汽车电动助力转向机构的设计
电动助力转向系统设计论述

提 供 辅 助 动 力 ,并 通 过 电 子 控 制 单 元 等 相 关 硬 件 电路 ,进 行 数 字 信 号 采 集 、脉 宽 调 制 输 出等 ,然 后 根 据 单 片机 相 关 指 令 对 电
动 机 进 行 实时 控 制 ,并 最 终 由机 械 传 动 装 置 实现 助 力 转 向 。 阐述 了电 动 助 力 转 向 系统 的 工 作 原 理 和 结 构 特 点 ,使 用 ARM7
已 经 充 分 体 现 了 它 的 优 势 ,这 是 模 拟 系 统 无 法 达 到 的 。 目 在 检 测 到 汽 车 点 火 信 号 有 效 后 ,当转 向轴 转 动 时 ,扭 矩 传 感
前 ,以 32位 处 理 器 作 为 高 性 能 嵌 入 式 系 统 开 发 的 核 心 是 嵌 器 将 检 测 到 的 转 矩 和 转 角 信 号 输 出 至 电 子 控 制 单 元 ECU,
稀 溶 液 补 充 。在 运 行 初 期 ,一 直 采 用 按 周 期 定 时 补 充 的 方 式 。 在 该 方 式 下 运 行 时 ,系 统 的 碱 液 浓 度 按 运 行 时 间 呈 下 降 趋 势 且 在 碱 液 浓 度 急 剧 下 降 时 ,判 断 为 汽 油 带 水 以 及 空
升 反 应 的 环 境 温 度 有 利 于 脱 硫 反 应 。 (3)催 化 剂 的 浓 度 要 每 日不 断 补 充 ,若 发 现 其 浓 度 急 剧 下 降 应 从 多 方 面 分 析 解 决 。 (4)空 气 的 注 入 量 过 高 会 对 烃 与 碱 液 接 触 产 生 影 响 还 可 能 对 罐 区造 成 爆 炸 危 险 ;过 低 会 影 响 碱 液 的 再 生 ,从 而 影 响 脱 硫 效 果 ,所 以 要 根 据 其 空 气 量 与 硫 醇 的 关 系 进 行 计 算 分 析 得 出 其 最 佳 操 作 范 围 。
电动助力转向系统工作原理

电动助力转向系统工作原理电动助力转向系统是现代汽车上常见的一种辅助驾驶系统,它通过电力辅助驾驶员转动方向盘,提供更轻松的转向操作。
本文将详细介绍电动助力转向系统的工作原理。
电动助力转向系统主要由电机、传感器、控制器和转向助力装置组成。
当驾驶员转动方向盘时,传感器会感知到方向盘的转动角度和力度,并将这些信息传送给控制器。
控制器根据传感器的信号来判断驾驶员的意图,然后通过控制电机的工作状态来提供相应的转向助力。
电动助力转向系统的工作原理可以简单描述为,当驾驶员施加力量转动方向盘时,传感器感知到了这一动作,并将信号传送给控制器。
控制器根据传感器信号来判断驾驶员的转向意图,然后控制电机的工作状态来提供相应的转向助力。
电机通过转向助力装置作用于转向机构,从而减小驾驶员需要施加的转向力,使转向操作更加轻松。
电动助力转向系统的工作原理可以通过以下几个方面来解释:首先,传感器感知驾驶员的转向操作。
传感器能够感知方向盘的转动角度和力度,将这些信息传送给控制器。
其次,控制器判断驾驶员的转向意图。
控制器通过分析传感器传来的信号,来判断驾驶员的转向意图,然后控制电机的工作状态。
最后,电机提供相应的转向助力。
根据控制器的指令,电机通过转向助力装置作用于转向机构,提供相应的转向助力,减小驾驶员需要施加的转向力。
总的来说,电动助力转向系统通过传感器感知驾驶员的转向操作,控制器判断驾驶员的转向意图,并通过电机提供相应的转向助力,从而使转向操作更加轻松。
这种系统在提高驾驶舒适性的同时,也提高了驾驶安全性,是现代汽车上不可或缺的重要辅助系统之一。
以上就是电动助力转向系统的工作原理,希望能对大家有所帮助。
汽车电动助力转向系统设计 毕业论文

汽车电动助力转向系统设计毕业论文本章主要介绍汽车电动助力转向系统设计的背景和意义,以及论文的目的和结构安排。
汽车转向系统是车辆控制的重要组成部分,它直接影响着驾驶员的操控感受和行车安全性。
随着科技的发展,传统的液压助力转向系统逐渐被电动助力转向系统所取代。
电动助力转向系统通过电力传动装置提供操控力,相较于液压助力转向系统具有更高的效率、更好的节能性和可靠性。
本文的目的是设计一种可靠、高效的汽车电动助力转向系统。
在研究的基础上,将重点关注系统的结构设计、控制算法优化、故障诊断等方面。
通过对系统的设计和优化,可以提高汽车的操控性和安全性。
本文结构安排如下:第二章将介绍汽车电动助力转向系统的背景与发展;第三章将详细阐述系统的设计原理与结构;第四章将重点探讨控制算法的优化与实现;第五章将研究系统的故障诊断方法与技术;最后,第六章将总结全文,并提出进一步研究的展望。
通过本文的研究和实践,相信可以为汽车电动助力转向系统的设计与优化提供一定的参考和借鉴,推动汽车技术的发展与进步。
在这一部分,我们将对汽车电动助力转向系统设计相关的文献进行综述。
我们将总结已有的研究成果,以及当前存在的问题。
具体内容}本文详细介绍了汽车电动助力转向系统设计的方法和步骤,涵盖了传感器选择、电机控制、系统优化等方面。
传感器选择在汽车电动助力转向系统设计中,选择合适的传感器是至关重要的。
传感器可以检测车轮的转向角度、转向速度以及转向力等参数,为后续的电机控制提供必要的数据支持。
常见的传感器包括转向角度传感器、转向速度传感器和转向力传感器。
在选择传感器时,需考虑其精度、响应速度和可靠性等因素,并确保其能与电机控制系统良好地配合。
电机控制在汽车电动助力转向系统中,电机控制是实现转向功能的核心部分。
电机控制系统通过接收传感器提供的数据,计算并控制电机的输出力矩,从而实现汽车的转向功能。
电机控制的关键是控制算法的设计和实现。
常见的电机控制方法有PID控制、模糊控制和神经网络控制等。
车辆工程毕业设计51汽车电动助力转向(EPS)系统的设计

目录一、绪论1.1 前言 (1)1.2 EPS的特点 (2)1.3 EPS系统在国内外的应用状况 (3)二、 EPS的基本构造和工作原理2.1 EPS系统结构及其工作原理 (4)2.2 EPS的关键部件 (5)2.2.1 扭矩传感器 (5)2.2.2 电动机 (6)2.2.3 电磁离合器 (6)2.2.4 减速机构 (7)2.3 EPS的电流控制 (7)2.4 助力控制 (8)2.5 回正控制 (9)2.6 阻尼控制 (9)三、EPS系统电机驱动电路的设计3.1 微控制器的选择 (10)3.2 硬件电路总体框架 (10)3.3 电机控制电路设计 (11)3.3.1 H桥上侧桥MOSFET功率管驱动电路设计 (12)3.3.2 H桥下侧桥MOSFET功率管驱动电路设计 (13)3.4蓄电池倍压电源 (14)3.5电机驱动电路台架试验 (15)3.6 结论与展望 (16)四、电动助力转向系统故障自诊断的研究4.1 故障自诊断的基本原理 (17)4.2 电动助力转向系统故障自诊断 (17)4.2.1 系统各组成部件的故障辨识 (17)4.2.2 转矩传感器故障自诊断 (18)4.2.3 电机故障自诊断 (20)4.2.4 车速和发动机转速信号故障自诊断 (21)4.2.5 电磁离合器故障自诊断 (22)4.2.6 控制单元电源线路故障自诊断 (22)4.2.7 控制单元故障自诊断 (23)4.3 故障代码显示控制及安全防范措施 (23)4.4 实例分析 (26)4.5 结束语 (27)致谢 (27)汽车电动助力转向(EPS)系统的设计绪论1.1前言转向系统作为汽车的一个重要组成部分,其性能的好坏将直接影响到汽车的转向特性、稳定性和行驶安全性。
汽车助力转向依次经历了机械式转向系统、液压式转向系统、电控液压式转向系统等阶段,国际上已有一些大的汽车公司在探讨开发的下一代线控电动转向系统。
在国外,各大汽车公司对汽车电动助力转向系统(Electric power steering-EPS,或称Elec-tric Assisted Steering-EAS)的研究有20多年的历史。
汽车电动助力转向机构的设计讲解

汽车电动助⼒转向机构的设计讲解汽车电动助⼒转向机构的设计引⾔在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助⼒转向系统(Hydraulic Power Steering,简称HPS),然后⼜出现了电控液压助⼒转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助⼒转向系统(Electric Power Steering,简称EPS)。
装配机械式转向系统的汽车,在泊车和低速⾏驶时驾驶员操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采⽤了液压助⼒转向系统[1]。
但是,液压助⼒转向系统⽆法兼顾车辆低速时的转向轻便性和⾼速时的转向稳定性,因此在1983年⽇本koyo公司推出了具备车速感应功能的电控液压助⼒转向系统。
这种新型的转向系统可以随着车速的升⾼提供逐渐减⼩的转向助⼒,但是结构复杂、造价较⾼,⽽且⽆法克服液压系统⾃⾝所具有的许多缺点,是⼀种介于液压助⼒转向和电动助⼒转向之间的过渡产品。
到了1988年,⽇本Suzuki公司⾸先在⼩型轿车Cervo上配备了Koyo公司研发的转向柱助⼒式电动助⼒转向系统;1990年,⽇本Honda 公司也在运动型轿车NSX上采⽤了⾃主研发的齿条助⼒式电动助⼒转向系统,从此揭开了电动助⼒转向在汽车上应⽤的历史。
第1章概述1.1电动助⼒转向的优点与传统的转向系统相⽐,电动助⼒转向系统最⼤的特点就是极⾼的可控制性,即通过适当的控制逻辑,调整电机的助⼒特性,以达到改善操纵稳定性和驾驶舒适性的⽬的。
作为今后汽车转向系统的发展⽅向,必将取代现有的机械转向系统、液压助⼒转向系统和电控制液压助⼒转向系统[2]。
相⽐传统液压动⼒转向系统,电动助⼒转向系统具有以下优点:(1)只在转向时电机才提供助⼒,可以显著降低燃油消耗传统的液压助⼒转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动⼒。
新能源汽车电动助力转向系统的工作原理

新能源汽车电动助力转向系统的工作原理大家好,今天我要给大家讲解一下新能源汽车电动助力转向系统的工作原理。
我们要明白什么是电动助力转向系统。
电动助力转向系统,简称EPS,是一种利用电机提供动力辅助的转向系统。
它可以减轻驾驶员的驾驶负担,提高行驶舒适性和安全性。
那么,电动助力转向系统是如何工作的呢?接下来,我将从三个方面来给大家详细介绍。
一、电动助力转向系统的结构电动助力转向系统主要由以下几个部分组成:电机、减速器、传感器、控制器和执行器。
下面,我将逐一给大家讲解这些部分的作用。
1. 电机电机是电动助力转向系统的核心部件,它负责将电能转化为机械能,为转向提供动力。
电机的输出功率大小直接影响到转向的响应速度和力度。
2. 减速器减速器是连接电机和执行器的部件,它的作用是将高速运转的电机转速降低,以便更好地控制转向力度。
减速器的种类有很多,常见的有齿轮减速器、蜗轮蜗杆减速器等。
3. 传感器传感器是用来检测车辆行驶状态的装置,它可以将转向角度、车速等信息传递给控制器。
常见的传感器有霍尔传感器、磁电感应传感器等。
4. 控制器控制器是电动助力转向系统的大脑,它根据传感器采集到的信息,对电机进行控制,以实现最佳的转向效果。
控制器的性能直接影响到转向系统的稳定性和可靠性。
5. 执行器执行器是将控制器发出的指令转化为实际动作的部分,它负责驱动车轮转动,从而改变车辆的行驶方向。
执行器的种类有很多,常见的有电子液压助力转向器、电子机械助力转向器等。
二、电动助力转向系统的工作过程电动助力转向系统的工作过程可以分为以下几个阶段:1. 感知阶段当驾驶员转动方向盘时,传感器会感知到这一动作,并将相关信息传递给控制器。
这个阶段的目的是确保传感器能够准确地捕捉到驾驶员的操作意图。
2. 计算阶段控制器根据传感器采集到的信息,结合车辆的实际状态(如车速、发动机转速等),计算出最佳的电机输出功率和转矩。
这个阶段的目的是确保电动助力转向系统能够根据驾驶员的需求和车辆的实际情况,提供合适的转向助力。
汽车转向机构设计

汽车转向机构设计汽车转向机构是汽车的核心驱动部件之一,它负责将驾驶员的操纵输入转化为车辆的转向动作。
在汽车设计中,转向机构的设计非常重要,直接关系到汽车的操控性、稳定性和安全性。
本文将从转向机构的基本原理、类型和设计要点等方面对汽车转向机构进行详细介绍。
一、转向机构的基本原理汽车转向机构的基本原理是通过驾驶员对方向盘的操纵,传递给转向机构并将其转化为车辆的转向动作。
转向机构一般由转向盘、转向柱、转向齿条、齿轮等部件组成。
驾驶员通过转向盘对转向机构施加力矩,使转向盘旋转,转向柱通过螺旋副将转向力矩传递给转向齿条,在转向齿条的作用下,通过机械传动使车轮发生转向。
二、转向机构的类型1.摩擦销转向机构:该机构通过摩擦销将驾驶员的操纵力传递给转向机构。
摩擦销转向机构简单、结构紧凑,但摩擦力不稳定,对转向贴合性要求较高。
2.齿轮齿条转向机构:该机构采用齿轮与齿条的咬合来传递转向动作,具有稳定性好、转向平稳的特点。
齿轮齿条转向机构常见的是德国式转向机构和柏格式转向机构。
3.斜齿杆转向机构:该机构采用斜齿杆与齿轮咬合,通过斜齿杆的线性移动产生转向动作。
斜齿杆转向机构结构简单、重量小,但有时会存在斜齿杆的进退现象,影响操控性。
4.电动转向机构:该机构通过电动助力来实现转向动作,大大减轻驾驶员的操纵力。
电动转向机构响应速度快,操控性好,但需要电源支持,如果电路故障会影响转向功能。
三、转向机构的设计要点1.正确确定转向机构的传动比:传动比是转向机构设计中最重要的参数之一,决定了转向动作传递的快慢程度。
传动比过小会导致转向盘转动角度大,驾驶员力度大,操控性差;传动比过大会导致方向盘转动角度小,导致转向不灵敏,容易发生意外。
因此,在设计转向机构时要根据车辆的类型和使用情况来确定适合的传动比。
2.考虑转向机构的结构强度:转向机构在车辆操控过程中承受着巨大的力矩和冲击,其结构必须具备足够的强度和刚性,以确保操控的安全性。
在设计转向机构时,需要考虑材料的选择,合理设置加强筋或加强板等结构来加强模块的强度。
轻型载货汽车电动助力转向系统的结构设计与优化

轻型载货汽车电动助力转向系统的结构设计与优化随着环保意识的提高和能源危机的日益严重,电动车辆逐渐成为人们关注的焦点。
在轻型载货汽车领域,电动助力转向系统的设计与优化也引起了人们的广泛关注。
本文将就轻型载货汽车电动助力转向系统的结构设计与优化进行探讨。
一、电动助力转向系统的基本原理电动助力转向系统是利用电力设备,对轻型载货汽车的转向操纵提供力矩,降低驾驶员的操纵压力,提高操纵的舒适性和安全性。
其基本原理是通过电机和齿轮箱的协同作用,将转向盘的转动转化为对转向轮的力矩输出,从而实现车辆转向的目的。
二、轻型载货汽车电动助力转向系统的结构设计1. 电动助力转向系统的主要组成部分电动助力转向系统主要由电机、电源模块、传感器和控制模块等组成。
其中,电机通过传感器感知驾驶员的转向操作,并通过控制模块对电机进行控制,输出相应的力矩。
电源模块则提供所需的电能。
2. 电动助力转向系统的电机选择电动助力转向系统的电机选择应考虑功率、扭矩、响应速度和效率等因素。
通常情况下,选择直流无刷电动机作为电动助力转向系统的动力源是比较合适的选择。
3. 电动助力转向系统的传感器设计为了使电动助力转向系统能够准确感知驾驶员的转向操作,传感器的设计非常关键。
通过合理地选择传感器的种类和位置,可以提高系统的灵敏度和控制精度。
三、轻型载货汽车电动助力转向系统的优化策略为了提高电动助力转向系统的性能和可靠性,以下优化策略可供参考:1. 优化电机控制算法通过优化电机控制算法,可以提高系统的响应速度和控制精度。
可以考虑采用闭环控制算法,结合传感器的反馈信号,实时调整输出力矩,从而提高系统的稳定性和准确性。
2. 优化系统的机械结构系统的机械结构设计也是影响电动助力转向系统性能的关键因素之一。
通过合理设计转向装置和齿轮箱等部件,可以减小系统的传动误差和能量损耗,提高系统的传动效率。
3. 应用新材料和新工艺应用新材料和新工艺可以有效地减轻系统的重量,提高系统的刚度和耐疲劳性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车电动助力转向机构的设计引言在汽车的发展历程中,转向系统经历了四个发展阶段:从最初的机械式转向系统(Manual Steering,简称MS)发展为液压助力转向系统(Hydraulic Power Steering,简称HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,简称EHPS)和电动助力转向系统(Electric Power Steering,简称EPS)。
装配机械式转向系统的汽车,在泊车和低速行驶时驾驶员操纵负担过于沉重,为了解决这个问题,美国GM公司在20世纪50年代率先在轿车上采用了液压助力转向系统[1]。
但是,液压助力转向系统无法兼顾车辆低速时的转向轻便性和高速时的转向稳定性,因此在1983年日本koyo公司推出了具备车速感应功能的电控液压助力转向系统。
这种新型的转向系统可以随着车速的升高提供逐渐减小的转向助力,但是结构复杂、造价较高,而且无法克服液压系统自身所具有的许多缺点,是一种介于液压助力转向和电动助力转向之间的过渡产品。
到了1988年,日本Suzuki公司首先在小型轿车Cervo上配备了Koyo公司研发的转向柱助力式电动助力转向系统;1990年,日本Honda公司也在运动型轿车NSX上采用了自主研发的齿条助力式电动助力转向系统,从此揭开了电动助力转向在汽车上应用的历史。
第1章概述1.1电动助力转向的优点与传统的转向系统相比,电动助力转向系统最大的特点就是极高的可控制性,即通过适当的控制逻辑,调整电机的助力特性,以达到改善操纵稳定性和驾驶舒适性的目的。
作为今后汽车转向系统的发展方向,必将取代现有的机械转向系统、液压助力转向系统和电控制液压助力转向系统[2]。
相比传统液压动力转向系统,电动助力转向系统具有以下优点:(1)只在转向时电机才提供助力,可以显著降低燃油消耗传统的液压助力转向系统有发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动力。
而电动助力转向系统只是在转向时才由电机提供助力,不转向时不消耗能量。
因此,电动助力转向系统可以降低车辆的燃油消耗。
与液压助力转向系统对比试验表明:在不转向时,电动助力转向可以降低燃油消耗2.5%;在转向时,可以降低5.5%。
(2)转向助力大小可以通过软件调整,能够兼顾低速时的转向轻便性和高速时的操纵稳定性,回正性能好。
传统的液压助力转向系统所提供的转向助力大小不能随车速的提高而改变。
这样就使得车辆虽然在低速时具有良好的转向轻便性,但是在高速行驶时转向盘太轻,产生转向“发飘”的现象,驾驶员缺少显著的“路感”,降低了高速行驶时的车辆稳定性和驾驶员的安全感。
电动助力转向系统提供的助力大小可以通过软件方便的调整。
在低速时,电动助力转向系统可以提供较大的转向助力,提供车辆的转向轻便性;随着车速的提高,电动助力转向系统提供的转向助力可以逐渐减小,转向时驾驶员所需提供的转向力将逐渐增大,这样驾驶员就感受到明显的“路感”,提高了车辆稳定性。
电动助力转向系统还可以施加一定的附加回正力矩或阻尼力矩,使得低速时转向盘能够精确的回到中间位置,而且可以抑制高速回正过程中转向盘的振荡和超调,兼顾了车辆高、低速时的回正性能。
(3)结构紧凑,质量轻,生产线装配好,易于维护保养电动助力转向系统取消了液压转向油泵、油缸、液压管路、油罐等部件,而且电机及减速机构可以和转向柱、转向器做成一个整体,使得整个转向系统结构紧凑,质量轻,在生产线上的装配性好,节省装配时间,易于维护保养。
(4)通过程序的设置,电动助力转向系统容易与不同车型匹配,可以缩短生产和开发的周期。
由于电动助力转向系统具有上述多项优点,因此近年来获得了越来越广泛的应用。
电动助力转向系统是在机械式转向系统的基础上,加装了电机及减速机构、转矩转角传感器、车速传感器和ECU电控单元而成。
1.2国内外发展状况1953年通用汽车公司首次使用了液压助力转向系统。
80年代后期,又出现了变减速比的液压助力转向系统。
由于变速比液压转向系统具有相对良好的操纵性能,至今仍在一些高档汽车上应用。
之后随着节能环保要求的提高,变流量泵液压助力转向系统和电动液压助力转向(EHPS)系统应运而生。
变流量泵助力转向系统在汽车处于比较高的行驶速度或者不需要转向的情况下,泵的流量会相应减少,从而达到节省能源的目的。
电动液压转向系统采用电动机驱动转向泵,转向泵无需再随发动机同步转动,不需要转向助力的时候转向泵关闭,可以在很大程度上节省能源。
但无论是变流量泵还是电动液压助力转向系统,由于液压转向系统的固有特性而难以实现效率上的突破,被电动助力转向系统(EPS)所替代已经成为一种必然。
EPS在日本最先获得实际应用。
此后,电动助力转向技术得到迅速发展。
鉴于电动助力转向系统良好的应用前景,国外许多研究机构和汽车公司对电动助力转向系统进行了大量的研究,使这项技术日趋成熟。
从发展上来言可体现在以下几个特点:一是节能环保。
电动助力转向系统能量消耗仅为液压助力转向系统的20%,在当今能源严重短缺的严峻情况下,这是一个很有优势的特点。
二是装配效率高。
电动转向系统零件数目少,减少了装配的工作量,节省了装配时间,提高了装配效率。
三是提供可变的转向助力。
电动转向系统的转向力来自于电机,通过软件编程和硬件控制,可得到覆盖整个车速的可变转向力。
四是安全性高。
由于电动机由蓄电池供电,是否能够实现助力与发动机是否起动无关,所以即使在发动机熄火或出现故障时也能提供助力。
与国外相比,我国的电动转向研究在很长的一段时间里是空白,目前国内已经有数十家大专院校和国营、民营企业开发该产品,并取得了一定的进展。
但由于电控单元运算速度和控制理论的影响,汽车电动助力转向的研制工作尚需进一步的发展。
第2章 EPS 的硬件系统2.1电动助力转向系统的组成原理控制器、电动机、离合器和减速机构等组成[3]。
当转动转向盘时,扭矩传感器测出施加于转向轴的扭矩,并产生一个电压信号。
与此同时,速度传感器测出汽车的车速,也产生一个电压信号,这两个信号均被传送到控制器,经过控制器运算处理后,传送给电动机一个合适的电流以产生扭矩,经减速机构减速以增加扭矩,施加在汽车的转向机构上,得到一个与工况相适应的转向作用力。
电动助力转向机构的工作原理如下:当驾驶员对转向盘施力并转动方向盘时,位于转向盘下方与转向轴连接的转矩传感器,将经扭杆弹簧连接在一起的上下转向轴的相对转向角位移信号转变为电信号传至控制器,在同一时刻车速信号也传入控制器。
根据以上两信号,控制器确定电动机的旋转方向的助力转矩的大小。
之后,控制器将输出的数字量经D/A 转换器,转换为模拟量,并将其输入电流控制电路。
电流控制电路将来自微机的电流命令值同电动机电流的实际值进行比较后生成一个差值信号,同时将此信号送往电动机驱动电路,该电路驱动电动机,并向电动机提供控制电流,完成助力转向作用。
助力转向控制信号的流程及控制系统的组成,如图2-2所示。
图2-2 控制信号的流程及控制系统的组成2.2电动助力转向系统的主要形式及其特点根据电动机布置位置不同,电动助力转向机构可分为:转向柱助力式、齿轮助力式、齿条助力式3种[4],如图2-3所示。
图2-3 电动助力转向机构的布置方案(1)转向柱助力式转向柱助力式电动助力转向机构的电动机布置在靠近转向盘下方,固定在转向柱一侧,通过减速机构与转向轴相连,直接驱动转向轴辅助转向。
这种布置方案的特点:此时电动机、减速器直接与转向柱相连。
它可安装在转向柱上的任意合适位置,一般提供蜗轮蜗杆机构来实现减速和变向;工作环境好,电机的输出力矩比较小,是一种目前常见的助力形式;由于各部件相对独立,因此维修方便;设计时也有很大的灵活性;但是电机输出力矩的波动容易传递到方向盘上。
如果电动机的安装位置和驾驶员的乘坐位置很近的话,必须考虑对电动机噪声的抑制。
(2)齿轮助力式齿轮助力式电动助力转向机构的电动机布置在与转向器主动齿轮相连的位置,并通过驱动主动齿轮实现助力转向。
这种布置方案的特点:这也是一种目前较为常见的助力形式,此时电动机、减速器直接与转向小齿轮相连。
它具有转向柱助力式EPS的全部优点,并且还可在现有的机械转向器上直接设计,而不用改变转向柱的结构。
(3)齿条助力式齿条助力式电动助力转向机构的电动机和减速机构布置在齿条处,并直接驱动齿条提供助力。
这种布置方案的特点:电动机的电枢通过传动机构与齿条直接相连,传动机构将电枢的转动变为平动从而实现助力。
作为最初应用的EPS,这种助力形式的优点是结构紧凑,不受安装位置的限制,可以提供较大的助力力矩,电机的力矩波动不易传递到方向盘上。
缺点是结构复杂,价格昂贵,工作环境差,要求密封好,要求电动机的输出力矩比较大,并且一旦某一部件出现故障,必须拆下整个转向齿条部件,因此维修不方便。
2.3电动助力转向系统各部分特点2.3.1转矩传感器转矩传感器是测量驾驶员作用在转向盘上力矩的大小与方向。
转矩测量系统比较复杂且成本较高,所以精确、可靠、低成本的转矩传感器是决定EPS系统能否占领市场的关键因素之一[5]。
转矩传感器分为非接触式和接触式两种。
接触式成本较低,但受温度与磨损影响易发生漂移、使用寿命较低、需要对制造精度和扭杆刚度进行折中,难以实现绝对转角和角速度的测量。
非接触式的测量精度高、抗干扰能力强、体积小,但成本较高。
因此扭矩传感器类型的选取根据EPS的性能要求进行综合考虑。
2.3.2电动机电动机是EPS系统的动力源。
电动机对EPS系统的性能有很大的影响,所以EPS系统对电动机的要求很高,不仅要求转矩大、转矩波动小、转动惯量小、尺寸小、质量轻,而且要求可靠性高、易控制[6]。
2.3.3减速机构EPS系统的减速机构与电动机相连,起降速增扭作用。
常采用蜗轮蜗杆机构、滚珠螺杆螺母机构和行星齿轮机构等。
涡轮蜗杆减速机构一般应用在转向轴助力式EPS系统上,而行星齿轮式减速机构则被应用在齿条助力式EPS系统和齿轮助力式EPS系统上。
2.3.4电子控制单元电子控制单元(ECU)根据车速传感器和转矩传感器传来的信号,进行逻辑分析与计算后发出指令,控制电动机和离合器的动作[9]。
电子控制系统(ECU)的基本构成单元如图2-4示图 2-4 电子控制系统的基本结构ECU模块安装在驾驶员侧仪表板下面。
ECU模块是由微电脑,A/D(模拟/数字)变换器,I/O(输入/输出)装置等组成的精密设备。
它的功能包括控制辅助转向力的大小和方向、车载诊断系统(自我诊断功能)和安全防护。
目前的EPS 系统采用的芯片有8位的单片机和DSP两种,比如DELPHI的E-Steer采用的是DSP56F805芯片[7]。
不管采用何种芯片,都要求该芯片的抗干扰能力强,适应在比较恶劣的环境下长期可靠的工作。