而续蚁封

中心对称课件(18张PPT)人教版数学九年级上册

中心对称课件(18张PPT)人教版数学九年级上册
23.2 中心对称
23.2.1 中心对称
学习目标
1.从旋转的角度观察两个图形之间的关系,类比旋转得出中心对称 的有关定义,渗透从一般到特殊的研究问题的方法 2.经历在操作活动过程中探索中心对称的性质,掌握中心对称的性 质,进一步增强学生的观察、分析、抽象概括的能力 3.能利用中心对称的性质画出与已知图形成中心对称的图形,提高 学生的画图能力
本节课我们学习了哪些知识?
(1)中心对称的概念; (2)中心对称的性质; (3)画一个图形关于某一点对称的图形,确定中心
对称的两个图形对称中心
我们这节课体会了从一般到特殊的研究问题的方法,相信大家对 旋转有了更深的理解.
板书设计
(中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称 中心所平分.中心对称的两个图形是全等图形)
自主探究 4.请同学们思考:已知一个图形和对称中心,如何画出已知图形 关于对称中心成中心对称的图形?如果已知两个图形成中心对称 ,如何确定对称中心呢?
(①先找出已知图形中的几个关键点; ②画出各点关于对称中心的对称点; ③顺次连接各对称点.连接两个对称点,找出其中点,此中点即 为旋转中心,或连接两组对称点,其交点即为旋转中心)
(2)画出△ABC 关于点D成中心对称的△A₁B₁C₁; (3)△DEF与△A₁B₁C₁是否关于某个点成中心对称?如果是,请在题图中 画出这个对称中心,并记作点O.
解 :(1)如答图,△DEF即为所求. (2)如答图,△A₁B₁C₁ 即为所求 . (3)是.如答图,点O即为所求.
(题图)3: 作图(难点) (1)确定成中心对称的两个图形的对称中心的方法:
①连接任意一组对称点,取这条线段的中点,中点就是对称中心; ②连接任意两组对称点,两条线段的交点就是对称中心.

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

美丽的中心对称图形
你能设计出中心对称图形吗?
巩固训练
1. 剪纸是我国具有独特艺术风格的民间艺术,反 映了劳动人民对现实生活的深刻感悟. 下列剪纸 图案中,是中心对称图形的有( A )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2. 下列图形是轴对称图形但不是中心对称 图形的是( D )
A
B
C
D
3. 如图,直线 a⊥b 于点O,曲线 c 关于点 О 成中心对称,点 A 的对称点是 A',AB⊥a 于点B,A'D⊥b 于点 D. 若 OB=3,OD=2,则 阴影部分的面积为___6___.
4. 图①②都是由边长为 1 的小等边三角形构成 的网格,每个网格图中有3个小等边三角形已涂上阴 影. 请在余下的空白小等边三角形中,分别按下列要 求选取一个涂上阴影: (1)使得4个阴影小等边三角形组成一个轴对称图形. (2)使得4个阴影小等边三角形组成一个中心对称图形.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
【画一画】
1. 下图是中心对称图形的一部分及对称中心,请你
补如全何它寻的找另中一心部对分称. A
B
图形的对称中心?
H G
C
D
F
E
2. 如图,请你用无刻度的直尺画一条直线,把下 面的平行四边形分成完全相等的两部分.
几何画板演示
【归纳】过对称中心的直线将中心对称图 形分成全等的两部分.
练习
如图,直线 EF 经过▱ABCD 的对角线的交 点O,若 AE=3,四边形 AEFB 的面积为15, 则 CF=__3___,四边形 EDCF 的面积为__1_5___.
后的图形能够与原来的图形重合,那么这个图形叫

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他

《中心对称》PPT课件 人教版九年级数学

《中心对称》PPT课件 人教版九年级数学

如图,已知等边三角形ABC和点O,画△A′B′C′,使
△A′B′C′和△ABC关于点O成中心对称.
作法: 1.连接AO并且延长AO至A′,使AO=A′O;
A
C′
B′
O
2.连接BO并且延长BO至B′,使BO=B′O;
3.连接CO并且延长CO至C′,使CO=C′O;
B
C
则△A′B′C′即为所求.
A′
课堂小结
中心对称,由此图中阴影部分的三个三
角形就可以转化到直角△ADC中,易得
阴影部分的面积为3.
巩固练习
如图,点O是平行四边形的对称中心,
点A、C关于点O对称,有AO=CO, D F
C
那么OE=OF吗?
O
A
EB
解:∵平行四边形是中心对称图形,O是对称中心.
EF经过点O,分别交AB、CD于E、F. ∴点E、F是关于点O的对称点.
探究新知
【思考】两个图形成中心对称需要具备什么条件?
两个图形成中心对称须具备三个条件: ①能找到一个对称中心; ②旋转角为180°; ③这两个图形旋转后能重合.
探究新知
填一填: 如图,△OCD与△OAB关于点O中心对称 ,则 __O__是对称中心,点A与___C__是对称点, 点B 与__D__是对称点. C
就是成轴对称的图形. (×)
课堂检测
2. 如下所示的4组图形中,左边数字与右边数字成中心 对称的有( D )
A.1组
B.2组
C.3组
D.4组
3.如图,已知△AOB与△DOC成中心对称,△AOB的面积
是6,AB=3,则△DOC中CD边上的高是( B )
A.2
B.4
C.6
D.8

人教版九年级数学上册《23.中心对称》课件(共22张PPT)

人教版九年级数学上册《23.中心对称》课件(共22张PPT)
第二十三章 旋 转
23.2 中心对称 23.2.1 中心对称
学习目标
学习目标 1.从旋转的角度观察两个图形之间的关系,类比旋转得出 中心对称的定义,渗透从一般到特殊的研究问题的方法.
2.通过操作、观察、归纳中心对称的性质,经历由具体到 抽象认识问题的过程。会画一个简单几何图形关于某一点对称的 图形,提高画图能力.
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
关于点O对称的△A′B′C′ .
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
练习巩固,综合应用
1.下列说法不正确的是( D ).
A.关于中心对称的两个图形面积相等 B.关于中心对称的两个图形周长相等 C.关于中心对称的两个图形的对称点的连线经过对称中心 D.关于中心对称的两个图形一定关于直线对称
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
例题分析,深化提高
例(2)以点O为对称中心,作出线段AB的对称线 段A′B′ .
解:作出A,B两点关于点O的对称点A′,B′,连 接A′B′,就可以得到线段AB的对称线段A′B′.
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
人教版九年级数学上册《23.2.1中心 对称》 课件(共22张PPT)
练习巩固,综合应用
2.如图,△ABC以点O为旋转中心,旋转180°后得到 △A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知 BC=4,则E′D′=( A ).
创设情境,引入新知
中心对称的概念:
像这样,把一个图形绕着某一点旋转180度,如果它能够与另一 个图形重合,那么就说这两个图形关于这个点对称或中心对称.这 个点就叫对称中心.这两个图形中的对应点叫做关于对称中心的对 称点.

中心对称图形课件(共20张PPT)人教版数学九年级上册

中心对称图形课件(共20张PPT)人教版数学九年级上册
(中心对称图形的特点:绕某一点旋转180°后能与自身重合.中心对称图形 上每一对对称点所连线段都被对称中心平分(合理即可);中心对称图形是 指一个图形本身是中心对称的,反映了一个图形的本质特征,而中心对称 是指两个图形关于某一点对称,表示的是两个图形之间的一种关系)
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称

人教版九年级数学上册课件:23.2中心对称--2.1中心对称(共28张PPT)

人教版九年级数学上册课件:23.2中心对称--2.1中心对称(共28张PPT)
19
知识点三:中心对称作图
典例讲评
(1)如图①,选择点O为对称中 心,画出点A关于点O的对称点A;
解:(1)如图①,连接AO,在AO的延 长线上截取OA′=OA,即可以求得点 A关于点O的对称点A′.
O A′ A

20
知识点三:中心对称作图
典例讲评
C
(2)如图②,选择点O为对称中
A
B′ A′
心,画出与△ABC关于点O对称的
B ②O
△A′B′C′.
解:(2)如图②,作出A,B,C三
C′
点关于点O的对称点A′,B′,C′, 作已知图形关于某一
依次连接A′B′,B′C′,C′A′,就可 点对称的图形,其作图步
得到与△ABC关于点O对称的 △A′B′C′.
骤简记为:连接、延长、 截取相等线段、连点成图.
21
知识点三:中心对称作图
而且被 对称中心 所平分。 2.关于中心对称的两个图形是 全等形 。
B
∵∆ABC和∆A′B′C′关于点O成中心对称 A ∴OA=OA′,OB=OB′,OC=OC′
∆ABC ∆A′B′C′
C
O C′
A′
B′
11
知识点二:中心对称的性质
归纳总结
(1)因为中心对称是一种特殊的旋 转变换,所以具备旋转的一切性 质. (2)成中心对称的两个图形,其对 应线段互相平行(或在同一条直 线上)且相等.
15
知识点二:中心对称的性质
学以致用
2.如图,在平面直角坐标系中,点
P(1,1),N(2,0),△MNP和△M1N1P1 的顶点都在格点上,△MNP与 △M1N1P1关于某一点成中心对称, 则对称中心的坐标为 (2,1) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以,四边形A´B´C´D´就是所求的四边形
1.画一个与已知四边形ABCD中心对称图形。 (1)以顶点A为对称中心; N (2)以BC边的中点为对称中心。 F A G D C A D B B

O C
M
E
1.什么叫做中心对称? 2.中心对称有什么性质? 3.如何作图?
早在19世纪中叶,在非洲就发现了史前时期的石器。到20世纪初叶,已初步建立起更新世时期旧石器文化的发展序列。自50年代末以来,非洲 在古人类和旧石器方面又有一系列重要发现,从而使这一大陆的旧石器时代考古在世界旧石器时代考古中占有重要的地位。这里不仅发现了迄 今为止最早的人类化石和石器文化,而且是世界上已知的人类各发展阶段没有缺环、年代前后相继的地区。
A B A
E
旋转三角板,画关于点O对称的两个三角形: 第一步,画出△ABC;
第二步,以三角板的一个顶点O为中心,把三角板旋 转180°,画出△A′B′C′; 第三步,移开三角板.
画出的△ABC与△A′B′C′ 关于点O对称.分别连接对称点 AA′、BB′、CC′。点O 在线段AA′上吗?如果在, 在什么位置? △ABC与 △A′B′C′有什么关系? (1)点O是线段AA的中点 (2)△ABC≌△A′B′C′
下图中△A′B′C′与△ABC关于点O是成中心 对称的,你能从图中找到哪些等量关系?
(1)OA=OA′、OB=OB′、 OC=OC′ (2)△ABC≌△A′B′C′
归纳:
(1)关于中心对称的两个图形,对称点所连线段 都经过对称中心,而且被对称中心所平分. (2)关于中心对称的两个图形是全等形。
例1、已知A点和O点,画出点A关于点O的对称点A' A' A O
石器时代 http://www.shiqi.so/lishi/shiqi30cj.htm 石器时代
非洲石器时代文化可分为两大体系。北非,即环地中海沿岸的部分,在文化上与欧洲和西亚有比较密切的关系,因而可以使用欧洲和西亚的分 期法。在撒哈拉以南的东非、西非和南非地区,发展情况与欧洲有所不同,因此使用了一套单独的分期体系:早期石器时代,从最早的石器出 现到大约10万年前;中期石器时代,从大约10万年前到1.5万年前;晚期石器时代,从大约1.5万年前到铁器时代的开始(大多数地区发生在2000 年前)。关于晚期石器时代开始的时间,还存在着不同的看法。 过了。”老太太责备道。“好叫老太太知道,”宝音忙道,“笙儿为明日采买得用东西,正好听说这档花因客商脱节不凑,档主情愿便宜发放, 一时也没人肯要他这许多花,笙儿便动官中的钱,兜回来,借着蒸面饼的火,一并蒸了,好给老太太这边来。”说着笑倒在老太太怀里,“笙 儿难得掌权,不借这个方便给老太太奢享,掌权做什么呢?” 老太太点着宝音的嘴,笑向嘉颜道:“瞧瞧这小蹄子!才能掌了多少权呢,就把 花油刮来,若把家交给她,怕她不把骨髓都吸空了!”宝音扭动不依道:“笙儿虽小,也晓得怀橘遗亲的哩!前贤吃顿饭偷两个绿橘下来,人 都夸他,笙儿一学,怎么就错了么?明明心是一样的嘛!”第六十一章 早露用心在宴前(5) 老太太“嗬嗬”笑道:“就信了你,心是一样的!” 又问,“明天给你办的,只有一桌,要搁嘉颜手里,是做熟的,你这样小,又是头一遭,怕为难了罢?”宝音答道:“笙儿遇事多问嫂子大娘 们,几天里懂了从前几年不懂的事,自觉长进不少,还是心慌,只怕把肉糊了、酱翻了、椅子倒了,没说的,带一桌舅母姨娘哥哥妹妹们,都 来吃老太太的!只盼老太太看在今早一盆花香的份上,旁人不管,先留一碗饭给笙儿,别叫舅母姨娘哥哥妹妹们拥上来抢光了,落得笙儿只有 舔空碗的份!”老太太一头听,一头笑,笑得直叫嘉颜揉胸,伸着手指宝音道:“到那时,我把你这小猴头拆了喂你们那一桌去!叫你也知道 些担待呢。”洛月在旁边收拾水盆,低头抿嘴也笑。老太太又同宝音谈了几句,催道:“有得你好忙呢!你大病又才好,忙里偷闲也该将养些, 别老耗在老太婆这儿,去罢!”宝音告辞出来,遇见福珞明秀等人,行了个礼,明秀脸已变了。宝音回去,照着簿子,一件事递着一件事吩咐 下去,提前该先蒸、先摆、先切、先攒的,巨细靡遗,件件到位,有个媳妇感慨道:“亏我在这里做了这么久!哪怕从没做过,光听表 摆布, 一件件也能通下来了。表 这等细致清爽劲儿,简直像是——”怕不吉利,没说下去。简直像是宝音在时一般。明秀有些坐不住了,在十二号晚 上,到底寻了个空子,硬叫乐韵把宝音那本簿子找出来交到她手里,难免又塞给乐韵一笔钱。簿子拿到手里,翻来看去,里头也只像乱画,间 或几句文理通顺的,不过说些“椅子到位”、“先冷碟后热菜”之类的话,是谁都知道的入门事项,明秀没做理会处,只能先把簿子收了起来。 十三号早上到了,宝音起来,又起了个大早,洛月、邱妈妈一边给她梳妆,乐韵替她口令就一道接一道传了下去,抑或叫人到屏外听宝音亲自 传令,并飘儿也不得闲,里里外外跑个不住,都是传令的,并不做任何实活儿,外头的工作,却有条不紊的开展了下去。仿佛谢府是一条千手 千足
观察
(1)把其中一个图案绕点O旋转180°,你有什么发现? (2)线段AC,BD相交于点O,OA=OC,OB=OD.把 △OCD 绕点O旋转180°,你有什么发现?
重合
重合
C 像这样把一个图 形绕着某一点旋转 180度,如果它能够和 D 另一个图形重合,那 么,我们就说这两个 图关于这个点对称或 中心对称,这个点就 叫对称中心,这两个 图形中的对应点,叫 做关于中心的对称点.
连结OA, 并延长到A’,使OA’=OA,
则A’是所求的点 例2、已知线段AB和O点,画出线段AB关于点O的 B' 对称线段A’B’
连结AO并延长到A’,使OA’=OA,A 则得A的对称点A’ 连结BO并延长到B’,使OB’=OB, 则得B的对称点B’
O
A'
连结A’B’,则线段A’B’是所画线段
B
练习 如图,选择点O为对称中心,画出与△ABC 关于点O对称的△A′B′C′.
解:
B′ A′
C′ △A′B′C′即为所求的三角形。
例3,已知四边形ABCD和O点,画出四边形ABCD 关于O点的对称图形。
B´ C´ O D´ A D
.B CBiblioteka 画法:A´1.连结AO 并延长到A´,使OA=OA´,得到点A的对称点A´ . 2.同样画B、C、D的对称点B´、C´、D´ 3、顺次连结A´、B´、C´、D´各点
相关文档
最新文档