张力控制原理介绍

合集下载

张力控制

张力控制

收放卷工艺要求恒张力控制。

张力的给定通过张力控制器。

张力控制器控制的原理是通过检测收卷的线速度计算卷径,负载转距=F*D/2(F为设定张力,D为当前卷径),因此当设定了张力的大小,因为当前卷径通过计算已得知,所以负载转矩就可以算出来了。

张力控制器能够输出标准的0~10V的模拟量信号,对应异步电机的额定转矩。

所以我们用该模拟量信号接入变频器,选择转矩给定。

这样在整个收卷的动态过程中,能够保证张力的恒定。

在变频器转矩模式下,对速度进行限制。

在张力控制模式下,不论直流电机、交流电机还是伺服电机都要进行速度的限制,否则当电机产生的转距能够克服负载转矩而运行时,会产生转动加速度,而使转速不断的增加,最终升速到最高速,就是所谓的飞车。

如图2中所示,收放卷的速度是通过主轴B系列变频器的模拟量输出AFM而进行限定的。

也就是将主轴B系列的变频器上3-05(模拟信号输出选择)参数设定为03(频率指令输出),如图3所示。

将该信号分别接到收放卷变频器的模拟量输入端口上,作为频率给定和上限频率的设定信号。

零速张力控制要求。

当收放卷以0Hz运行时,电机的输出轴上有一定的张力输出,且可调。

该要求主要是防止当收放卷运转当中停车,再启动时能够保证收放卷的盘头不会松掉。

在该控制系统中,可以通过调整张力控制器上的初始张力设定而达到要求。

2.3分条机恒张力原理设计1.恒张力控制的原理。

对于收放卷过程中恒张力控制的实质是需要知道负载在运行当中卷径的变化,因为卷径的变化,导致为了维持负载的运行,需要电机的输出转矩要跟随着卷径的变化而变化。

对与V系列变频器而言,因为能够做转矩控制,因此能够完成收卷恒张力的控制。

V系列变频器提供了三路模拟量输入端口,AUI、AVI、ACI。

这三路模拟量输入口能够定义为多种功能,因此,可以任选一路作为转矩给定,另外一路作为速度限制。

0~10V对应变频器输出0~电机额定转矩,这样通过调整0~10V的电压就能够完成恒张力的控制。

张力控制原理

张力控制原理

张力控制原理
张力控制原理是一种常用于控制系统中的原理,通过对控制对象的张力进行测量和调节,实现对系统的稳定控制。

张力控制原理广泛应用于纺织、印刷、包装、造纸等行业中的连续生产线中,以确保产品在生产过程中的牵引力、张力等参数控制在合适的范围内。

张力控制原理的基本思想是通过传感器对物体的张力进行实时测量,将测量结果反馈给控制器,再根据设定的控制算法进行调节,以实现对张力的精确控制。

其中的关键是如何准确地测量物体的张力。

常见的测量方法包括压力传感器、应变测量、光电传感器等。

在控制系统中,控制器根据测量到的张力数值与设定值之间的差异,通过控制执行机构的工作状态来调节张力,使其趋近或保持在设定值范围内。

控制器通常采用PID控制算法,即按照比例、积分、微分三个因素对误差进行调节。

这样可以快速响应、稳定控制系统,保证生产线的正常运行。

除了控制算法外,张力控制原理还需要配备合适的执行机构和传动装置。

常见的执行机构有电机、气缸等,通过调节工作状态来改变物体的张力。

而传动装置则用于将执行机构的动力传递给受控对象,主要包括传动带、链条、轮轴等。

在实际应用中,张力控制原理需要根据具体的控制对象和工作环境进行参数调整和优化。

同时,还需要考虑到系统的响应速度、稳定性、负载变化、环境扰动等因素,以保证控制效果和
系统性能的优良。

综上所述,张力控制原理是一种用于控制系统中的重要原理,通过测量和调节张力,实现对系统的稳定控制,并被广泛应用于众多行业中的连续生产线。

张力控制器工作原理

张力控制器工作原理

张力控制器工作原理
张力控制器是一种用于控制连续柔性物料(如纸、膜、钢带等)张力的设备,其工作原理主要包括张力传感器、控制系统和执行器三个部分。

1. 张力传感器:张力传感器通常安装在物料传送路径上,通过测量物料在传送过程中的张力变化来获取实时的张力信号。

常用的张力传感器有压力传感器、光电传感器等。

传感器将测量到的张力信号转换为电信号,输入给控制系统。

2. 控制系统:控制系统接收到张力传感器传来的电信号后,进行信号处理和计算,并根据设定的张力目标值进行比较。

根据比较结果,控制系统会通过补偿设计好的控制算法,调节执行器的输出,以实现对物料张力的控制。

常用的控制器有PID
控制器等。

3. 执行器:执行器根据控制系统的指令,调节张力控制设备的工作状态来实现对物料张力的调节。

常用的执行器有电机、气缸等。

执行器通过改变传送物料的速度、张力轮的压力等方式,调节张力控制设备的工作状态,从而实现对物料张力的控制。

通过不断调节执行器的输出,控制系统可以实时监控和调节物料的张力,保持其在一个可控的范围内。

这种张力控制器工作原理通过不断反馈和调节的方式,可以有效地保证连续柔性物料的拉伸、切割、卷取等工艺过程中的张力稳定性,提高生产质量和效率。

张力控制

张力控制

谢谢观看
直接张力控制和张力复合控制多应用于带材、箔材冷轧机或连续加工线的卷取机或其机架间、加工设备间的 张力控制上。
图1
(a)卷取机的控制系统; (b)轧机机架间的控制系统间接张力控制系统通过对形成张力的有关参量的检 测与控制和对张力扰动参量的检测和补偿,实现对张力的间接控制所构成的控制系统。
间接张力控制系统不使用张力计,构成方式灵活,种类繁多,在张力控制领域一直占据着统治地位,得到广 泛应用并不断发展。其主要形式有缠绕设备用的间接张力控制和连续加工设备用的间接张力控制两种。
作用
张力控制的作用有:①保证连续生产加工过程能正常进行,即保证被加工材料在连续生产线的各部位上秒流 量相等,从而达到既不堆料也不拉断的要求;②保证被加工产品的质量,如尺寸精度 (厚度、宽度、截面形状 等)、平直度、卷绕松紧、外形以及材质性能等达到标准要求。
系统
间接系统
直接系统
活套系统
通过张力检测环节 (张力检测传感器)实现对张力的闭环反馈控制的系统。卷取机和轧机机架间的直接张力 控制系统分别如图1 (a)、(b)所示。
实现直接张力控制,首先要有张力检测传感器(张力计)。它被装在张力测量机构的张力辊下(见图1)。张 力计实为压力计,现用的压力计有压磁式、感应式、电阻应变片式等多种型式。
直接张力控制大多用于张力调节范围大,精度要求高及易于安装张力计的场合,或在无法构成间接张力控制 系统时使用。
有时为了提高张力调节动态及静态性能,扩大张力调节范围,用间接张力控制实现粗调,起扰动补偿作用, 用直接张力控制实现精调,两者合在一起构成张力复合控制。
一般印刷机上的张力控制系统是在卷筒纸展卷时加上传感辊,传感辊安装在枢轴浮动的支架上,根据张力值 进行平衡。通过对一些因素的响应,改变支架和辊子在枢轴浮动的位置,这些因素包括纸卷直径改变、运行速度、 卷筒纸加速度和制动系统摩擦力的改变。支架的枢轴运动将信息传送出去,由此不停地调整制动力,以保持张力 平衡。

张力控制方案

张力控制方案

张力控制方案随着工程技术的不断发展,我们对于张力控制的需求也越来越高。

无论是在建筑施工、机械制造,还是电力传输中,张力控制都是至关重要的一环。

本文将介绍一种高效可靠的张力控制方案,以帮助解决相关领域的问题。

一、背景介绍张力控制是指在一定范围内,通过对应力或应变的调节,使得构件或系统保持特定的张力水平。

正确的张力控制可以提高结构、设备或系统的性能和寿命,降低故障和事故的发生率。

因此,设计和实施合适的张力控制方案显得尤为重要。

二、基本原理张力控制的基本原理是通过监测张力水平并根据设定值进行调节。

常见的张力控制方法包括手动调节、基于传感器的反馈控制和自动化控制系统。

1. 手动调节:这种方法适用于一些简单的情况,通过人工调整绳索、链条或缆线的张力来实现控制。

然而,这种方法在长期运行或需要高精度控制的情况下并不适用。

2. 基于传感器的反馈控制:这种方法通过安装张力传感器来监测张力变化,然后将实际张力值与设定值进行比较,并通过调节执行机构来控制张力的变化。

这种方法可以提供高精度的张力控制,并且适用于各种复杂应用。

3. 自动化控制系统:在一些需要大规模张力控制的情况下,引入自动化控制系统是更为有效的方法。

这种系统通常由传感器、执行机构和控制器组成,能够实现实时监测、精确调节和稳定控制,提高工作效率和减少人为错误。

三、具体方案基于对现有张力控制方法的研究和分析,本文提出了一种结合传感器和自动化控制系统的高效张力控制方案。

1. 传感器选择:根据具体应用需求选择合适的张力传感器,如应变传感器、压力传感器或位移传感器等。

传感器的选取应考虑其精度、响应速度和可靠性等因素。

2. 控制器设计:设计一个智能控制器,该控制器能够接收传感器的信号,并根据设定值进行调节。

控制器应具备高精度的数据处理能力和快速的响应速度,以实现准确的张力控制。

3. 执行机构优化:根据具体应用场景选择合适的执行机构,如电机、液压缸或气动装置等,并通过优化其控制算法和传动装置来提高响应速度和控制精度。

第二章张力控制原理介绍

第二章张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩3擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。

张力控制器原理

张力控制器原理

张力控制器原理
张力控制器的原理是利用控制电动机的工作电流来实现对张力的精确控制。

其内部包含了传感器、控制电路和执行器三个主要部分。

首先,传感器用于测量被控制物体上的张力。

常用的传感器包括张力传感器和压力传感器。

张力传感器可以通过测量被控制物体或张力传送装置上的位移、应变或压力信号来间接测量张力的大小。

压力传感器则直接测量受力物体上的压力。

其次,控制电路负责处理传感器传递过来的信号,并根据预设的控制策略计算出控制电机需要的工作电流。

控制电路通常由微处理器或者专用的控制芯片组成,可以实现对张力的精确控制和调节。

最后,执行器通过控制电路输出的工作电流来驱动电动机,从而实现对被控制物体的张力调节。

电动机的运动会改变传送装置或张力装置的位置或形态,进而改变被控制物体上的张力。

张力控制器的工作原理可以简单归纳为:传感器测量张力信号→控制电路处理信号并计算出控制电机需要的工作电流→执行器根据工作电流驱动电动机调整被控制物体上的张力。

通过不断地采集和处理张力信号并输出相应的控制电流,控制器可以实现对张力的精确和稳定的控制。

张力控制原理介绍

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图22.2 张力控制方案介绍对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

1、开环转矩控制模式开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

2、与开环转矩模式有关的功能模块:1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。

摩3擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图
2
2.2 张力控制方案介绍
对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。

1、开环转矩控制模式
开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。

转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。

根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。

MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。

2、与开环转矩模式有关的功能模块:
1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。

张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。

2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。

3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。


3
擦补偿可以克服系统阻力对张力产生的影响。

3、闭环速度控制模式
闭环是指需要张力(位置)检测反馈信号构成闭环调节,速度控制模式是指变频器根据反馈信号调节输出频率,而达到控制目的,速度模式变频器可工作在无速度传感器矢量控制、有速度传感器矢量控制和V/F控制三种方式中的任何一种。

该控制模式的原理是通过材料线速度与实际卷径计算一个匹配频率设定值f1,再通过张力(位置)反馈信号进行PID运算产生一个频率调整值f2,最终频率输出为f=f1+f2。

f1可以基本使收(放)卷辊的线速度与材料线速度基本匹配,然后f2部分只需稍微调整即可满足控制需求,很好地解决了闭环控制中响应快速性和控制稳定性地矛盾。

这种模式下,张力设定部分无效,在FA-00PID给定源中设定系统控制的目标值,控制的结果是使张力(位置)的反馈信号稳定在PID的给定值上。

特别注意,在用位置信号(如张力摆杆、浮动辊)做反馈时,改变设定值(PID给定)不一定能够改变实际张力的大小,改变张力的大小需要更改机械上的配置如张力摆杆或浮动辊的配重。

4、与闭环速度模式有关的功能模块:
1)PID部分:主要在FA组设定,FH组中第二组PID参数可以起到辅助作用。

在其他部分都设定无误后,最终的控制效果需要调整PID参数。

2)线速度输入部分:这部分比较重要,有两个作用,一是通过线速度计算变频器的匹配频率(见上面的描述),二是可通过线速度计算卷径。

3)卷径计算部分:计算实际卷径,变频器获取线速度和实际卷径后可以获取变频器的匹配频率。

当用线速度计算卷径时,若变频器算得的卷径与实际卷径有偏差,说明线速度输入有偏差,通过卷径计算结果可以修正线速度输入。

4
注意一点的是用线速度和卷径计算的匹配频率值并非变频器的实际输出频率,用线速度和运行频率计算卷径时用到的运行频率是变频器的实际输出频率,所以逻辑上并不矛盾。

4)第二组PID参数部分:当只用一组PID参数无法满足全程的控制效果时,可以利用第二组PID参数,例如在小卷时调整第一组PID参数获得较好效果,满卷时调整第二组PID参数获得较好效果,这样在全程就能都达到较好效果。

5。

相关文档
最新文档