中职数学基础模块上册《函数的实际应用举例》word教案
语文版中职数学基础模块上册4.7《指数函数、对数函数的应用》word教案

Y=1000(1+20%)x
由1000(1+20%)x=4000,
得1.2x=4
两边取常用对数,得x㏒1.2=lg4
利用计算器求得x= ≈7.6
所以,从他工作后的第八年开始,他当年的存款数额超过4000元
例2通常候鸟每年秋天从北方飞往南方过冬。若某种候鸟的飞行速度y(m/s)可以表示为函数y=5log,其中x为这种候鸟在飞行过程中耗氧量的单位数。
(1)该种候鸟的耗氧量是40个单Байду номын сангаас时,它的飞行速度是多少?
(2)该种候鸟的飞行速度为15 m/s时,它的耗氧量是多少个单位?
解:(1)由题意,y=5㏒2 =5㏒24=10
因此,候鸟此时飞行速度为10m/s。
(2)由题意,15=5㏒2
所以3=㏒2 , =23
X=80
因此,候鸟此时耗氧量是80个单位。
1.认真读题,找出函数解析式模型
2.解题过程中主要步骤:
(1)阅读理解
(2)建立目标函数
(3)按要求解决数学问题
3.转化为对数式、指数式求未知量
作业布置
延伸体验
课后反思
教学相长
江苏省启东职业教育中心校
“15/20/10”集体备课导学案
课题:指数函数、对数函数实际应用第课时总第个导学案
任课教师:授课时间:年月日
教学
三维
目标
知识目标:指数型函数、对数型函数的实际应用;
能力目标:掌握由指数型函数求幂的问题转化为求对数值的问题的方法;
情感目标:培养良好的思维习惯,树立数学应用于实际的理念。
教学重点
从实际背景中抽象出函数模型的方法
中职数学基础模块上册《函数的实际应用举例》word教案

3.3函数的实际应用举例教学目标(1)理解分段函数的概念和图像; (2)了解实际问题中的分段函数问题.(3)会求分段函数的定义域和分段函数在点0x 处的函数值0()f x ; (4)掌握分段函数的作图方法;(5)能建立简单实际问题的分段函数的关系式.教学重点分段函数的概念及其图像;教学难点(1)建立实际问题的分段函数关系; (2)分段函数的图像.教学备品教学课件.课时安排2课时.(90分钟)教学过程我国是一个缺水的国家,很多城市的生活用水远远低于世界的平均水平.为了加强公民的节水意识,某城市制定每户月用水收费(含用水费和污水处理费)标准:那么,每户每月用水量x (3m )与应交水费y (元)之间的关系是否可以用函数解析式表示出来?由表中看出,在用水量不超过10(3m )的部分和用水量超过10(3m )的部分的计费标准是不相同的.因此,需要分别在两个范围内来进行研究. 解决:分别研究在两个范围内的对应法则,列出下表:书写解析式的时候,必须要指明是哪个范围的解析式,因此写作() 1.6,010,2.812,10.x x y f x x x <⎧==⎨->⎩…这个函数与前面所见到的函数不同,在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示.在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数.分段函数的定义域是自变量的各个不同取值范围的并集. 如前面水费问题中函数的定义域为(]()()0,1010,0,+∞=+∞.求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.如前面水费问题中求某户月用水8(3m )应交的水费()8f 时,因为0810<<,所以()8 1.6812.8f =⨯=(元).注意分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示. 例1 设函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩…(1)求函数的定义域;(2)求()()()2,0,1f f f -的值.分析 分段函数的定义域是自变量的各不同取值范围的并集.求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,再把0x 代入到相应的解析式中进行计算. 解 (1)函数的定义域为(]()(),00,,-∞+∞=-∞+∞.(2) 因为 ()20,∈+∞,故 ()2224f ==;因为 (]0,0∈-∞,故 ()02011f =⨯-=-;因为 (]1,0-∈-∞,故 ()()12113f -=⨯--=-. 练习3.31.设函数 ()221,20,1,03.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩…(1)求函数的定义域;(2)求()()()2,0,1f f f -的值.因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像.例2 作出函数()1,0,1,0x x y f x x x -<⎧==⎨+⎩…的图像.分析 由解析式可以看到,需要分别在(),0-∞和[)0,+∞两个范围内作出对应的图像,从而得到函数的图像.解 作出1y x =-的图像,取0x <的部分;作出1y x =+的图像,取0x …的部分;由此得到函数的图像(如下图).(1)因为分段函数是一个函数,应将不同取值范围的图像作在同一个平面直角坐标系中. (2)因为1y x =-是定义在0x <的范围,所以1y x =-的图像不包含()0,1点. 教材练习3.31.设函数()221,20,1,0 3.x x f x x x +-<⎧⎪=⎨-<<⎪⎩…作出函数的图像例3 某城市出租汽车收费标准为:当行程不超过3km 时,收费7元;行程超过3km ,但不超过10km 时,在收费7元的基础上,超过3km 的部分每公里收费1.0元;超过10km 时,超过部分除每公里收费1.0元外,再加收50﹪的回程空驶费.试求车费y (元)与x (公里)之间的函数解析式,并作出函数图像.分析 收费标准依行车的公里数分为3种情况,因此,要分别在3个范围内进行讨论. 解 根据题意,列出表格如下:故y 与x 之间的函数解析式为7,03,4,310,1.51,10.x y x x x x <⎧⎪=+<⎨⎪->⎩…… 函数的图像如下图所示.当03x <…时,图像是一条不含左端点的水平直线段AB ;当310x <…时,图像是线段BC ;当10x >时,图像是一条以C 为起点的射线.教材练习3.32. 我国国内平信计费标准是:投寄外埠平信,每封信的质量不超过20g ,付邮资0.80元;质量超过20g 后,每增加20g (不足20g 按照20g 计算)增加0.80元.试建立每封平信应付的邮资y (元)与信的质量x (g )之间的函数关系(设060x <<),并作出函数图像.。
人教版中职数学(基础模块)上册3.1《函数》word教案

【课题】 3.1 函数的概念及其表示法【教学目标】知识目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法. 能力目标:(1) 通过函数概念的学习,培养学生的数学思维能力;(2) 通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)(x f y 的理解; (2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接; (2)抓住两个要素,突出特点,提升对函数概念的理解水平; (3)抓住函数值的理解与计算,为绘图奠定基础; (4)学习“描点法”作图的步骤,通过实践培养技能; (5)重视学生独立思考与交流合作的能力培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}中的任意一个值,有唯一的值与之对应.两个变量之间的这种对应关系叫做动脑思考探索新知() 1,-+∞0,得12 x.因此函数的定义域为1,2⎛⎤-∞⎥⎝⎦.代数式中含有分式,使得代数式有意义的条件是分母不等于零;代数式中含有二次根式,使得代数式有意义的条件是被开方式大于或等于零.0,这个函数与-<x x,0..但是它们的对应法则不同,因此不是同)尽管表示两个函数的字母不同,但是定义域与对应法则都相同,所以它们是同一个函数.(C)之间的11月29C)随时间)变化的曲线如下图过 程行为 行为 意图 间曲线形象地反映出气温T (C )与时间t (h )之间的函数关系,这里函数的定义域为[]0,14.对定义域中的任意时间t ,有唯一的气温T 与之对应.例如,当6t =时,气温 2.2T C =︒;当14t =时,气温12.5T C =︒.3. 用S 来表示半径为r 的圆的面积,则2πS r =.这个公式清楚地反映了半径r 与圆的面积S 之间的函数关系,这里函数的定义域为+R .以任意的正实数0r 为半径的圆的面积为200πS r =.分析 说明 说明 启发 引领自我 体会 了解 体会 领悟从函 数的 角度 讲解 公式45*动脑思考 探索新知函数的表示方法:常用的有列表法、图像法和解析法三种. (1)列表法:就是列出表格来表示两个变量的函数关系. 例如,数学用表中的平方表、平方根表、三角函数表,银行里的利息表,列车时刻表等都是用列表法来表示函数关系的.用列表法表示函数关系的优点:不需要计算就可以直接看出与自变量的值相对应的函数值.(2)图像法:就是用函数图像表示两个变量之间的函数关系. 例如,我国人口出生率变化的曲线,工厂的生产图像,股市走向图等都是用图像法表示函数关系的.用图像法表示函数关系的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.(3)解析法:把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.总结 归纳 介绍 说明 举例 说明思考 理解 记忆 观察带领 学生 总结 函数 的三 种表 示方 法并 了解 其各 自的 特点 可以过 程行为 行为 意图 间例如,s =60t 2,A =πr 2,S =2πrl ,y =2-x (x2)等都是用解析式表示函数关系的.用解析式表示函数关系的优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值. 举例 介绍体会 了解教给 学生 自我 分析 总结 55 *巩固知识 典型例题例4 文具店内出售某种铅笔,每支售价为0.12元,应付款额是购买铅笔数的函数,当购买6支以内(含6支)的铅笔时,请用三种方法表示这个函数.分析 函数的定义域为{1,2,3,4,5,6},分别根据三种函数表示法的要求表示函数.解 设x 表示购买的铅笔数(支),y 表示应付款额(元),则函数的定义域为{}1,2,3,4,5,6. (1)根据题意得,函数的解析式为0.12y x =,故函数的解析法表示为0.12y x =,{}1,2,3,4,5,6x ∈.(2)依照售价,分别计算出购买1~6支铅笔所需款额,列成表格,得到函数的列表法表示.x /支123456y /元(3)以上表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(1,0.12),(2,0.24),(3,0.36),(4,0.48),(5,0.6),(6,0.72),得到函数的图像法表示.归纳由例4的解题过程可以归纳出“已知函数的解析式,作函质疑说明强调 引领讲解启发 分析观察 体会 思考 主动 求解 理解 领会通过 例题 进一 步领 会函 数三 种表 示方 法的 特点 突出 图像 的作 法 数形 结合 带领过 程行为 行为 意图 间数图像”的具体步骤:(1)确定函数的定义域;(2)选取自变量x 的若干值(一般选取某些代表性的值)计算出它们对应的函数值y ,列出表格;(3)以表格中x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中描出相应的点(,)x y ;(4)根据题意确定是否将描出的点联结成光滑的曲线. 这种作函数图像的方法叫做描点法. 例5 利用“描点法”作出函数x y =的图像,并判断点(25,5)是否为图像上的点 (求对应函数值时,精确到0.01) . 解 (1)函数的定义域为),0[+∞.(2)在定义域内取几个自然数,分别求出对应函数值y ,列表:x0 1 2 3 4 5 … y12…(3)以表中的x 值为横坐标,对应的y 值为纵坐标,在直角坐标系中依次作出点(y x ,).由于(25)255f ==,所以点(25,5)是图像上的点.(4)用光滑曲线联结这些点,得到函数图像.强调 归纳 总结 说明启发 引导强调 讲解领会 理解 记忆 了解 思考 求解 理解学生 总结 归纳 函数 的图 像做 法特 别注 意步 骤性 和细 节 演示 过程 中提 醒学 生注 意作 图的 细节70*运用知识 强化练习 教材练习1.判定点()11,2M -,()22,6M -是否在函数13y x =-的图像上.2.元/kg ,应付款额y 是购买土豆数量x 的函数.请分别用提问 巡视 指导动手 求解 交流及时 了解 学生 知识 掌握 情况。
(完整版)中职数学函数的实际应用教案

函数的实际应用教案一、条件分析1.学情分析函数的实际应用是函数这个章节的第五节课,通过前四节课的情景教学,学生对函数的概念、表示方法、单调性、奇偶性的知识进行了系统的学习,所以,在进行教学设计的时候,我们仍然坚持情景教学,从学生身边熟悉的事物入手做到由浅入深,循序渐进。
2.教材分析一次函数和二次函数在实际生活与生产中应用广泛,教材中对一次函数和二次函数的应用举了五个例子,目的是启发学生应用函数知识去思考问题,解决问题。
让学生明白学有所用,学以致用。
二、三维目标知识与技能目标A层:1. 理解分段函数的概念;2. 理解分段函数的图像;3. 掌握分段函数的作图方法;4. 能建立简单实际问题的分段函数的关系式。
B层:1. 理解分段函数的概念;2. 理解分段函数的图像;3. 掌握分段函数的作图方法;C层:1. 理解分段函数的概念;2. 理解分段函数的图像;过程与方法目标情景教学法、讨论法、讲授法。
通过创设情景让学生合作、探究分段函数图像的概念和性质,直观感受函数的实际应用;通过讲授法让学生掌握分段函数的概念和作图方法;通过练习加强对新知识的巩固。
情感态度和价值观目标通过对函数的实际应用的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对分段函数的概念和作图方法的学习,提高学生对理论知识的实际应用的能力。
三、教学重点分段函数的概念和作图方法四、教学难点能建立简单实际问题的分段函数的关系式五、主要参考资料:中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。
六、教学进程:复习导入:函数的概念——什么函数?如何确定函数的定义域?函数的表示方法——函数有那些表示方法?函数单调性——如何判断函数的单调性?函数的奇偶性——如何判断函数的奇偶性?讲授新课:创设情景:某天,奉节职教中心校长到我校参观,由于时间紧迫,所以决定坐出租车。
从职教中心到我校全程17公里。
出租车按如下方法收费:起步价5元,可行3公里(含3公里);3公里到7公里(含7公里)按1.6元/公里计价(不足1公里,按1公里计算);7公里以后按2.4元/公里计价(不足1公里,按1公里计算)。
函数的实际应用举例教学设计

函数的实际应用举例教学设计教学设计:函数的实际应用教学目标:1.了解函数的实际应用领域和重要性;2.掌握函数在实际问题中的应用方法;3.培养学生的实际问题解决能力。
教学内容:1.函数的实际应用概述;2.函数在数学、科学、工程、经济等领域中的具体应用;3.使用函数解决实际问题的思路和方法。
教学过程:第一步:导入1.引入一个实际问题的例子,例如求一个铁圆柱的体积;2.引导学生思考如何用数学知识来解决这个问题。
第二步:课堂讲解1.介绍函数的概念和作用;2.列举函数在数学、科学、工程、经济等领域中的重要作用;3.详细介绍函数在各个领域中的具体应用,如数学中的函数图像、科学中的物理模型、工程中的计算模拟等。
第三步:小组讨论1.将学生分成小组,每个小组选择一个具体的实际问题;2.让学生讨论在解决这个问题中如何使用函数,并列出解决问题的思路和方法。
第四步:学生展示1.每个小组派代表上台展示他们选择的实际问题和解决方法;2.其他小组提问并讨论解决方法的合理性。
第五步:实际操作1.指导学生使用函数解决一个实际问题;2.学生在电脑上编写程序,实现函数的具体应用;3.学生互相交流和比较结果,讨论解决问题的有效性和可行性。
第六步:总结归纳1.让学生总结函数的实际应用领域和重要性;2.引导学生思考如何将函数的实际应用与日常生活结合起来;3.鼓励学生提出其他可能的实际应用领域和问题。
第七步:作业布置1.要求学生用函数解决一个与自己感兴趣的实际问题,并写出解决步骤和思路;2.鼓励学生展示自己的作品,并与他人分享自己的思考和经验。
教学评价:1.观察学生在小组讨论中的参与程度和思考能力;2.检查学生在实际操作中的程序编写和问题解决能力;3.回顾学生的作业,评价其解决实际问题的思路和方法是否合理。
教学延伸:1.组织学生进行更复杂的实际问题解决实践,培养学生的创新能力;2.引导学生进一步学习与函数相关的知识,如函数的导数和积分等;3.鼓励学生参与数学建模比赛或科学竞赛,展示自己的实际问题解决能力。
语文版中职数学基础模块上册3.5《函数的实际应用举例

3.拓展练习 例 1 一辆汽车从甲地出发驶往乙地,稍事休息后又返回甲地.下图表示了该 车的行驶过程.其中,x表示车辆的行驶时间,y表示车辆与甲地之间的距离. 根据图象提供的信息回答下列问题: (1)乙地距离甲地多远?该车从甲地到乙地花了多少时间? (2)图中的AB段表示了什么信息? (3)该车从甲地驶往乙地的速度与从乙地返回甲地的速度相比,哪个更快?
4.当堂训练: (1)幸福村村办工厂今年前五个月生产某种产品的总量c(件)关于时间t
(月)的函数图象如图3所示,则该厂对这种产品来说( D )
A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少; B . 1月至3月每月生产总量逐月增加,4、5两月每月生产总量与3月持平; C .1月至3月每月生产总量逐月增加,4、5两月均停止生产; D .1月至3月每月生产总量不变,4、5两月均停止生产.
(2)某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版 印刷的印数不少于5000册时投入的成本与印数间的相应数据如表:
印数x(册) 5000 8000 10000 15000 ……
成本y(元) 2850经过对上表中数据的探究,发现这种读物的投入y(元)是印数x(册) 的一次函数,求这个一次函数的解析式(不要求写出的x取值范围). ②如果出版社投入成本48000元,那么能印该读物多少册?
2.知识链接:
图表信息题是通过图象、图形或表格等形式给出信息的一种题型.主要有: (1)函数类图表信息题:函数图象能反映函数定义域、值域、单调性、奇偶 性(对称性)、特殊点(交点、边界点、最值点)等性态,在解答时应从这些方面加 以分析,充分应用图象信息,并注意与方程、不等式联系起来正确求解. (2)非函数类图形信息题:图形具有多样性直观化的特征,图形信息题是一 类极富思考性、挑战性和趣味性的问题.充分挖掘图形内涵,全方位审视图形, 全面掌握图形所提供的信息,是解决此类图形信息题的关键. (3)表格信息题:表格能集中给出解题信息,简洁明了.理解表中内容,根 据数据特征找出数量之间的规律,进行计算或推理,是解表格信息题的关键. (4)条形图形信息题:随着新教材增加了《概率统计》,条形图形在问题中 出现的机会也增多了.条形图形能直观反映各种数据信息的统计,具有可比较性、 规律性.理解图形内容,找出变化趋势和规律,是解答条形图形信息题的关键.
人教版中职数学基础模块上册《函数的应用》教案 (一)

人教版中职数学基础模块上册《函数的应用》教案 (一)人教版中职数学基础模块上册《函数的应用》教案是一份非常重要的教学资源,它是中职数学教学过程中介绍函数概念、使用函数解决实际问题的重要教学内容之一。
本教案将帮助学生深入了解函数及其应用,并提供了大量的练习题,有助于学生掌握应用函数解决实际问题的方法和技能。
一、教学目标本教案的目标是使学生对函数的概念和应用有更深刻的理解,了解函数的分类、性质和应用场景,能够运用函数知识解决实际问题。
二、课程设置1.函数的定义及类型首先讲解函数的定义及分类,包括一次函数、二次函数、指数函数、对数函数等等,让学生了解函数的基本特征。
2.函数的性质及应用通过实际问题引导学生了解函数的性质和应用,如最大值、最小值、单调增减、奇偶性等。
3.应用题的讲解根据学生的实际水平和能力进行不同难度的应用题讲解,帮助学生学习如何将函数应用于解决实际问题,如利用函数求解最优解、预测数据趋势等等。
4.练习题提供大量的练习题供学生练习,让学生通过练习加深对函数的理解,并提高运用函数解决实际问题的能力。
三、教学方法和评价方式本教案采用多媒体课件、展示板、讲解、互动练习等多种教学方法,通过生动的实例和具体的应用,让学生更好地理解并掌握函数的应用。
同时利用不同难度的测试和作业评估学生的学习成果,帮助学生找出自身需要加强的地方,加强学习效果。
四、总结人教版中职数学基础模块上册《函数的应用》教案是对学生掌握函数理论及其应用提供了很好的帮助,通过分析、解决应用题目,培养了学生独立思考解决问题的能力。
同时,老师也应加强课堂互动,不断调整教学方法和手段,为学生提供更好的教学体验。
语文版中职数学基础模块上册3.5《函数的实际应用举例》word教案2

第____次课教案___月___日第___周星期___写作学习改写教学过程教学反思人教版小学五年级数学期末考试卷一、填空(20分)1. 2.15小时=()分 2.()米=18厘米3. 3.6吨=()千克4. 0.8公顷=()平方米[#&%^~]5. 4.15×0.53的积有()位小数,54.16÷3.2的商数的最高位[#%~&*]在()位上。
6.把9.5463保留两位小数约是(),保留一位小数约是[%~&^*](),保留整数约是()。
7.甲数是a,乙数比甲数的5倍多X,乙数是()。
8.一根铁丝长b米,每次截下3米,截了m次后还剩下()米。
当b=40,m=10时,还剩下()。
9.一个梯形上低是8厘米,下底是14厘米,高与上低相同,它的面积是()平方厘米。
10.一个三角形的低是7分米,是高的2倍,它的面积是()平方分米。
11.在3.24, 3.204,3.204,3.204中,最大的数是()最小的数是()。
12.3.53737…用简便写法写作(),保留两位小数约是()13.一组数据,按从小到大排列为:6,7,12,15,18,20这组数的中位数是(),平均数是()。
[~^#*&]二、判断。
(对的打“√”,错的打“×”)(10分)1.把12.45的小数点向右移动两位,这个数就扩大100位。
()2.两个面积相等的三角形一定可以拼成一个平行四边形。
()3.从卡片和是单数的对手赢,是公平的。
()4.一个不等于0的数除以小数时,商一定大于被除数。
()5.中位数就是处于一组数据中间位置的数。
()三、计算:(30分)[#^%&@]1.列式计算(6分)1. 14.06×3.5=2. 4.25×6.8=3. 12.5×2×0.8=[@*#&^]2.递等式计算:(能简算的要简算)(12分)①0.125×9×8×0.3 ②4.62÷5÷0.66③5.78×2.3+5.78+5.78×6.7 ④7.75×[20÷(3.24-3.04)][#%&@~]3.解方程:(12分 )① 6X+15+7=141 ② 15X+6X=168[~#@*^]③ 12(X+3.7)=144 ④ 4.2×3+3X=15.3四、计算下列图形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3函数的实际应用举例
教学目标
(1)理解分段函数的概念和图像; (2)了解实际问题中的分段函数问题.
(3)会求分段函数的定义域和分段函数在点0x 处的函数值0()f x ; (4)掌握分段函数的作图方法;
(5)能建立简单实际问题的分段函数的关系式.
教学重点
分段函数的概念及其图像;
教学难点
(1)建立实际问题的分段函数关系; (2)分段函数的图像.
教学备品
教学课件.
课时安排
2课时.(90分钟)
教学过程
我国是一个缺水的国家,很多城市的生活用水远远低于世界的平均水平.为了加强公民的节水意识,某城市制定每户月用水收费(含用水费和污水处理费)标准:
那么,每户每月用水量x (3
m )与应交水费y (元)之间的关系是否可以用函数解析式表示出来?
由表中看出,在用水量不超过10(3
m )的部分和用水量超过10(3
m )的部分的计费标准是不相同的.因此,需要分别在两个范围内来进行研究. 解决:
分别研究在两个范围内的对应法则,列出下表:
书写解析式的时候,必须要指明是哪个范围的解析式,因此写作() 1.6,
010,2.812,10.x x y f x x x <⎧==⎨->⎩
…
这个函数与前面所见到的函数不同,在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示.
在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数.
分段函数的定义域是自变量的各个不同取值范围的并集. 如前面水费问题中函数的定义域为(]
()()0,1010,0,+∞=+∞.
求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.
如前面水费问题中求某户月用水8(3
m )应交的水费()8f 时,因为0810<<,所以()8 1.6812.8f =⨯=(元). 注意
分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.
例1 设函数()2
21,
0,,0.
x x y f x x x -⎧⎪==⎨>⎪⎩…
(1)求函数的定义域;
(2)求()()()2,0,1f f f -的值.
分析 分段函数的定义域是自变量的各不同取值范围的并集.求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,再把0x 代入到相应的解析式中进行计算. 解 (1)函数的定义域为(]
()(),00,,-∞+∞=-∞+∞.
(2) 因为 ()20,∈+∞,故 ()2
224
f ==; 因为 (]0,0∈-∞,故 ()02011f =⨯-=-;
因为 (]1,0-∈-∞,故 ()()12113f -=⨯--=-. 练习3.3
1.设函数 ()2
21,20,
1,
0 3.
x x y f x x x +-<⎧⎪==⎨-<<⎪⎩…
(1)求函数的定义域;
(2)求()()()2,0,1f f f -的值.
因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像.
例2 作出函数()1,
0,1,0x x y f x x x -<⎧==⎨+⎩…的图像.
分析 由解析式可以看到,需要分别在(),0-∞和[)0,+∞两个范围内作出对应的图像,从而得到函数的图像.
解 作出1y x =-的图像,取0x <的部分;作出1y x =+的图像,取0x …的部分;由此得到函数的图像(如下图).
(1)因为分段函数是一个函数,应将不同取值范围的图像作在同一个平面直角坐标系中. (2)因为1y x =-是定义在0x <的范围,所以1y x =-的图像不包含()0,1点. 教材练习3.3
1.设函数()2
21,
20,1,
0 3.
x x f x x x +-<⎧⎪=⎨-<<⎪⎩…作出函数的图像
例3 某城市出租汽车收费标准为:当行程不超过3km 时,收费7元;行程超过3km ,但不超过10km 时,在收费7元的基础上,超过3km 的部分每公里收费1.0元;超过10km 时,超过部分除每公里收费1.0元外,再加收50﹪的回程空驶费.试求车费y (元)与x (公里)之间的函数解析式,并作出函数图像.
分析 收费标准依行车的公里数分为3种情况,因此,要分别在3个范围内进行讨论. 解 根据题意,列出表格如下:
故y 与x 之间的函数
解析式为
7,
03,4,310,1.51,10.x y x x x x <⎧⎪
=+<⎨⎪->⎩
…… 函数的图像如下图所示.
当03x <…时,图像是一条不含左端点的水平直线段AB ;当310x <…时,图像是线段BC ;当10x >时,图像是一条以C 为起点的射线.
教材练习3.3
2. 我国国内平信计费标准是:投寄外埠平信,每封信的质量不超过20g ,付邮资0.80元;质量超过20g 后,每增加20g (不足20g 按照20g 计算)增加0.80元.试建立每封平信应付的邮资y (元)与信的质量x (g )之间的函数关系(设060x <<),并作出函数图像.。