九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=ax_h2+k的图象和性质第3课时预

合集下载

武城县第四中学九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a

武城县第四中学九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a
B
3.如下图 , 直角∠AOB内的任意一点P到这个角的两边的距离之和为6 , 那么图中四边形的周长为( )
A
A.12 B.18 C.24 D.30
4.(教材P18〞随堂练习”变式)如下图 , 在▱ABCD中 , E , F分别是AB , CD的中点 , 连接AF , CE.连接AC , 当
CA=CB时 , 判断四边形AECF是( )
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
16.(湘潭中考)如图,点 P 为抛物线 y=14 x2 上一动点. (1)若抛物线 y=14 x2 是由抛物线 y=14 (x+2)2-1 通过图象平移得到的, 请写出平移的过程;
4.如图是抛物线 y=a(x+1)2+2 的一部分,
该抛物线在 y 轴右侧部分与 x 轴的交点坐标是(B )
1 A.(2
,0)
B.(1,0) C.(2,0) D.(3,0)
5.(新乡月考)二次函数y=a(x-1)2+k(a>0)中x , y的两组対应值如下表 :
x
-2
1
y
m
n
表中m , n的大小关系为n __<__m.(用〞<”连接)
8.(2019·哈尔滨)将抛物线y=2x2向上平移3个单位长度 , 再向右平移2个单位长度 , 所得到的抛物线为(B ) A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x-2)2-3 D.y=2(x+2)2-3
9.(2019·凉山州)将抛物线y=(,_2_)___.
(2)假设直线l经过y轴上一点N , 且平行于x轴 , 点N的坐标为(0 , -1) , 过点P作PM⊥l于M. ①问题探究 : 如下图① , 在対称轴上是否存在一定点F , 使得PM=PF 恒成立 ?假设存在 , 求出点F的坐标 : 假设不存在 , 请说明理由. ②问题解决 : 如下图② , 假设点Q的坐标为(1 , 5) , 求QP+PF的最小值.

03-第二十二章22.1.3二次函数y=a(x-h)2 k的图象和性质

03-第二十二章22.1.3二次函数y=a(x-h)2 k的图象和性质

确的是 ( )
A.开口向下
B.对称轴是x=-1
C.顶点坐标是(-1,2) D.与x轴没有交点
答案 D ∵y=(x-1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为 (1,2),故A、B、C均不正确.∵抛物线开口向上,顶点(1,2)在第一象限, ∴抛物线与x轴没有交点,故D正确.
22.1.3 二次函数y=a(x-h)2+k的图象和性质
的面积为16,则抛物线l2的函数表达式为
.
图22-1-3-2
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
解析 当y=0时,有 1 (x-2)2-2=0,
2
解得x1=0,x2=4,∴OA=4.
∵S阴影=OA·AB=16,∴AB=4,
∴抛物线l2的函数表达式为y= 1 (x-2)2-2+4= 1 (x-2)2+2.
当x=0时,y有最大值,y最大值=k
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
例1 (2017湖南邵阳模拟)关于二次函数y=-2x2+1的图象,下列说法中,正 确的是 ( ) A.对称轴为直线x=1 B.顶点坐标为(-2,1) C.可以由二次函数y=-2x2的图象向左平移1个单位得到 D.在y轴的左侧,图象上升,在y轴的右侧,图象下降
当x=h时,y有最大值,y最大值=0
22.1.3 二次函数y=a(x-h)2+k的图象和性质
栏目索引
例2 (2017广东潮州潮安期中)二次函数y=3x2+1和y=3(x-1)2,以下说法:
①它们的图象都是开口向上;②它们的图象的对称轴都是y轴,顶点坐标
都是原点(0,0);③当x>0时,它们的函数值y都是随着x的增大而增大;④它

九年级数学上册 第22章 二次函数 22.1 二次函数的图象和性质 22.1.3 第3课时 二次函数

九年级数学上册 第22章 二次函数 22.1 二次函数的图象和性质 22.1.3 第3课时 二次函数

第3课时 二次函数y =a (x -h )2+k 的图象和性质1.二次函数y =(x +2)2-1的图象大致为( )A B C D2.对于二次函数y =-(x -1)2+2的图象与性质,下列说法正确的是( )A .对称轴是直线x =1,最小值是2B .对称轴是直线x =1,最大值是2C .对称轴是直线x =-1,最小值是2D .对称轴是直线x =-1,最大值是23.对于抛物线y =-(x +1)2+3,有下列结论:①抛物线的开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④当x >1时,y 随x 的增大而减小.其中正确结论的个数为( )A .1B .2C .3D .44.将抛物线y =2x 2向右平移3个单位长度,再向下平移5个单位长度,得到的抛物线的解析式为( )A .y =2(x -3)2-5B .y =2(x +3)2+5C .y =2(x -3)2+5D .y =2(x +3)2-55.一个小球被抛出后,距离地面的高度h (m)和飞行时间t (s)满足函数关系式:h =-4(t -1)2+5,则小球距离地面的最大高度是____ m.6.已知抛物线y =34(x -1)2-3. (1)写出抛物线的开口方向、对称轴;(2)函数y 有最大值还是最小值?并求出这个最大(小)值.7.如图22­1­14,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数解析式是( )图22­1­14A .y =12(x -2)2-2 B .y =12(x -2)2+7 C .y =12(x -2)2-5 D .y =12(x -2)2+48.如图22­1­15,已知抛物线y =a (x -1)2-3的图象与y 轴交于点A (0,-2),顶点为B .(1)试确定a 的值,并写出B 点的坐标;(2)若一次函数的图象经过A ,B 两点,试写出一次函数的解析式;(3)试在x 轴上求一点P ,使得△PAB 的周长最小.图22­1­15参考答案【分层作业】1.D 2.B 3.C 4.A 5.5 6.(1)抛物线的开口向上,对称轴为直线x =1. (2)∵a =34>0,∴函数y 有最小值,最小值为-3. 7.D 8.(1)a =1,B (1,-3). (2)y =-x -2. (3)P ⎝ ⎛⎭⎪⎫25,0.。

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)

1-(-3)=4,∴S△PAB=
1 2
×4×2=4.
考查角度二 二次函数与水流问题 14.(课本P36例4改编)某公园有一喷水池,在水池中央有一垂直于地面的喷 水柱,喷水时,水流在各方向沿形状相同的抛物线落下(如图),假设水流喷 出的高度y(m)与水平距离x(m)之间的函数关系式为y=-(x-1)2+2.25. (1)求喷出的水流离地面的最大高度;
解:(1)∵水流喷出的高度y(m)与水平距离x(m)之间 的函数关系式为y=-(x-1)2+2.25,∴喷出的水流 离地面的最大高度为2.25 m.
(2)求喷嘴离地面的高度;
(2)当x=0时,y=-(0-1)2+2.25=1.25,∴喷嘴离地面的高度为1.25 m.
(3)假设把喷水池改成圆形,那么水池半径至少为多少时,才能使喷出的水 流不落在水池外?
(3)当y=0时,0=-(x-1)2+2.25,解得x1=-0.5(舍 去),x2=2.5.∴水池半径至少为2.5 m时,才能使喷出 的水流不落在水池外.
拔尖角度一 根据对称轴的位置与最值的关系求待定字母的值
15.二次函数y=-(x-h)2+1(h为常数),当自变量x的值满足2≤x≤5时,与 其对应的函数值y的最大值为0,那么h的值为( )
y=2x2
易错点 将图象平移与坐标轴平移混淆
10.函数y=2x2的图象是抛物线,假设抛物线不动,把x轴、y轴分别向 上、向右平移2个单位长度,那么在新坐标系下抛物线的解析式是( )
B A.y=2(x-2)2+2 B.y=2(x+2)2-2 C.y=2(x-2)2-2 D.y=2(x+2)2+2
11.二次函数y=-(x-1)2+m(m是常数),当x分别取-1,1,2时,对应的
知识点二 抛物线y=a(x-h)2+k与y=ax2之间的平移关系

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)2+k的图象和性质第

教材分析之前学生已经学过一次函数、反比例函数的图像和性质,以及会建立二次函数的模型和理解二次函数的图像相关概念和性质基础之上进行的。

是前面知识的应用和拓展,又为今后学习二次函数的应用及一元二次方程与二次函数之间的关系作预备。

充分体现了数形结合的思想,因此本课无论在知识上还是培养学生动手能力上都起了很大的作用。

学生已经会了上一节的二次函数图像及性质。

课标要求会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

学情分析可能有些学生对二次函数还不理解,甚至还不会描点法画出函数图像,看图能力差,不能类比一次函数的一些观察图像的方法来学习二次函数的图像。

不能从图中获取相关的信息。

由于放假的原因,学生对上下平移和左右平移的知识有很多淡忘,所以完成本节知识在理解方面会有难点。

教学目标知识目标:让学生经历二次函数y=a(x-h)2+k性质探究的过程,理解函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2的图象的关系能力目标:通过画图象独立去探索交流图象的性质培养分析解决问题的能力。

能说出二次函数y =a(x-h)2+k的图象与二次函数y=ax2的图象的关系。

情意目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

教学重点:会用描点法画出二次函数y=a(x-h)2+k的图象,理解二次函数y=a(x-h)2+k的性质。

能说出顶点坐标。

教学难点:理解二次函数y=a(x-h)2+k的性质,理解二次函数y=a(x-h)2+k的图象与二次函数y=ax2关系。

教学手段导学案教学方法问答法、练习法、讨论法教学过程1、创设情境::(组织方法)复习两个上下平移及左右平移的二次数学图像,对照图像说出开口方向、对称轴、顶点坐标、最值、性质。

详见导学案。

解决哪些教学目标:在学习中体会知识之间的联系,体会知识的发生发展过程和知识体系。

学生可能出现的困难:忘记或混淆上下平移和左右平移。

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)

2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)
解:(1)由题意,得点A,B1的坐标分别为A(1,0), B1(2,1).设抛物线的解析式为y=a(x-1)2,将 B1(2,1)代入,得1=a(2-1)2,解得a=1,∴抛 物线的解析式为y=(x-1)2.
(2)假设(1)中的抛物线与OB交于点C,与y轴交于点D,求点D,C的坐标.
(2)令x=0,则y=(0-1)2=1,∴点D的坐标为(0,1).由
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第2课时 二次函数y=a(x-h)2的图象和性质
知识点一 二次函数y=a(x-h)2的图象和性质 1.在平面直角坐标系中,二次函数y=1 (x-2)2的图象可能是(D )
2
A
B
C
D
2.对于函数y=-2(x-1)2的图象,以下说法不正确的选项D 是( )
15.某抛物线和函数y=2x2的图象形状相同,对称轴平行于y轴,并且顶点
坐标是(-1,0),那么此抛物线的解析式为________
______.
y=2(x+1)2或y=-2(x+1)2
考查角度一 由线段相等求抛物线的解析式
16.如图是二次函数y=1 (x-h)2的图象,其中OA=OC,试求该抛物线的解
A.开口向下
B.对称轴是直线x=1
C.最大值为0
D.顶点坐标是(0,1)
3.以下有关二次函数y=2(x+4)2的性质,描述正确的选项D是( ) A.当x>0时,y随x的增大而减小 B.当x<0时,y随x的增大而增大 C.当x>-4时,y随x的增大而减小 D.当x<-4时,y随x的增大而减小
4.抛物线y=-(x+7)2的开口向____下____,对称轴为直__线__x_=__-__7_,顶点坐标 是_(_-__7_,__0_);当__x_<_-__7__时,y随x的增大而增大;当__x_>_-__7__时,y随x的 增大而减小;当x=_-_7______时,函数y有最_大_____(填“最大〞或“最小〞)值.

2020九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次函数y=a(x-h)2+k的图

2020九年级数学上册 第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.3 二次函数y=a(x-h)2+k的图

22.1.3二次函数y =a(x -h)2+k 的图象与性质(2)——二次函数y =a(x-h)2的图象与性质学习目标:1.会画二次函数y =a (x-h )2的图象;2.掌握二次函数y =a (x-h )2的性质,并要会灵活应用; 一、复习:1.在同一直角坐标系内画出二次函数y = 12 x 2,y = 12 x 2+2,y =12 x 2-2的图象(草图),并回答:(1)三条抛物线的位置关系。

(2)分别说出它们的对称轴、开口方向和顶点坐标。

(3)说出它们所具有的公共性质。

2.(1)在同一直角坐标系中,二次函数y =ax 2+k 与y =ax 2的图象有什么关系? (2)二次函数y =ax 2+k 的图象开口方向、对称轴、 顶点坐标分别是什么?二、探索新知:1.二次函数y =2(x -1)2和y =2(x+1)2的图象与二次函数y =2x 2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?画出二次函数y =2(x -1)2和y =2(x+1)2与二次函数y =2x 2的图象,并加以观察x … -4 -3 -2 -1 0 1 2 3 4 … y =2x 2…… y =2(x -1)2 …… y =2(x+1)2……161284y 2x431-1 -2 -3 -4 0观察图像得:函数y =2(x -1)2和y =2(x+1)2的图象相同点是: ; 不同的是:函数y =2(x -1)2的顶点坐标是 ,对称轴是 ,有最 值是 ;函数y =2(x+1)2的顶点坐标是 ,对称轴是 ,有最 值是 。

把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x -1)2;把抛物线y =2x 2向 平移 个单位就得抛物线y =2(x+1)2。

2.画出二次函数y =-12 (x +1)2,y=-12 (x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.先列表:x… -4 -3 -2 -1 0 1 2 3 4 … y =-12 (x +1)2… … y =-12 (x -1)2……描点并画图.(1)、观察图象,填表:函数开口方向顶点 对称轴 最值增减性(对称轴右侧) 平移y =-12 (x+1)2y =-12(x -1)2三、整理知识点y =ax 2y =ax 2+k y =a (x-h)2a>0a<0a>0a<0a>0a<0开口方向增减性(对称轴左侧)顶点坐标对称轴最值x= 时,y最值=平移对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.四、课堂训练1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.5.抛物线y= -3(x+2)2开口向,对称轴为,顶点坐标为 .6.抛物线y=3(x+0.5)2可以看成由抛物线向平移个单位得到的;7.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,再向上平移2个单位得,到的抛物线的表达式为____________________.8.抛物线y=3(x-3)2可由抛物线y=3x2沿轴向平移个单位得到,也可以由抛物线y=3(x-7)2沿轴向平移个单位得到。

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

第二十二章 22.1.3二次函数y=ax2+k的图象和性质知识点:二次函数y=ax2+k的图象及其性质二次函数y=ax2+k的性质与二次函数y=ax2的性质很多都相同,只是图象顶点坐标及最值有所区别,但也可以由二次函数y=ax2的图象的顶点平移得到二次函数y=a x2+k的图象的顶点的坐标,因而学习二次函数y=ax2+k的性质,可在熟记二次函数y=ax2的性质的基础上类比学习.二次函数图象开口方向顶点坐标对称轴增减性最大(小)值y=ax2+ka>0k>0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=ka>0k<0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=k a<0k>0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k a<0k<0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k 二次函数的解析式中常数项的变化与其图象移动的关系:上加下减.考点1:二次函数y=ax2+k的图象【例1】小明在某次投篮中,球的运动路线是抛物线y=-x2+3.5的一部分(如图),若投中篮框中心,则他与篮底的距离l是( )A.3.5 mB.4 mC.4.5 mD.4.6 m答案:B点拨:由题意令y=3.05,可得3.05=-x2+3.5,解得x=±1.5(负值不符合题意,舍去),所以他与篮底的距离l=1.5+2.5=4(m).考点2:二次函数y=ax2+k的性质【例2】将抛物线y=-3x2向上平移1个单位后,得到的抛物线对应的函数解析式是.答案:y=-3x2+1点拨:由“上加下减”的规律知,该抛物线向上平移1个单位后得到的抛物线对应的函数解析式为y=-3x2+1.感谢您的支持,我们会努力把内容做得更好!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1.3 二次函数
y=a(x-h)²+k的图象和性质
第3课时
一、预习目标及范围:
1.会用描点法画出y=a(x-h)2+k (a ≠0)的图象.
2.掌握二次函数y=a(x-h)2+k (a ≠0)的图象的性质并会应用.
3.理解二次函数y=a(x-h)2+k (a ≠0)与y=ax2 (a ≠0)之间的联系.
4.预习范围:35——37页,并完成课后练习
二、预习要点
1.二次函数y=a(x-h) 2+k的图象的特点是什么?
2.二次函数y=a(x-h) 2+k的图象平移的规律是什么?
三、预习检测
1、若点P与坐标原点O关于抛物线y=x2-4x+1的对称轴对称,则点P的坐标为。

2、二次函数y=-x2-2x+3的顶点坐标为。

3、若二次函数y=2x2经过平移后顶点的坐标为(-2,3),则平移后的解析式为 .
4、说出下列抛物线的开口方向、对称轴及顶点:
(1)y =2( x+3) 2+5; (2)y = -3(x-1) 2-2;
(3)y = 4(x-3) 2+7; (4)y = -5(x+2) 2-6.
我的疑惑
在预习过程中的存在哪些困惑与建议填写在下面,并与同学交流。

___________________________________________________________________________ ___________________________________________________________________________
参考答案
预习要点
1.当a>0,开口向上;当a<0,开口向下.
对称轴是x=h,顶点坐标是(h,k).
2.左右平移:括号内左加右减;
上下平移:括号外上加下减.
预习检测:
1(4,0)
2.(-1,4)
3.y=2x2+8x+11
4.(1)开口方向:向上对称轴直线x=-3 顶点(-3,5)(2)开口方向:向下对称轴直线x=1 顶点(1,-2)(3)开口方向:向上对称轴直线x=3 顶点(3, 7)(4)开口方向:向下对称轴直线x=-2 顶点(-2,-6)。

相关文档
最新文档