2018届高三数学小题精练+B卷及解析:专题(12)导数及解析 含答案

合集下载

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
则 .
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.

2018届高考数学小题精练+B卷及解析:综合题(二)及解析 含答案

2018届高考数学小题精练+B卷及解析:综合题(二)及解析 含答案

2018高考数学小题精练+B 卷及解析:综合题(二)及解析1.{}2{|},1A x x x B x =<=≥,则A B ⋃=( )A . RB . ()0,+∞C . {}1D . [)1,+∞ 【答案】B【解析】{}{}2||01A x x x x x =<=<<,{}()1,0,B x A B =≥⋃=+∞ 2.已知复数11Z i=- ,则Z = ( )A . 1i -+B . 1i --C . 1i +D . 1i - 【答案】D【解析】11z i z i =+⇒=- ,故选D .3.已知函数2,0(),0x x f x x x ⎧≥=⎨-<⎩,则((2))f f -=( )A .4B .3C .2D .1 【答案】A考点:分段函数求值4.某长方体被一平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为A . 4B . 22C . 42D . 8【解析】解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3, 所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的三分之二, 如图所示,则这个几何体的体积为21283⨯= . 本题选择D 选项.5.已知六棱锥P ABCDEF -的底面是正六边形, PA ⊥平面ABC .则下列结论不正确...的是 ( )A . //CD 平面PAFB . DF ⊥平面PAFC . //CF 平面PABD . CF ⊥平面PAD 【答案】D6.已知()()sin 2cos 30πθπθ-++-=,则cos sin cos sin θθθθ+=-( )A . 3B . 3-C .13 D . 13-【解析】因为()()sin 2cos 30πθπθ-++-=,所以2cos 0sin θθ--=,可得cos tan 1211tan 2,cos tan 1213sin sin θθθθθθθ++-+=-===---- ,故选C .7.已知()3,4a =-r , ()cos ,sin b αα=r ,则2a b +r r的取值范围是( )A . []1,4B . []2,6C . []3,7D . 22,42⎡⎤⎣⎦【答案】C点睛:本题的求解的关键与难点在于如何将问题进行转化,依据题设条件与向量模的几何意义,则问题转化为求以()0,0O 为圆心,半径为2的圆上一个动点()2cos ,2sin P αα到定点()3,4M -的距离最大值与最小值问题.由于5OP =,所以结合图形可知5252PM -≤≤+,即37PM ≤≤,从而使得问题获解.8.若[]x 表示不超过x 的最大整数,则图中的程序框图运行之后输出的结果为( )A . 48920B . 49660C . 49800D . 51867 【答案】C【解析】根据题意: []x 表示不超过x 的最大整数,且][201650.450,40⎡⎤==⎢⎥⎣⎦所以该程序运行后输出的结果中是:39个0与40个1,40个2,40 个3,……,40个49, 0.4416⨯=个50的和,所以输出的结果为14940490.44050498002S +=⨯⨯+⨯⨯=. 9.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A . B . C . D . 【答案】B【解析】此题为几何概型.小明在7:50至8:30之间到达发车站,时长为40,在7:50至8:00或8:20至8:30时,等车时间不超过10分钟,时长为20.故概率为201402P ==.故选B . 10.一个样本,3,4,5,6a 的平均数是b ,且不等式260x x c -+<的解集为(),a b ,则这个样本的标准差是 ( )A .B .2C .3D .2【答案】B考点:平均数和方差的计算. 11.定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A . 22⎡⎢⎣B .[]1,1-C .2⎤⎥⎦D .2⎡-⎢⎣ 【答案】D考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.12.若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =+-的最小值是( ) A .122+B .122-C .1D 2【答案】B 【解析】试题分析:令t x x =+cos sin ,则21cos sin 2-=t x x ,∴()11212122+--=--=t t t y .∵x 是三角形的最小内角,∴⎥⎦⎤⎢⎣⎡∈3,0πx ,∵⎪⎭⎫ ⎝⎛+=+=4sin 2cos sin πx x x t ,∴(]2,1∈t ,∴当2=t 时,y 取得最小值122-+.故选:B .考点:(1)三角函数的化简求值;(2)三角函数的最值.综合(二)1.已知U ={y|y =log 2x ,x>1},P =1,2y y x x ⎧⎫=>⎨⎬⎩⎭,则∁U P =( ) A .1,2⎡⎫+∞⎪⎢⎣⎭ B .10,2⎛⎫ ⎪⎝⎭ C .(0,+∞) D.(-∞,0]∪1,2⎡⎫+∞⎪⎢⎣⎭【答案】A2.已知复数12z i =+,21z i =-,则12z z z =⋅在复平面上对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D【解析】由题()()213z i i i =+-=-g ,故复数z 对应的点位()3,1-,在第四象限.3.已知向量(,),(1,2)a x y b ==-r r ,且(1,3)a b +=r r ,则|2|a b -r r等于( )A .1B .3C .4D .5 【答案】D 【解析】试题分析:因(1,3)a b +=r r ,(1,2)b =-r ,故(2,1)a =r ,所以2(4,3)a b -=-r r,故22|2|435a b -=+=r r,故应选D .考点:向量的坐标形式及运算.4.一个几何体的三视图如上图所示,则这个几何体的体积为( )A .)38π+B .)392π+C .)382π+D .)36π+ 【答案】A【解析】试题分析:分析三视图可知,该几何体为半个圆锥与四棱锥的组合,故其体积)22111313238323V ππ=⋅⋅+⋅=+,故选A .考点:1.三视图;2.空间几何体的体积.5.若函数1)(2+-=x x x f ]1,1[-∈x ,不等式m x x f +>2)(恒成立,则m 的取值范围是( ) A .)1,(--∞ B .)3,(-∞ C .)3,1(- D .),3(+∞ 【答案】A考点:二次函数的最值【方法点睛】此题涉及到函数中的恒成立问题,是比较基础的题型,对于基本方法一般有两点,第一个就是将不等式转化为()0>x F 或()0<x F 恒成立的问题,即函数的最大值大于0或函数的最小值小于0,或者是反解参数m ,写出132+-<x x m 恒成立,即()min 213+-<x x m ,问题转化为不含参数的函数的最值问题,一般能反解时,第二种方法比较简单.6.已知等差数列{}n a 中,20132,a a 是方程0222=--x x 的两根,则2014s ( ) A .2014- B .1007- C .1007 D .2014 【答案】D 【解析】试题分析:因为20132,a a 是方程0222=--x x 的两根,所以220132=+a a ,数列{}n a 是等差数列,所以20142)(20142)(201420132201412014=+=+=a a a a s ,答案为D .考点:等差数列的性质及求和公式.7.若圆C 与圆1)1()2(22=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(22=++-y xB .1)1()2(22=-+-y xC .1)2()1(22=++-y xD .1)2()1(22=-++y x 【答案】A考点:关于点、直线对称的圆的方程. 8.在的展开式中的常数项是( )A .B .C .D .【答案】A【解析】试题分析:由二项式定理可知展开式的通项公式为,令,常数项为考点:二项式定理9.抛物线x y 82=的焦点为F ,点),(y x P 为该抛物线上的动点,又已知点)0,2(-A ,则||||PF PA 的取值范围是( )A .),3[+∞B .]2,1(C .]4,1[D .]2,1[ 【答案】D 【解析】试题分析:由抛物线定义得||2PF x =+,又222||(2)(2)8PA x y x x =++=++,22(2)8||81||44x x PA xPF x x ++==+++∴.当0x =时,||1||PA PF =;当0x ≠时, 2||88114||444PA x PF x x x x =+=+++++,当且仅当2x =时取等号.4424x x x x +=g ∵≥,||8124||4PA PF x x=+++∴≤,综上所述,||||PA PF 的取值范围是[12],,故选D .考点:1、抛物线及其性质;2、基本不等式的应用.【思路点睛】本题考查了抛物线的定义及其性质和基本不等式的应用,渗透着分类讨论的数学思想,属中档题.其解题的一般思路为:首先由抛物线的定义和两点的距离公式可得出,PA PF 的表达式,然后运用分类讨论的思想对其进行讨论,即0x =和0x ≠,并分别求出其对应的最值,尤其注意基本不等式的应用过程中要检验其等号是否成立,最后得出其答案即可.10.如图所示的茎叶图为高三某班50名学生的化学考试成绩,算法框图中输入的i a 为茎叶图中的学生成绩,则输出的m n ,分别是( )A .3812m n ==,B .2612m n ==,C .1212m n ==,D .2410m n ==,【答案】B 【解析】考点:程序框图、茎叶图.11.已知双曲线x 2a 2 − y2b 2=1(a>0,b>0),过其右焦点且垂直于实轴的直线与双曲线交于N M ,两点,O 是坐标原点,若ON OM ⊥,则双曲线的离心率为( )A .132+ B .132-+ C .251+ D .152-+ 【答案】C 【解析】考点:双曲线的图象与性质.12.已知奇函数()f x 定义域为()()(),00,,'f x -∞+∞U 为其导函数, 且满足以下条件①0x >时, ()()3'f x f x x <;②()112f =;③()()22f x f x =,则不等式()224f x x x <的解集为( ) A .11,44⎛⎫-⎪⎝⎭ B .11,,44⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭UC .11,00,44⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭U D .φ 【答案】B 【解析】试题分析:不妨设()()102f x x x =≠,满足题目给的三个条件,故221122,416xx x x <>解得11,44x x <->.考点:函数导数与不等式.。

2018届高考数学小题精练+B卷及解析:专题(03)复数及解析 含答案

2018届高考数学小题精练+B卷及解析:专题(03)复数及解析 含答案

2018高考数学小题精练+B 卷及解析:专题(03)复数及解析专题(03)复数1.已知复数满足(为虚数单位),则复数的模为( )A .B . 2C . 4D . 8【答案】C【解析】复数满足(为虚数单位),,,,故选C . 2.已知复数,则下列命题中正确的个数为( ) ①;②;③的虚部为;④在复平面上对应点在第一象限.A . 1B . 2C . 3D . 4【答案】C3.若i 是虚数单位,则复数z=2i i+的虚部为 ( ) A . 15- B . 25- C . 15 D . 25 【答案】D【解析】复数z= ()()()21212222555i i i i i i i i -+===+++-. 虚部为25. 故选D .4.设a ∈R ,若复数z=3a i i -+ (i 是虚数单位)的实部为12 ,则a 的值为( ) A . 43 B . 53C . -2D . 2 【答案】D 【解析】a ∈R ,复数z =3a i i -+=()()()()333a i i i i --+-=3110a -+310a --i 的实部为12,∴3110a -=12,解得a =2.故选:D .5.若21ai b i i+=++,则复数a bi +在复平面内表示的点所在的象限为( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限【答案】A6.若复数11ai z i -=- (a R ∈)的虚部为2,则z = ( ) A . 5 B . 10 C . 23 D . 13【答案】A 【解析】()()()()()111111112ai i a a i ai z i i i -+++--===--+,结合已知得1=23122a a z i -⇒=-⇒=-+ 5z ⇒=A .7.若复数2b i i ++的实部与虚部相等,则实数b 等于( ) A . 3 B . C . 13 D . 12- 【答案】C【解析】()()()()221222255b i i b i b b i i i i +-++-==+++-,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C . 8.已知,a b R ∈,是虚数单位,若a i -与2bi +互为共轭复数,则()2=a bi + ( )A . 34i -B . 5+4iC . 3+4iD . 54i -【答案】C【解析】2,1,a b ==则()2=a bi + ()2234i i +=+.故选C .9.在复平面内,复数为虚数单位)对应的点在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】B【解析】复数,复数为虚数单位)对应的点在第二象限,故选B .10.设复数2z i =+,则复数()1z z ⋅-的共轭复数为( )A .13i --B .13i -+C . 13i +D . 13i - 【答案】B考点:复数概念及运算.11.复数21z i=+(是虚数单位)的共轭复数在复数平面内对应的点是( ) A .(1,1)B .(1,1)-C .(1,1)-D .(1,1)-- 【答案】A【解析】 试题分析:1,1z i z i =-=+,对应点()1,1.考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.12.已知为虚数单位,复数2,1z z i =+与z 共轭, 则zz =( ) A . B .2 C .12D .0【答案】B【解析】 试题分析:21,11z i z i i==-=++,2zz =. 考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.专题03 复数1.复数21i i=+( ) A . 1i - B . 1i -- C . 1i + D . 1i -+【答案】C2.若复数11ai z i-=- (a R ∈)的虚部为2,则z = ( ) A .5 B .10 C . 23 D .13【答案】A【解析】()()()()()111111112ai i a a i ai z i i i -+++--===--+,结合已知得1=23122a a z i -⇒=-⇒=-+ 5z ⇒=A .3.若复数2b i i++的实部与虚部相等,则实数b 等于( )A . 3B .C . 13D . 12- 【答案】C 【解析】()()()()221222255b i i b i b b i i i i +-++-==+++-,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C . 4.若复数满足,则( ) A . B . C .D . 【答案】C【解析】 ,选C .5.己知()2,a i b i a b R i+=+∈.其中i 为虚数单位,则a b -=( ) A .-1 B . 1 C . 2 D . -3【答案】D【解析】()2222a i i a i ai b i i i ++==-=+,所以213b a a b ==--=-,,,故选D 6.设复数z 满足z (1-2i )=2+i (其中i 为虚数单位)则的模为( )A . 1B .C .D . 3【答案】A7.已知()211i i z -=+(为虚数单位),则复数z =( ) A . 1i + B . 1i -- C . 1i -+ D . 1i -【答案】B【解析】试题分析:,故选B .考点:复数8.复数i i 212-+的共轭复数是( ) A .i 53- B .i 53C .i -D .【答案】C【解析】考点:1.共轭复数的概念;2.复数的运算.9.设是虚数单位,z 表示复数z 的共轭复数.若12z i =-,则复数z i z +⋅在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】试题分析:因为=12(12)1221z i z i i i i i i +⋅-++=--+=--,故其对应点在第四象限,故选D .考点:复数的运算.10.已知是虚数单位,若复数22ai z i+=+在复平面内对应的点在第四象限,则实数a 的值可以是( )A .-2B .1C . 2D .3【答案】A考点:复数的概念,复平面.11.已知复数z 满足()1i 2i z -=+,则复数z =_______.【答案】13+22i 【解析】()1i 2i z -=+Q , ()()2i 1i 2i 13i 13,i 1i 2222z z ++++∴===∴=+-,故答案为13i 22+. 12.设复数z 满足11z i z +=-,则z =__________. 【答案】【解析】11z i z +=-, ()1z i 1z +=-n ,即1i z i 1i-+==+,所以1z =,故答案为:1 点睛:复数代数形式运算问题的常见类型及解题策略:(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位的看作一类同类项,不含的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.(3)利用复数相等求参数:(),,,,R a bi c di a c b d a b c d +=+⇔==∈.。

2018届高考数学小题精练+B卷及解析:专题(01)集合及解析 含答案

2018届高考数学小题精练+B卷及解析:专题(01)集合及解析 含答案

2018高考数学小题精练+B 卷及解析:专题(01)集合及解析专题(01)集合 1.已知集合,集合,集合,则集合的子集的个数为( )A . 1B . 2C . 3D . 4 【答案】D2.已知集合A={1,2,3,4},B={y|y=3x ﹣2,x ∈A},则A ∩B=( ) A . {1} B . {4} C . {1,3} D . {1,4} 【答案】D【解析】B={1,4,7,10},A∩B={1,4},故选D .3.若集合{}{}1,2,4,8,|25x A B x ==<,则A B ⋂=( ) A . {}1 B . {}2 C . {}1,2 D . {}1,2,3 【答案】C【解析】{}|25x B x =< (){}2,log 51,2A B =-∞∴⋂=,选B . 4.集合A={-1,0,1},A 的子集中含有元素0的子集共有( ) A . 2个 B . 4个 C . 6个 D . 8个 【答案】B【解析】含有元素0的子集有{0},{0,-1},{0,1},{0,-1,1},共4个. 故选B .5.已知集合A={x│x -1>0},B={y│y 2-2y -3≤0},则A∩B=( ) A . (1,3) B . [1,3) C . [1,3] D . (1,3] 【答案】D【解析】{}{}{}2|20|2|230{|13}A x x x x B y y y y y =+>=>-=≤=-≤≤,--,所以A∩B= [1,3]. 故选D .6.已知集合A={﹣2,0,2},B={x|x 2﹣x ﹣2=0},则A∩B=( ) A . ∅ B . {0} C . {2} D . {﹣2} 【答案】C点睛:在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍 7.集合A={x|﹣1≤x≤2},B={x|x <1},则A∩(C R B )=( ) A . {x|x >1} B . {x|x≥1} C . {x|1<x≤2} D . {x|1≤x≤2} 【答案】D【解析】由{|12}{|1}A x x B x x =≤≤=<﹣,得:{}| 1 R C B x x =≥,则{}|1 2 R A C B x x ⋂=≤≤(),故选D .8.已知全集{|08}U x Z x =∈<≤,集合{|2}(28)A x Z x m m =∈<<<<,若U C A 的元素的个数为4,则m 的取值范围为( )A . (]6,7B . [)6,7C . []6,7D . ()6,7 【答案】A【解析】若U C A 的元素的个数为4,则{}1,2,7,8,67.U C A m =∴<≤ 本题选择A 选项.9.设全集R U =,集合{}02A x x =<≤, {}1B x x =<,则集合A B ⋃=( ) A . ()2,+∞ B . [)2,+∞ C . (],2-∞ D . (],1-∞ 【答案】C【解析】∵集合{}02A x x =<≤, {}1B x x =<, ∴A B ⋃= (],2-∞点睛:本题是道易错题,看清所问问题求并集而不是交集.10.若函数)32(log 22--=x x y 的定义域,值域分别是M 、N ,则=N M C R I )(( ) A .]3,1[- B .)3,1(-C .]3,0(D .),3[+∞【答案】A考点:一元二次不等式,集合交并补.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系.注意区间端点的取舍.11.设全集U 是实数集R ,2{4}M x x =>,{13}N x x =<≤,则图中阴影部分所表示的集合是( ) A .{21}x x -≤<B .{22}x x -≤≤C .{12}x x <≤D .{2}x x <【答案】C考点:集合的运算.12.已知集合{}|5A x N x =∈<,则下列关系式错误的是( ) A .5A ∈ B .1.5A ∉C .1A -∉D .0A ∈【答案】A考点:集合与元素的关系.专题(1)集合1.已知集合(){}{}|lg 1,2,1,0,1A x y x B ==+=--,则()R C A B ⋂=( ) A . {}2,1-- B . []2- C . []1,0,1- D . []0,1 【答案】A2.设集合2{|42},{|4}M x x N x x =∈-=<<<Z ,则M N ⋂等于( ) A . ()1,1- B . ()1,2- C . {}1,1,2- D . {}1,0,1- 【答案】D 【解析】{}{}{}{}{}2|423,2,1,0,1,,|4|221,0,1M x x N x x x x =∈-=---==-<<=-<<<Z .故选D .3.设是全集,集合都是其子集,则下图中的阴影部分表示的集合为( )A .B .C .D .【答案】B【解析】观察图形得:图中的阴影部分表示的集合为,故选:B .4.已知全集,,,则=( )A .B .C .D .【答案】A 【解析】由题意得,,所以,故选A . 5.已知,,则的真子集个数为( )A . 2B . 3C . 7D . 8 【答案】B【解析】∵A={x|x 2-3x-4≤0,x∈Z}={x|-1≤x≤4,x∈Z}={-1,0,1,2,3,4},B={x|2x 2-x-6>0,x∈Z}={x|x<,或x>2,x∈Z},∴A∩B={3,4},则A∩B 的真子集个数为22-1=3,故选:B .点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 6.已知集合,则( ) A . B .C .D .【答案】A点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 7.已知集合,,则集合中元素的个数为( )A . 1B . 2C . 3D . 4 【答案】C【解析】由题得,集合,所以.集合中元素的个数为3.故选C .8.已知22{|230},{|3}A x x x B y y x =--≤==+,则A B ⋂=( ) A . 2⎡⎣ B . 2,3 C . 3,3⎤⎦D . 3⎡⎣【答案】C【解析】2230x x --≤,解得13x -≤≤ {}|13A x x ∴=-≤≤,23x + 3≥{}|3B y y ∴=≥ 3,3A B ⎡⎤⋂=⎣⎦,故选C9.设集合{|32}M x Z x =∈-<<,{|13}N x Z x =∈-≤≤,则M N I 等于( ) A .{0,1} B .{-1,0,1,2} C .{0,1,2} D .{-1,0,1} 【答案】D【解析】考点:1、集合的表示;2、集合的交集.10.已知集合2{|16}A x x =<,{|}B x x m =<,若A B A =I ,则实数m 的取值范围是( ) A .[4,)-+∞ B .[4,)+∞ C .(,4]-∞- D .(,4]-∞ 【答案】B【解析】考点:1、集合的表示;2、集合的基本运算.11.设集合{}0)2)(1(>-+=x x x A ,集合{}31≤≤=x x B ,则=B A Y ( ) A .]3,1(- B .]1,1(- C .)2,1( D .)3,1(- 【答案】A【解析】试题分析:因为{}{}(1)(2)0|12A x x x x x =+->=-<<, {}13B x x =<≤,所以,=B A Y {}13x x -<≤=(]1,3-,故选A .考点:1、集合的表示方法;2、集合的并集.12.已知集合2{|50},{|6},M x x x N x p x =-≤=<<且{|2},M N x x q ⋂=<≤ 则p q += ( )A . 6B . 7C . 8D . 9【答案】B【解析】Q 集合{}{}2|50|05M x x x x x =-≤=≤≤, {}|6N x p x =<<,且{}|2M N x x q ⋂=<≤, 2,5,257p q p q ∴==∴+=+=,故选B .。

2018年全国三卷理科导数题

2018年全国三卷理科导数题

2018年全国三卷理科导数题分析一、题目背景2018年全国高考理科数学试题中,导数题一直是考生们比较关注的话题。

导数作为微积分的重要内容,涉及到函数的变化率、极值、凹凸性等概念,对学生的数学能力和思维能力有着较高的要求。

本文将对2018年全国三卷理科导数题进行分析,对题目进行解析,帮助学生更好地理解导数的相关知识。

二、题目分析1. 题目一题目描述:设函数$f(x)=x^2e^x$,求$f'(x)$的表达式。

解析:这道题主要考察了函数的导数的计算方法。

根据函数的乘积法则和指数函数的导数公式,可以得出$f'(x)=(2x+x^2)e^x$。

这道题考查了学生对函数导数的基本计算方法的掌握情况。

2. 题目二题目描述:已知函数$y=2x^3-3x^2+12x-5$,求其极值点的横坐标。

解析:这道题是一个关于函数极值的应用题。

首先需要根据导数的定义求出函数的导数$y'=6x^2-6x+12$,然后令$y'=0$,得到极值点的横坐标$x=1$。

通过求导数和极值点的横坐标,学生可以巩固对导数和极值的理解。

3. 题目三题目描述:函数$f(x)=x^3+e^x$在点$x=0$处的切线方程为$y=3x+1$,求$f(x)$在点$x=0$处的函数值和切线斜率。

解析:这道题是一个综合性的导数应用题,需要结合切线方程和函数的导数进行求解。

首先根据切线方程可以得到函数在点$x=0$处的函数值$f(0)=1$,然后根据切线方程$y=3x+1$的斜率可以得到切线斜率$k=3$。

这道题主要考察了学生对导数和切线方程的综合运用能力。

三、题目总结通过对2018年全国三卷理科导数题的分析,我们可以发现这些题目在考查学生对导数的计算、极值、切线方程等知识的掌握情况。

对于学生来说,需要通过大量的练习和题目的分析来加强对导数相关知识的理解和运用能力。

在备战高考的过程中,学生需要注重对基础知识的打牢和综合运用能力的提高,才能在考试中取得更好的成绩。

2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2018年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13B .12C .22D .2234、答案:C解答:知2c =,∴2228a b c =+=,22a =,∴离心率22e =.5.(2018全国新课标Ⅰ理)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .23D .45. 答案:B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NM k =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.6.(2018全国新课标Ⅰ理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .86. 答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c c e a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)464463322b c a bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.3.【答案】31-;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m me m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。

2018高考数学小题精练 B卷及解析综合题(一)及解析 含答案

2018高考数学小题精练 B卷及解析综合题(一)及解析 含答案

高考数学小题精练卷及解析:综合题(一)及解析
综合(一)
.已知集合,则()
....
【答案】
【解析】因为集合,则,故选..已知复数满足,则在复平面内复数对应的点为()
....
【答案】
.已知与之间的一组数据:
若关于的线性回归方程为,则的值为().
.......
【答案】
【解析】
试题分析:回归直线必过点,,
,代入回归直线方程可得,解得:,故选.
考点:回归直线方程
.西北某地根据历年的气象资料显示,春季中一天发生沙尘暴的概率为,连续两天发生沙尘暴的概率为,已知某天发生了沙尘暴,则随后一天发生沙尘暴的概率为()
....
【答案】
【解析】由条件概率得随后一天发生沙尘暴的概率为,选.
.直线与圆相交于、两点.若,则的取值范围是()
....
【答案】
考点:直线与圆的位置关系.
.(文科)已知是等差数列,若,则的值为()
....
【答案】
【解析】
是等差数列,,得,
,故选.
.函数的定义域是()
.(,+∞) .[-) .(-,+∞) .(-)
【答案】。

2018高考数学小题精练:综合题(三)及解析 含答案

2018高考数学小题精练:综合题(三)及解析 含答案

2018高考数学小题精练+B 卷及解析:综合题(三)及解析综合(三)1.已知集合2{|280}M x x x =--≥, {|33}N x x =-≤<,则M N ⋂=( ) A . [)3,3- B . []3,2-- C . []2,2- D . [)2,3 【答案】B【解析】集合{}{}2|280|24,?{|33}M x x x x x x N x x =--≥=≤-≥=-≤<或, 所以{}[]|323,2M N x x ⋂=-≤≤-=--,故选B . 2.已知复数11z i=+,则( ) A .z 的实部为12- B .z 的虚部为12i - C .12z = D .z 的共轭复数为1122i + 【答案】D考点:复数运算及其相关概念3.已知向量()()1,2,,3a m b m =-=-,若a b ⊥ ,则实数m =( )A . 2或3-B . 2-或3C . 35D . 3 【答案】B【解析】由a b ⊥ 得, ()160m m --=- ,解得2m =- 或3m = .故选B . 4.若α、β∈R ,则“αβ≠”是“tan tan αβ≠”成立的( ) A . 充分非必要条件 B . 必要非充分条件 C . 充要条件 D . 既非充分也非必要条件 【答案】D 【解析】因为π5πtantan44=,所以“αβ≠”不是“tan tan αβ≠”成立的充分条件,若π2αβ==,则tan ,tan αβ不存在,所以“若α, ,βαβ∈=R ,则tan tan αβ=”为真命题,即“αβ≠”不是“tan tan αβ≠”成立的必要条件,所以“αβ≠”是“tan tan αβ≠”成立的既非充分也非必要条件;故选D .5.一名工人维护3台独立的游戏机,一天内3台游戏机需要维护的概率分别为0.9、0.8和0.75,则一天内至少有一台游戏机不需要维护的概率为( ) A . 0.995 B . 0.54 C . 0.46 D . 0.005 【答案】C6.将函数y=f(x)的图象上各点的横坐标缩短到原来的一半(纵坐标不变),再将其纵坐标伸长到原来的3倍(横坐标不变)得到的图象对应的函数解析式为( ) A . ()123y f x =B . y=3f(2x)C . 132x y f ⎛⎫= ⎪⎝⎭ D . 32x y f ⎛⎫= ⎪⎝⎭【答案】B【解析】将函数y=f(x)的图象上各点的横坐标缩短到原来的一半(纵坐标不变),所得函数的解析式为:()2y f x =,再将其纵坐标伸长到原来的3倍(横坐标不变)得到的图象对应的函数解析式为()32y f x =.本题选择B 选项.7.若1sin 63x π⎛⎫+= ⎪⎝⎭,则tan 23x π⎛⎫+ ⎪⎝⎭等于( ) A .79 B .79± CD.【答案】D 【解析】试题分析:由1sin 63x π⎛⎫+= ⎪⎝⎭,易得:3226x cos ±=+)(π,所以426x tan ±=+)(π; tan 23x π⎛⎫+ ⎪⎝⎭=+-+=+=)6(tan 1)6tan(2)]6(2[tan 2πππx xx D . 考点:三角恒等变换.8.在锐角中,角所对的边长分别为.向量,且.若面积为,则的周长为( )A . 10B . 20C . 26D . 40 【答案】B 【解析】.故选B .9.已知函数=,若存在使得,则实数的取值范围是( )A .B . (C .D .【答案】C10.已知函数⎩⎨⎧≤-->-+=0,10),1(log 3)(22x x x x x x f 若5)(=a f ,则a 的取值集合为( )A .}5,3,2{-B .}3,2{-C .}5,2{-D .}5,3{【答案】C 【解析】试题分析:()()()()()22422215,33log 24,53log 25f f f -=---+==+==+= ,排除A .B 、D ,()5f a ∴=的集合为{}2,5-,故选C . 考点:1、分段函数的解析式;2、特殊值法解选择题.【方法点睛】本题主要考查抛分段函数的解析式、特殊值法解选择题,属于难题.特殊值法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)求方程、求通项、求前n 项和公式问题等等.11.如图, 在正方体1111ABCD A B C D -中,2AB =, 平面α经过11B D ,直线1AC α ,则平面α截该正方体所得截面的面积为( )A .BC .D【答案】D考点:1、正方体的性质及三角形中位线定理;2、三角形面积公式及线面平行的判定定理. 【方法点晴】本题主要考查正方体的性质及三角形中位线定理、三角形面积公式及线面平行的判定定理.属于难题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可根据几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行;②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题就是利用方法①先证明1AC 平面11EB D 而后求解的.12.已知函数()3221f x ax x =+-有且只有两个零点,则实数a 的取值集合为( )A .{}1,0,1-B .⎧⎪⎨⎪⎩ C .⎧⎪⎨⎪⎩ D .⎧⎪⎨⎪⎩【答案】B考点:函数零点的判定定理.综合(三)1.已知集合2{|40}A x x =-<, {|15}B x x =-<≤,则()R A C B ⋂=( )A . ()2,0-B . ()2,1--C . (]2,1--D . ()2,2- 【答案】C2.已知复数21iz i+=-,其中为虚数单位,则z 的虚部是( ) A .12 B . 32 C . 32i D . 32i - 【答案】B【解析】()()()()212111i i i z i i i +++==--+= 1313222i i +=+∴z 的虚部是32,故选:B3.已知向量()1,2a = ,(),2b x =- ,若a b + 与a b -垂直,则实数x 的值是( )A . 1±B . 1C . -1D . -4 【答案】A【解析】由题设可知()1,0a b x +=+ , ()1,4a b x -=- ,则()()210a b a b x +⋅-=-= ,即1x =±,应选答案A .4.五张卡片上分别写有数字1,2,3,4,5,从这五张卡片中随机抽取2张,则取出的两张卡片上的数字之和为奇数的概率等于( ) A .13 B . 12 C . 25 D . 35【答案】D【解析】取出的两个数一个奇数一个偶数,则两数之和为奇数,结合古典概型公式可得:取出的两张卡片上的数字之和为奇数的概率等于253235p C ⨯==. 本题选择C 选项.5.数列}{n a 满足111,21n n a a a +==+(N n +∈), 那么4a 的值为( ) A . 4 B . 8 C . 15 D . 31 【答案】C考点:数列的递推公式6.已知a 、b>”是“ln ln a b >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分又不必要条件 【答案】B> b 有可能为0,故不能推出ln ln a b >,反过来, ln ln a b >则a b >成立,故为必要不充分条件. 7.已知,,,则的大小关系( )A .B .C .D .【答案】A【解析】由对数函数的性质可得,由指数函数的性质可得,所以,,故选A .8.椭圆的左右顶点分别是A,B ,左右焦点分别是若成等比数列,则此椭圆的离心率为( )A .B .C .D .【答案】D 【解析】设该椭圆的半焦距为c ,由题意可得,|AF 1|=a-c ,|F 1F 2|=2c ,|F 1B|=a+c , ∵成等比数列,∴(2c )2=(a-c )(a+c ),∴,则此椭圆的离心率为本题选择D 选项.点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).9.若M N 、分别是ABC ∆边AB AC 、的中点, MN 与过直线BC 的平面β的位置关系是( )A . //MN βB . MN 与β相交或MN β≠⊂C . //MN β或MN β≠⊂ D . //MN β或MN 与β相交或MN β≠⊂【答案】C10.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2c =, b =,30C = ,则角B 等于( )A .30B .60C .30 或60D .60 或120 【答案】D 【解析】试题分析:因为2c =,b =,30C = ,所以由正弦定理可得:2322132cbsinCsinB =⨯==,因为c b >,可得:B )180,30(︒︒∈,所以︒︒=12060或B .考点:1、正弦定理;2、特殊角的三角函数值. 11.(1tan18)(1tan 27)++的值是( )A B .2D 【答案】C 【解析】试题分析:(1tan18)(1tan 27)++︒∙︒+︒+︒+=27tan 18tan 27tan 18tan 1227tan 18tan )27tan 18tan 1(45tan 1=︒︒+︒∙︒-∙︒+=.考点:两角和的正切公式的应用.12.数列{}n a 满足1a =与11[]{}n n n a a a +=+([]n a 与{}n a 分别表示n a 的整数部分与分数部分),则2014a =( )A .3020+.3020+3018+D .3018【答案】B 【解析】考点:数列项的求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学小题精练+B 卷及解析:专题(12)导数及解析 专题(12)导数1.若函数()()sin xf x ex a =+在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则实数a 的取值范围是( )A . )2,⎡+∞⎣B . ()1,+∞C . ()2,-+∞ D . [)1,+∞【答案】D2.设函数()2xf x e x a =+-(a R ∈),e 为自然对数的底数,若曲线sin y x =上存在点()00,x y ,使得()()00f f y y =,则a 的取值范围是( )A . 11,1e e -⎡⎤-++⎣⎦ B . []1,1e + C . [],1e e + D . []1,e【答案】A【解析】曲线y=sinx 上存在点(x 0,y 0), ∴y 0=sinx 0∈[﹣1,1].函数f (x )=e x+2x ﹣a 在[﹣1,1]上单调递增. 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数f (x )=e x+2x ﹣a=x ,化为a=e x+x . 令g (x )=e x+x (x ∈[﹣1,1]).g′(x )=e x+1>0,∴函数g (x )在x ∈[﹣1,1]单调递增.∴e ﹣1﹣1≤g(x )≤e+1.∴a 的取值范围是11,1e e -⎡⎤-++⎣⎦.故选:A .点睛:本题利用正弦函数的有界性明确y 0∈[﹣1,1],结合函数f (x )=e x+2x ﹣a 在[﹣1,1]上单调递增, ()()00f f y y =等价于f (y 0)=y 0,从而问题转化为a=e x+x 在[﹣1,1]上的值域问题.3.设a R ∈,若函数ln y x a x =+在区间1,e e ⎛⎫ ⎪⎝⎭有极值点,则a 取值范围为( )A . 1,e e ⎛⎫ ⎪⎝⎭B . 1,e e ⎛⎫-- ⎪⎝⎭C . ()1,,e e ⎛⎫-∞⋃+∞ ⎪⎝⎭D . ()1,,e e ⎛⎫-∞-⋃-+∞ ⎪⎝⎭【答案】B4.已知函数既存在极大值又存在极小值,则实数的取值范围是( )A .B .C .D .【答案】B【解析】函数既存在极大值,又存在极小值,,方程有两个不同的实数解,,解得或,实数的取值范围是,故选B .【方法点睛】本题主要考查利用导数研究函数的极值、一元二次方程根与系数的关系及数学的转化与划归思想.属于中档题.转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.解答本题的关键是将极值问题转化为一元二次方程根的问题. 5.函数在区间上单调递增,则实数的取值范围是( )A. B. C. D.【答案】D【解析】在区间上单调递增,在区间上恒成立,则,即在区间上恒成立,而在上单调递增,,故选D.6.若函数在上是增函数,则的取值范围是()A. B. C. D.【答案】Dg′(x)=6x2+2ax=2x(3x+a),当a=0时,g′(x)≥0,g(x)在R上为增函数,则有g()≥0,解得+﹣1≥0,a≥3(舍);当a>0时,g(x)在(0,+∞)上为增函数,则g()≥0,解得+﹣1≥0,a≥3;当a<0时,同理分析可知,满足函数f(x)=x2+ax+在(,+∞)是增函数的a的取值范围是a≥3(舍).故选:D.点睛:求出函数f(x)的导函数,由导函数在(,+∞)大于等于0恒成立解答案7.已知函数有三个不同的零点,,(其中),则的值为()A. B. C. D.【答案】D当x∈(0,1)时,g′(x)<0;当x∈(1,e)时,g′(x)>0;当x∈(e,+∞)时,g′(x)<0.即g(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.∴0<x1<1<x2<e<x3,a==,令μ=,则a=﹣μ,即μ2+(a﹣1)μ+1﹣a=0,μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,对于μ=,μ′=则当0<x<e时,μ′>0;当x>e时,μ′<0.而当x>e时,μ恒大于0.画其简图,不妨设μ1<μ2,则μ1=,μ2===μ3,∴(1﹣)2(1﹣)(1﹣)=(1﹣μ1)2(1﹣μ2)(1﹣μ3)=[(1﹣μ1)(1﹣μ2)]2=[1﹣(1﹣a)+(1﹣a)]2=1.故选:D.点睛:先分离变量得到a=,令g(x)=.求导后得其极值点,求得函数极值,则使g(x)恰有三个零点的实数a的取值范围由g(x)==,再令μ=,转化为关于μ的方程后由根与系数关系得到μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,再结合着μ=的图象可得到(1﹣)2(1﹣)(1﹣)=1.8.已知函数,若对任意的,恒成立,则实数的取值范围是()A. B. C. D.【答案】B⇔恒成立,又在[1,2]上单调递增,∴,∴.则实数的取值范围是.本题选择B 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.9.已知定义域为的奇函数的图像是一条连续不断的曲线,当时,;当时,,且,则关于的不等式的解集为( )A .B .C .D .【答案】A10.点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =+的最小距离为( )A .22B .2C .22D .2 【答案】B 【解析】试题分析:点P 是曲线2ln y x x =-上任意一点,当过点P 到直线2y x =+平行时,点P 到直线2y x =+的距离最小,直线2y x =+的斜率等于,令2ln y x x =-的导数1211y x x x '=-=⇒=或12x =-(舍去),所以曲线2ln y x x =-上和直线2y x =+平行的切线经过的切点坐标(1,1),点(1,1)到直线2y x =+的距离等于2,故选B . 考点:点到直线的距离公式、导数的几何意义.11.设函数(),y f x x R =∈的导函数为'()f x ,且()()f x f x =-,'()()f x f x <,则下列不等式成立的是( )A .12(0)(1)(2)f e f e f -<< B .12(1)(0)(2)e f f e f -<< C .21(2)(1)(0)e f e f f -<< D .21(2)(0)(1)e f f e f -<< 【答案】B 【解析】考点:利用导数研究函数的单调性及其应用.12.设曲线()e x f x x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A .[]1,2-B .()3,+∞C .21,33⎡⎤-⎢⎥⎣⎦D .12,33⎡⎤-⎢⎥⎣⎦【答案】D 【解析】试题分析:由()e x f x x =--,得()e 1xf x '=--,因为11x e +>,所以1(0,1)1xe ∈+,由()32cos g x ax x =+,得()32sin g x a x '=-,又2sin [2,2]x -∈-,所以32sin [23,23]a x a a -∈-++,要使过曲线()e x f x x =--上任意一点的切线1l ,总存在过曲线()32cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则230231a a -+≤⎧⎨+≥⎩,解得1233a -≤≤,故选D . 考点:利用导数研究曲线在某点的切线方程.(12)导数1.已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A . e B . -e C . D . - 【答案】C【解析】设切点为00x y (,),'xy e =, 000000000001x x x ek y kx y e kx e k x k x k e ∴==∴==≠∴=∴=,,=,(,>),,.故选A 【点睛】本题考查了利用导数研究曲线上某点切线方程,解题的关键是准确理解导数的几何意义,运算准确. 2.曲线ln y x =在点1,22ln ⎛⎫-⎪⎝⎭处的切线方程为( ) A . 221y x ln =-- B . 2y x = C . ()21y x =+ D . 22y x =- 【答案】A3.已知函数()()3sin 2f x ax x a R =-∈,且在0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-,则实数a 的值为( ) A .12 B . 1 C . 32D . 2 【答案】B【解析】由已知得f ′(x )=a (sin x +x cos x ),对于任意的x ∈[0,2π],有sin x +x cos x >0,当a =0时,f (x )=−32,不合题意;当a <0时,x ∈[0, 2π],f ′(x )<0,从而f (x )在[0, 2π]单调递减, 又函数在上图象是连续不断的,故函数f (x )在[0, 2π]上的最大值为f (0)=− 32,不合题意;当a >0时,x ∈[0,2π],f ′(x )>0,从而f (x )在[0,2π]单调递增,又函数在上图象是连续不断的,故函数f (x )在[0, 2π]上的最大值为f (2π)=2πa −32=π−32,解得a =1 故选B点睛:本题是利用导函数来研究函数单调性和最值的问题,要进行分类讨论.4.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为 ( )A . 1B .C . D/【答案】D5.设a R ∈,若函数ln y x a x =+在区间1,e e ⎛⎫ ⎪⎝⎭有极值点,则a 取值范围为( )A . 1,e e ⎛⎫ ⎪⎝⎭B . 1,e e ⎛⎫-- ⎪⎝⎭C . ()1,,e e ⎛⎫-∞⋃+∞ ⎪⎝⎭D . ()1,,e e ⎛⎫-∞-⋃-+∞ ⎪⎝⎭【答案】B 【解析】1(0)a y x x '=+>, y '为单调函数,所以函数在区间1,e e ⎛⎫⎪⎝⎭有极值点,即()10f f e e ⎛⎫⎪⎭''< ⎝,代入解得()()211110100a ae a e a a e a e e e ⎛⎫⎛⎫⎛⎫++<⇔+++<⇔++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得a 取值范围为1e a e-<<-,故选B .6.函数 在区间 上单调递增,则实数的取值范围是( )A .B .C .D .【答案】D【解析】在区间上单调递增,在区间上恒成立,则,即在区间上恒成立,而在上单调递增,,故选D .7.已知函数为内的奇函数,且当时,,记,,,则,,间的大小关系是( )A .B .C .D .【答案】D8.设函数,若曲线在点处的切线方程为,则点的坐标为()A.B.C.D.或【答案】D【解析】∵f(x)=x3+ax2,∴f′(x)=3x2+2ax,∵函数在点(x0,f(x0))处的切线方程为x+y=0,∴3x02+2ax0=-1,∵x0+x03+ax02=0,解得x0=±1.当x0=1时,f(x0)=-1,当x0=-1时,f(x0)=1.本题选择D选项.点睛:求曲线的切线方程应首先确定已知点是否为切点是求解的关键,分清过点P的切线与在点P处的切线的差异.9.已知定义在上的可导函数的导函数为,若对于任意实数有,且,则不等式的解集为()A.B.C.D.【答案】B【解析】令,故,由可得,,故函数在上单调递增,又由得,故不等式的解集为,故选B.点睛:本题主要考查导数与函数的单调性关系,奇函数的结论的灵活应用,以及利用条件构造函数,利用函数的单调性解不等式是解决本题的关键,考查学生的解题构造能力和转化思想,属于中档题;根据条件构造函数令,由求导公式和法则求出,根据条件判断出的符号,得到函数的单调性,求出的值,将不等式进行转化后,利用的单调性可求出不等式的解集.10.已知函数()ln tan f x x α=+((0,))2πα∈的导函数为'()f x ,若使得'00()()f x f x =成立的0x满足01x <,则a 的取值范围为( ) A .(0,)4πB .(,)42ππC .(,)64ππD .(0,)3π【答案】B考点:导数的运算.【方法点晴】本题主要考查了导数的运算及其应用,其中解答中涉及导数的运算公式、三角函数方程的求解,利用参数的分类法,结合正切函数的单调性是解答问题的关键,本题的解答中,求出函数的导数,利用参数法,构造函数设()001ln g x x x =-,利用函数的单调性,求解tan 1α>,即可求解α的范围,着重考查了学生分析问题和解答问题的能力,属于中档试题.11.已知定义域为{|0}x x ≠的偶函数()f x ,其导函数为'()f x ,对任意正实数x 满足'()2()xf x f x >-,若2()()g x x f x =,则()(1)g x g x <-不等式的解集是( )A .1(,)2+∞ B .1(,)2-∞C .1(,0)(0,)2-∞D .1(0,)2【答案】C考点:函数的奇偶性与单调性的应用;利用导数研究函数的性质.【方法点晴】本题主要考查了利用导数研究函数的单调性、函数的奇偶性与函数的单调性的应用,本题的解答中根据函数的奇偶性和利用导数判定函数的单调性,得出函数()g x 在(0,)+∞上单调递增,所以()g x 在(,0)-∞上单调递减,列出不等式组是解答的关键,着重考查了学生的推理与运算能力,属于中档试题. 3.已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的取值范围是( ) A .(1,)-+∞ B .(1,0)-C . (2,)-+∞D .(2,0)-【答案】A考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得x 的范围就是递增区间;令()0f x '<,解不等式得x 的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).。

相关文档
最新文档