北师大版数学八年级下册期中考试试卷5

合集下载

新版北师大版江西省九江市瑞昌市八年级数学下册期中试卷

新版北师大版江西省九江市瑞昌市八年级数学下册期中试卷

江西省九江市瑞昌市八年级(下)期中数学试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y2.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C.D.3.(3分)三角形纸片上有一点P,量得PA=3cm,PB=3cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上4.(3分)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.5.(3分)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.AB垂直平分OP D.∠OBA=∠OAB6.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论:①∠B=∠C=45°;②AE=CF;③△EPF是等腰直角三角形;④四边形AEPF的面积是△ABC面积的一半.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)7.(3分)写出一个解集为x>1的一元一次不等式:.8.(3分)如图,在等腰△ABC中,AB=AC=8,BC=6,AB的垂直平分线MN交AC于点D,则△DBC的周长为.9.(3分)已知关于x的方程2x+4=m﹣x的解不小于﹣3,则m的取值范围是.10.(3分)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为度.11.(3分)将点P(﹣3,4)先向下平移2个单位长度,在向左平移2个单位长度,得到点Q,则点Q的坐标是.12.(3分)等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数可能为.三、解答题(共9小题,满分64分)13.(6分)(1)解不等式:4x+7<5x﹣2.(2)关于x的不等式x﹣a≥﹣3的解集如图所示,求a的值.14.(6分)解不等式组.15.(6分)如图,△ABC和△DCE都是等边三角形,且点C是线段AD的中点,请仅用无刻度直尺完成以下作图:(1)作BC的中点P;(2)过点C作AD的垂线.16.(6分)某市举行主题为“行动起来,对抗雾霾”的植树活动.某街道积极响应,决定对该街道进行绿化改造,欲购进甲、乙两种树共500棵.已知甲种树每棵800元,乙种树每棵1200元.若购买甲种树的金额不能少于购买乙种树的金额,则至少应购进甲种树多少棵?17.(6分)如图,在四边形ABCD中,AD∥BC,且AD=4,△ABC的周长为14,将△ABC 平移到△DEF的位置.(1)指出平移的方向和平移的距离;(2)求四边形ABFD的周长.18.(8分)如图,在△ABC中,∠BAC=106°,MP,NQ分别垂直平分AB,AC.(1)当AB=AC时,∠1的度数为.(2)若AB≠AC,请问(1)中的结论还成立吗?请通过计算说明.19.(8分)如图,在8×5的正方形网格中,每个小正方形的边长都为1,点A在格点(网格线的交点)上,且点A的坐标为(0,4).(1)将线段OA沿x轴的正方向平移4个单位长度,画出平移后的线段CB;(2)取(1)中线段BC的中点D,先画△ABD,再将△ABD绕点A顺时针旋转90°,画出旋转后的△AEG;(3)在x轴上有点F,若将△AFD沿AF折叠刚好与△AFG重合,请直接写出∠DAF的度数.20.(8分)如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是.(2)关于x的不等式mx+n<1的解集是.(3)当x为何值时,y1≤y2?(4)当x为何值时,0<y2<y1?21.(10分)如图,在△ABC中,∠A=90°,∠B=30°,AC=6cm,点D从点A开始以1cm/s 的速度向点C运动,点E从点C开始以2cm/s的速度向点B运动,两点同时运动,同时停止,运动的时间为ts,过点E作EF∥AC交AB于点F.(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?(3)求证:DC=EF.(4)连接CF,当CF平分∠ACB时,直接写出AF与BF之间的数量关系.江西省九江市瑞昌市八年级(下)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)(2014•梅州)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.【点评】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.(3分)(2016•蓬溪县一模)下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是中心对称图形但不是轴对称图形,故正确;B、是中心对称图形,是轴对称图形,故错误;C、不是中心对称图形,是轴对称图形,故错误;D、不是中心对称图形,不是轴对称图形,故错误.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2016春•瑞昌市期中)三角形纸片上有一点P,量得PA=3cm,PB=3cm,则点P 一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上【分析】已知条件知道线段相等,利用线段垂直平分线上的点到线段两端的距离相等的逆定理可知点p一定在边AB的垂直平分线上.【解答】解:∵PA=3cm,PB=3cm∴点p一定在边AB的垂直平分线上.(垂直平分线的性质)故选D.【点评】本题主要考查了线段垂直平分线的性质的逆用;熟练掌握该知识是解答本题的关键.4.(3分)(2014•威海)已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C. D.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.【点评】本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.5.(3分)(2016春•瑞昌市期中)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.AB垂直平分OP D.∠OBA=∠OAB【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“HL”证明△AOP和△BOP全等,根据全等三角形对应角相等可得∠AOP=∠BOP,全等三角形对应边相等可得OA=OB.【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故A选项正确;在△AOP和△BOP中,,∴△AOP≌△BOP(HL),∴∠AOP=∠BOP,OA=OB,故B选项正确;∵OA=OB,∴∠OBA=∠OAB,故选项D正确;由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,故D选项错误;即不一定成立的是选项C,故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质并求出两三角形全等是解题的关键.6.(3分)(2016春•瑞昌市期中)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF 的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论:①∠B=∠C=45°;②AE=CF;③△EPF是等腰直角三角形;④四边形AEPF 的面积是△ABC面积的一半.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据等腰三角形的性质求出∠B=∠C,即可判断①;根据等腰直角三角形求出AP ⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C,求出∠FPC=∠EPA,根据ASA推出△APE≌△CPF,推出AE=CF,PE=PF,S△APE=S△CPF,再逐个判断即可.【解答】解:∵△ABC中,AB=AC,∠BAC=90°,∴∠B=∠C=(180°﹣90°)=45°,∴①正确;:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,∴②正确;PE=PF,∵∠EPF=90°,∴△EPF是等腰直角三角形,∴③正确;∵△APE≌△CPF,∴S△APE=S△CPF,∵BP=CP,∴S△APC=S△ABC,∴四边形AEPF的面积是S=S△APE+S△APF=S△CPF+S△APF=S△APC=S△ABC,∴④正确;即正确的有4个.故选D.【点评】本题考查了全等三角形的性质和判定,直角三角形的性质,等腰三角形的性质的应用,能求出△APE≌△CPF是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)7.(3分)(2015•衢州)写出一个解集为x>1的一元一次不等式:x﹣1>0.【分析】根据一元一次不等式的求解逆用,把1进行移项就可以得到一个;也可以对原不等式进行其它变形,所以答案不唯一.【解答】解:移项,得x﹣1>0(答案不唯一).故答案为x﹣1>0.【点评】本题考查不等式的求解的逆用;写出的不等式只需符合条件,越简单越好.8.(3分)(2016春•瑞昌市期中)如图,在等腰△ABC中,AB=AC=8,BC=6,AB的垂直平分线MN交AC于点D,则△DBC的周长为14.【分析】根据线段的垂直平分线的性质得到DB=DA,根据三角形周长公式计算即可.【解答】解:∵MN是AB的垂直平分线,∴DB=DA,∴△DBC的周长=DB+CD+BC=DA+CD+BC=AC+BC=6+8=14,故答案为:14.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.(3分)(2016春•瑞昌市期中)已知关于x的方程2x+4=m﹣x的解不小于﹣3,则m的取值范围是m≥﹣5.【分析】根据解方程,可得x的值,根据方程的解不小于﹣3,可得不等式,根据解不等式,可得答案.【解答】解:由2x+4=m﹣x,解得x=,由关于x的方程2x+4=m﹣x的解不小于﹣3,得≥﹣3.解得m≥﹣5,故答案为:m≥﹣5.【点评】本题考查了一元一次方程的解,利用方程的解不小于﹣3得出不等式是解题关键.10.(3分)(2007•江苏)用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为22度.【分析】由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.【解答】解:由平移的性质知,AO∥SM,故∠WMS=∠OWM=22°;故答案为:22.【点评】本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(3分)(2016春•瑞昌市期中)将点P(﹣3,4)先向下平移2个单位长度,在向左平移2个单位长度,得到点Q,则点Q的坐标是(﹣5,2).【分析】根据平移规律:向下平移纵坐标减,向左平移横坐标减求解.【解答】解:∵点P(﹣3,4)先向下平移2个单位长度,在向左平移2个单位长度得到点Q,∴点Q的横坐标为﹣3﹣2=﹣5,纵坐标为4﹣2=2,∴点Q的坐标为(﹣5,2).故答案为:(﹣5,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12.(3分)(2015秋•济南校级期末)等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数可能为50°或130°.【分析】等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,另外两种情况可以根据垂直的性质及外角的性质求出顶角的度数.【解答】解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,进行分类讨论是正确解答本题的关键,难度适中.三、解答题(共9小题,满分64分)13.(6分)(2016春•瑞昌市期中)(1)解不等式:4x+7<5x﹣2.(2)关于x的不等式x﹣a≥﹣3的解集如图所示,求a的值.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先用a表示出不等式的解集,再根据数轴上不等式的解集求出a的值即可,【解答】解:(1)移项得,4x﹣5x<﹣2﹣7,合并同类项得,﹣x<﹣9,把x的系数化为1得,x>9;(2)解不等式x﹣a≥﹣3得,x≥﹣3+a.由数轴上不等式的解集可知,x≥﹣1,故﹣3+a=﹣1,解得a=2.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.14.(6分)(2010•宁夏)解不等式组.【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.(12分)由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4(4分)∴原不等式组的解集为:1≤x<4.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x同时<某一个数,那么解集为x<较小的那个数.15.(6分)(2016春•瑞昌市期中)如图,△ABC和△DCE都是等边三角形,且点C是线段AD的中点,请仅用无刻度直尺完成以下作图:(1)作BC的中点P;(2)过点C作AD的垂线.【分析】(1)直接利用等腰三角形的性质,得出BC的中点;(2)连接BD,AE,进而得出其交点,进而得出答案.【解答】解:(1)如图1所示:点P即为所求;;(2)如图2所示:CQ即为所求.【点评】此题主要考查了基本作图,正确掌握等边三角形的性质是解题关键.16.(6分)(2016春•瑞昌市期中)某市举行主题为“行动起来,对抗雾霾”的植树活动.某街道积极响应,决定对该街道进行绿化改造,欲购进甲、乙两种树共500棵.已知甲种树每棵800元,乙种树每棵1200元.若购买甲种树的金额不能少于购买乙种树的金额,则至少应购进甲种树多少棵?【分析】首先设应购买甲树x棵,则购买乙种树(500﹣x)棵,由题意得不等关系:购买甲树的金额≥购买乙树的金额,再列出不等式,求解即可.【解答】解:设购进甲种树x棵,则购进乙种树(500﹣x)棵,根据题意,得:800x≥1200(500﹣x),解得:x≥300,答:至少应购进甲种树300棵.【点评】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式求解.17.(6分)(2016春•瑞昌市期中)如图,在四边形ABCD中,AD∥BC,且AD=4,△ABC 的周长为14,将△ABC平移到△DEF的位置.(1)指出平移的方向和平移的距离;(2)求四边形ABFD的周长.【分析】(1)找到一对对应点,那么从△ABC的对应点到△DEF对应点即为平移的方向,对应点的连线即为平移的距离;(2)根据平移的性质易得AD=CF=4,C梯形ABFD=AB+BF+DF+AD=AB+BC+CF+AC+AD=C△ABC+CF+AD,代入各值即可求出.【解答】解:(1)平移的方向是沿AD(或者是沿BC)方向,平移的距离是4;(2)根据平移的性质:AD=CF=4,∵△ABC≌△DEF,∴AC=DF,∵C△ABC=AB+BC+AC=14,∴C梯形ABFD=AB+BF+DF+AD=AB+BC+CF+AC+AD=C△ABC+CF+AD=14+4+4=22.【点评】本题考查平移的知识,用到的知识点为:图形平移前后对应线段平行且相等;对应点的连线为两个图形平移的距离.18.(8分)(2016春•瑞昌市期中)如图,在△ABC中,∠BAC=106°,MP,NQ分别垂直平分AB,AC.(1)当AB=AC时,∠1的度数为32°.(2)若AB≠AC,请问(1)中的结论还成立吗?请通过计算说明.【分析】(1)根据三角形内角和等于180°求出∠ABP+∠ACQ=74°,再根据线段垂直平分线的性质∠PAB=∠ABP,∠QAC=∠ACQ,所以∠PAB+∠QAC=74°,便不难求出∠1的度数为32°;(2)根据三角形内角和等于180°求出∠ABP+∠ACQ=74°,再根据线段垂直平分线的性质∠PAB=∠ABP,∠QAC=∠ACQ,所以∠PAB+∠QAC=74°,便不难求出∠1的度数为32°.【解答】解:(1)∵∠BAC=106°,∴∠ABP+∠ACQ=180°﹣105°=74°,∵MP、NQ分别垂直平分AB和AC,∴PB=PA,QC=QA.∴∠PAB=∠ABP,∠QAC=∠ACQ,∴∠PAB+∠QAC=∠ABP+∠ACQ=74°,∴∠1=106°﹣74°=32°;故答案为:32°;(2)成立,理由:∵∠BAC=106°,∴∠ABP+∠ACQ=180°﹣105°=74°,∵MP、NQ分别垂直平分AB和AC,∴PB=PA,QC=QA.∴∠PAB=∠ABP,∠QAC=∠ACQ,∴∠PAB+∠QAC=∠ABP+∠ACQ=74°,∴∠1=106°﹣74°=32°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握转化思想与数形结合思想的应用.19.(8分)(2016春•瑞昌市期中)如图,在8×5的正方形网格中,每个小正方形的边长都为1,点A在格点(网格线的交点)上,且点A的坐标为(0,4).(1)将线段OA沿x轴的正方向平移4个单位长度,画出平移后的线段CB;(2)取(1)中线段BC的中点D,先画△ABD,再将△ABD绕点A顺时针旋转90°,画出旋转后的△AEG;(3)在x轴上有点F,若将△AFD沿AF折叠刚好与△AFG重合,请直接写出∠DAF的度数.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用翻折变换的性质得出△AFD沿AF折叠刚好与△AFG重合时,其∠DAF=∠GAF,进而得出答案.【解答】解:(1)如图所示:线段CB即为所求;(2)如图所示:△AEG即为所求;(3)∵将△AFD沿AF折叠刚好与△AFG重合,∴∠DAF的度数为45°.【点评】此题主要考查了旋转变换和平移变换,正确得出对应点位置是解题关键.20.(8分)(2016春•瑞昌市期中)如图,根据图中信息解答下列问题:(1)关于x的不等式ax+b>0的解集是x<4.(2)关于x的不等式mx+n<1的解集是x<0.(3)当x为何值时,y1≤y2?(4)当x为何值时,0<y2<y1?【分析】(1)利用直线y=ax+b与x轴的交点为(4,0),然后利用函数图象可得到不等式kx+b>0的解集.(2)利用直线y=mx+n与x轴的交点为(0,1),然后利用函数图象可得到不等式mx+n<1的解集.(3)结合两条直线的交点坐标为(2,18)来求得y1≤y2解集.(4)结合函数图象直接写出答案.【解答】解:(1)∵直线y2=ax+b与x轴的交点是(4,0),∴当x<4时,y2>0,即不等式ax+b>0的解集是x<4;故答案是:x<4;(2)∵直线y1=mx+n与y轴的交点是(0,1),∴当x<0时,y1<1,即不等式mx+n<1的解集是x<0;.故答案是:x<0;(3)由一次函数的图象知,两条直线的交点坐标是(2,18),当函数y1的图象在y2的下面时,有x≤2,所以当x≤2时,y1≤y2;(4)如图所示,当2<x<4时,0<y2<y1.【点评】本题考查了一次函数与一元一次不等式,解答该类题目时,需要学生具备一定的读图能力,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.21.(10分)(2016春•瑞昌市期中)如图,在△ABC中,∠A=90°,∠B=30°,AC=6cm,点D从点A开始以1cm/s的速度向点C运动,点E从点C开始以2cm/s的速度向点B运动,两点同时运动,同时停止,运动的时间为ts,过点E作EF∥AC交AB于点F.(1)当t为何值时,△DEC为等边三角形?(2)当t为何值时,△DEC为直角三角形?(3)求证:DC=EF.(4)连接CF,当CF平分∠ACB时,直接写出AF与BF之间的数量关系.【分析】(1)根据等边三角形的性质得到EC=DC,列方程得到t=2,(2)根据直角三角形的性质得到CE=DC,列方程得到2t=(6﹣t),根据直角三角形的性质列方程得到结论;(3)根据直角三角形的性质得到BC=12cm,于是得到DC=(6﹣t)cm,BE=(12﹣2T)cm,根据平行线的性质得到∠A=∠BFE=90°,由直角三角形的性质得到EF=BE=(12﹣2t)=(6﹣t)cm,即可得到结论;(4)根据三角形的内角和得到∠ACB=60°,根据角平分线的定义得到∠ACF=∠BCF=30°,根据等腰三角形的判定得到BF=CF,等量代换即可得到结论.【解答】解:由题意得AD=tcm,CE=2tcm,(1)若△DEC为等边三角形,则EC=DC,∴2t=6﹣t,解得t=2,∴当t为2时,△DEC为等边三角形;(2)若△DEC为直角三角形,当∠CED=90°,∴CE=DC,∴2t=(6﹣t),解得:t=1.2,当∠CDE=90°时,∴CE=DC,∴=6﹣t,∴t=3,∴t为1.2或3时,△DEC为直角三角形;(3)∵∠A=90°,∠B=30°,AC=6cm,∴BC=12cm,∴DC=(6﹣t)cm,BE=(12﹣2T)cm,∵EF∥AC,∴∠A=∠BFE=90°,∵∠B=30°,∴EF=BE=(12﹣2t)=(6﹣t)cm,∴EF=CD,(4)∵∠A=90°,∠B=30°,∴∠ACB=60°,∵CF平分∠ACB,∴∠ACF=∠BCF=30°,∴∠B=∠BCF,AF=CF,∴BF=CF,∴BF=2AF.【点评】本题考查了等边三角形的性质,直角三角形的性质,角平分线的定义,等腰三角形的判定和性质,平行线的性质,正确的识别图形是解题的关键.。

最新北师大版八年级数学下册期中考试试卷(含答案)

最新北师大版八年级数学下册期中考试试卷(含答案)

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m22.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.3.以下列线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=40,c=41B. a=b=5,c=5√2C. a:b:c=3:4:5D. a=11,b=12,c=154.如图,在△ABC中,AB=AC,AD是△ABC的角平分线.若AB=13,AD=12,则BC的长为()A. 5B. 10C. 20D. 245.如图,DA⊥AC,DE⊥BC.若AD=5cm,DE=5cm,∠ACD=30°,则∠DCE=()A. 30°B. 40°C. 50°D. 60°6.不等式组{x−1>0,5−x≥1的整数解共有()A. 1个B. 2个C. 3个D. 4个7.下列说法不一定成立的是()A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b8.下列图形既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 圆9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°10.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组11.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −312.如图所示的仪器中,OD=OE,CD=CE.小州把这个仪器往直线l上一放,使点D,E落在直线l上,作直线OC,则OC⊥l,他这样判断的理由是()A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等13.如图,在平面直角坐标系中,△OAB为等边三角形,AB⊥x轴,AB=4√3,点C的坐标为(2,0).P为OB边上的一个动点,则PA+PC的最小值为()A. √13B. 2√13C. 4√13D. 1214.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米②乙队先到达终点③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快④乙与甲相遇时乙的速度是375米/分钟⑤在1.8分钟时,乙队追上了甲队A. ①③④B. ①②⑤C. ①②④D. ①②③④⑤15. 如图,在正方形ABCD 中,AB =3,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A. 3B. 2√3C. √13D. √15 卷Ⅱ 二、填空题(本大题共5小题,共25.0分)16. 根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.17. 已知x −y =3,若y <1,则x 的取值范围是 .18. 如图,这是某超市自动扶梯的示意图,大厅两层之间的距离ℎ=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v =0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒.19. 当k 时,代数式23(k −1)的值不小于代数式1−5k−16的值.20. 如图,线段AB 和CD 关于点O 中心对称.若∠B =40°,则∠D 的度数为 .三、解答题(本大题共7小题,共80.0分)21. (8分)(1)解不等式0.2x 0.3−6−7x 3≤1(2) 解不等式组{12x >13x x+43>3x−72−122. (8分)如图,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.23.(10分)如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.24.(12分)如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.25.(12分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?26.(14分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.27.(16分)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)求证:∠OMP=∠OPN;(2)当OP=2时,点M关于点H的对称点为Q,连接QP.①用量角器和直尺以图1中OP的长为2,画出一个尽可能准确的图形。

北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考

北师大版初中数学八年级下册期中试卷(2018-2019学年山东省青岛市市南区东片联考

2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n22.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转次,每次旋转度形成的.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是.12.(3分)已知关于x的不等式组无解,则a的取值范围是.13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为.14.(3分)不等式组有5个整数解,则a的取范围是15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.2018-2019学年山东省青岛市市南区东片联考八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)若m>n,则下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.﹣>﹣D.m2>n2【分析】根据不等式的性质,可得答案.【解答】解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以﹣2,不等号的方向改变,故C不成立;D、当m>n>1时,m2>n2成立,当0<m<1,n<﹣1时,m2<n2,故D不一定成立,故选:D.【点评】本题考查了不等式的性质,利用不等式的性质是解题关键.2.(3分)下列银行标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点B′的坐标为()A.(2,1)B.(1,2)C.(2,﹣1)D.(2,0)【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B′的坐标即可.【解答】解:△A′B′O如图所示,点B′(2,1).故选A.【点评】本题考查了坐标与图形变化,是基础题,熟练掌握网格结构,作出图形是解题的关键.4.(3分)不等式组的解集在数轴上可表示为()A.B.C.D.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选:C.【点评】本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选:C.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.7.(3分)如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于()A.10cm B.8cm C.6cm D.5cm【分析】根据线段垂直平分线的性质得到AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=4cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=4cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=8cm,故选:B.【点评】本题考查了垂直平分线性质,角平分线性质,等腰三角形性质,含30度角的直角三角形性质的应用,关键是求出∠A=30°和得出DE的长.8.(3分)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x>0的解集为()A.x<﹣1B.x>﹣1C.x>0D.﹣1<x<0【分析】利用函数图象,写出在x轴上方,直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:结合图象,当﹣1<x<0时,k1x+b>k2x>0,所以k1x+b>k2x>0的解集为﹣1<x<0.故选:D.【点评】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y =kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.(3分)如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的.【分析】利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案,进而判断出基本图形和旋转次数与角度.【解答】解:如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转7次,每次旋转45度形成的,故答案为:7;45.【点评】本题主要考查利用旋转设计图案,关键是掌握把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.10.(3分)如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(﹣4,2)、(﹣2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是(5,4).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:∵两眼间的距离为2,且平行于x轴,∴右图案中右眼的横坐标为(3+2).则右图案中右眼的坐标是(5,4).故答案为:(5,4).【点评】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(3分)如图,已知一次函数y=kx+b的图象与x轴交于点(3,0),与y轴交于点(0,2),不等式kx+b≥2解集是x≤0.【分析】由一次函数y=kx+b的图象过点(0,2),且y随x的增大而减小,从而得出不等式kx+b≥2的解集.【解答】解:由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(0,2),∴当x≤0时,有kx+b≥2.故答案为x≤0【点评】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.12.(3分)已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)如图,在△ABC中,AB=6,BC=9,∠B=60°,将△ABC沿射线BC的方向平移3个单位后,得到△A'B'C',连接A'C.则△A'B'C的周长为18.【分析】根据平移性质,判定△A′B′C为等边三角形,然后求解.【解答】解:由题意,得BB′=3,∴B′C=BC﹣BB′=6.由平移性质,可知A′B′=AB=6,∠A′B′C=∠B=60°,∴A′B′=B′C且∠A′B′C=60°,∴△A′B′C为等边三角形,∴△A′B′C的周长=3A′B′=18.故答案为:18.【点评】本题考查的是平移的性质,熟知图形平移后新图形与原图形的形状和大小完全相同是解答此题的关键.14.(3分)不等式组有5个整数解,则a的取范围是﹣4<a≤﹣3【分析】首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到a的范围.【解答】解:由不等式x﹣a≥0,得:x≥a,∵不等式组有5个整数解,∴这5个整数解为1、0、﹣1、﹣2、﹣3,则﹣4<a≤﹣3,故答案为:﹣4<a≤﹣3.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.(3分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积为50和39,则△EDF的面积为 5.5.【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【解答】解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∴△DEF≌△DNM(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故答案为:5.5.【点评】本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.16.(3分)在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).【分析】首先根据△OA1B1是边长为2的等边三角形,可得A1的坐标为(1,),B1的坐标为(2,0);然后根据中心对称的性质,分别求出点A2、A3、A4的坐标各是多少;最后总结出A n的坐标的规律,求出A2n+1的坐标是多少即可.【解答】解:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×4﹣1,…,∴A n的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,A n的纵坐标是,当n为偶数时,A n的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故答案为:(4n+1,).【点评】此题主要考查了坐标与图形变化﹣旋转问题,要熟练掌握,解答此题的关键是分别判断出A n的横坐标、纵坐标各是多少.三、作图题(本题满分0分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.已知线段a,求作△ABC,使AB=BC=AC=a.【分析】首先作射线AO,并在AO上取线段AB=a,再分别以A、B为圆心,a为半径画弧,两弧交于点C,然后连接AC、BC,即可得到△ABC.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了复杂作图,关键是掌握做一条线段等于已知线段的方法.四、解答题(共7小题)18.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.【点评】考查不等式(组)的解法;求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.如图所示∠A=∠D=90°,AB=DC,点E,F在BC上且BE=CF.(1)求证:AF=DE.(2)若PO⊥EF,求证:OP平分∠EOF.【分析】(1)由于△ABF与△DCE是直角三角形,根据直角三角形全等的判定和性质即可证明;(2)先根据三角形全等的性质得出∠AFB=∠DEC,再根据等腰三角形的性质得出结论.【解答】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL),∴AF=DE;(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF,∵OP⊥EF,∴OP平分∠EOF.【点评】本题主要考查了直角三角形全等的判定和性质及等腰三角形的性质,解题关键是由BE=CF通过等量代换得到BF=CE.20.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E.DF⊥AC 于点F.求证:AD是BC的垂直平分线.【分析】证明Rt△AED≌Rt△AFD(HL),得出∠ADE=∠ADF,证明Rt△BED≌△Rt △CFD(HL),得出∠BDE=∠CDF,则可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和△RtAFD中,,∴Rt△AED≌Rt△AFD(HL),∴∠ADE=∠ADF,∵点D是BC的中点,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌△Rt△CFD(HL),∴∠BDE=∠CDF,∴∠ADB=∠ADC,即AD⊥BC,∴AD是BC的垂直平分线.【点评】本题考查全等三角形的判定与性质、角平分线的性质、垂直平分线的判定,解答本题的关键是熟练掌握全等三角形的判定与性质.21.如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形,即△A1B1C1和△A2B2C2.(1)请你指出在方格纸内如何运用平移、旋转变换,将△A1B1C1重合到△A2B2C2上;(2)在方格纸中将△A1B1C1经过怎样的变换后可以与△A2B2C2成中心对称图形,画出变换后的三角形并标出对称中心.【分析】(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90°即可得到△A2B2C2;(2)对称中心就是对称点连线的交点,据此即可作出.【解答】解:(1)将△A1B1C1先向上平移4个单位,再向右平移3个单位后绕点C1顺时针旋转90度即可得到△A2B2C2.(2)把△A1B1C1绕点C1逆时针旋转90度即可得到△A2B2C2成中心对称的位置,对称中心为P.【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.某餐厅计划购买12张餐桌和一批椅子(不少于12把),现从甲、乙两商场了解到同一型号的餐桌报价都为每张200元,餐椅报价都为每把50元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌、餐椅均按报价的八五折销售,那么,什么情况下到甲商场购买更优惠.【分析】本题中去甲商场购买所花的费用=餐桌的单价×购买的餐桌的数量+餐椅的单价×实际购买的餐椅的数量(注意要减去赠送的椅子的数量).去乙商场购买所花的费用=(购买的餐桌花的钱+购买餐椅花的钱)×8.5折.如果设餐椅的数量为x,那么可用x 表示出到甲、乙两商场购买所需要费用.然后根据“甲商场购买更优惠”,让甲的费用小于乙的费用,得出不等式求出x的取值范围,然后得出符合条件的值.【解答】解:设学校计划购买x把餐椅,到甲、乙两商场购买所需要费用分别为y甲、y,乙y甲=200×12+50(x﹣12),即:y甲=1800+50x;y乙=(200×12+50x)×85%,即y乙=2040+x;当y甲<y乙时,1800+50x<2040+x,∴x<32,又根据题意可得:x≥12,∴12≤x<32,综上所述,当购买的餐椅大于等于12少于32把时,到甲商场购买更优惠.【点评】本题考查了一元一次方程的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出不等式,求出所要求的值.23.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)75每台日产量(个)10060(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【解答】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6﹣x)台.依题意,得7x+5×(6﹣x)≤34.解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台.(2)根据题意,100x+60(6﹣x)≥380,解之,可得:x≥,由上题解得:x≤2,即≤x≤2,∴x可取1,2两个值,即有以下两种购买方案:方案一购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;方案二购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择方案一.故应选择方案一.【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案是解决本题的关键.24.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和P A+PB+PC的值为最小?问题的转化:把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,这样就把确定P A+PB+PC 的最小值的问题转化成确定BP+PP′+P′C′的最小值的问题了,请你利用图1证明:P A+PB+PC=BP+PP′+P′C′.问题的解决:当点P到锐角△ABC的三顶点的距离之和P A+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置∠APB=∠APC=120°.问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.【分析】(1)问题的转化:根据旋转的性质证明△APP'是等边三角形,则PP'=P A,可得结论;(2)问题的解决:运用类比的思想,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,确定当:∠APB=∠APC=120°时,满足三点共线;(3)问题的延伸:如图3,作辅助线,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:∠P AP'=60°,P A=P'A,∴△APP'是等边三角形,∴PP'=P A,∵PC=P'C,∴P A+PB+PC=BP+PP′+P′C′.问题的解决:满足:∠APB=∠APC=120°时,P A+PB+PC的值为最小;理由是:如图2,把△APC绕点A逆时针旋转60度得到△AP′C′,连接PP′,由“问题的转化”可知:当B、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,∵∠APB=120°,∠APP'=60°,∴∠APB+∠APP'=180°,∴B、P、P'在同一直线上,由旋转得:∠AP'C'=∠APC=120°,∵∠AP'P=60°,∴∠AP'C'+∠AP'P=180°,∴P、P'、C'在同一直线上,∴B、P、P'、C'在同一直线上,∴此时P A+PB+PC的值为最小,故答案为:∠APB=∠APC=120°;问题的延伸:如图3,Rt△ACB中,∵AB=2,∠ABC=30°,∴AC=1,BC=,把△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,P A+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:AC'===,∴P A+PB+PC=P A+PP'+P'C'=AC'=,则点P到这个三角形各顶点的距离之和的最小值为.【点评】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键.。

2020-2021学年第二学期北师大版数学八年级期中检测题及答案解析

2020-2021学年第二学期北师大版数学八年级期中检测题及答案解析

北师大版数学八年级下册期中检测题姓名: 得分:一、选择题1.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:52.式子:①2>0;②4x +y ≤1;③x +3=0;④y ﹣7;⑤m ﹣2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个3.下列不等式变形正确的是( )A .由a >b ,得ac >bcB .由a >b ,得a ﹣2<b ﹣2C .由﹣>﹣1,得﹣>﹣aD .由a >b ,得c ﹣a <c ﹣b4.不等式组的解集在数轴上表示为( )A .B .C .D .5.不等式﹣2x >的解集是( )A .x <﹣B .x <﹣1C .x >﹣D .x >﹣16.如图,△ABC 的面积为12,将△ABC 沿BC 方向移到△A′B′C′的位置,使B′与C 重合,连接AC′交A′C 于D ,则△C′DC 的面积为( )A.10 B.8 C.6 D.47.下列条件能判定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.AB=5,AC=12,BC=13C.∠A=50°,∠B=80°D.∠A:∠B:∠C=3:4:58.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.49.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E.若CE=2,则AB的长是()A.4 B.4C.8 D.810.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b11.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.12.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2二、填空题13.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.14.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为.15.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.16.因式分解多项式2a2b3+6ab2,应提取的公因式是.三、解答题17.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.18.已知:如图所示,Rt△ABC中,∠C=90°,∠A、∠B的平分线AD、BE交于F,求∠AFB的度数.19.如图,在△ABC中,边AB的垂直平分线交BC,AB于点E,M,边AC的垂直平分线交BC,AC于点F,N,△AEF的周长是10.(1)求BC的长度;(2)若∠B+∠C=45°,EF=4,求△AEF的面积.20.将下列不等式化成“x>a”或“x<a”的形式:(1)x﹣17<﹣5;(2)>﹣3.21.某班50名学生上体育课,老师出了一道题:现在我拿出一些篮球,如果每5名同学打一个篮球,有些同学就会没有球打;如果每6名同学打一个篮球,其中有一个篮球打的人数就会不足6人.请写出篮球数x与人数的不等关系.22.因式分解:(1)xy(x﹣y)﹣x(x﹣y)2(2)(a2+b2)2﹣4a2b2.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.答案与解析1.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【考点】KF :角平分线的性质.【专题】选择题【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C . 故选C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.2.式子:①2>0;②4x +y ≤1;③x +3=0;④y ﹣7;⑤m ﹣2.5>3.其中不等式有( )A .1个B .2个C .3个D .4个【考点】C1:不等式的定义.【专题】选择题【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.3.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得a﹣2<b﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b【考点】C2:不等式的性质.【专题】选择题【分析】分别利用不等式的基本性质判断得出即可.【解答】解:A、由a>b,得ac>bc(c>0),故此选项错误;B、由a>b,得a﹣2>b﹣2,故此选项错误;C、由﹣>﹣1,得﹣>﹣a(a>0),故此选项错误;D、由a>b,得c﹣a<c﹣b,此选项正确.故选:D.【点评】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.4.不等式组的解集在数轴上表示为()A. B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】选择题【分析】根据在数轴上表示不等式解集的方法进行解答即可.【解答】解:∵x>﹣1,∴在﹣1处是空心圆点且折线向右,∵x<2,∴在2处是空心圆点且折现向左,不等式组的解集在数轴上表示在数轴上表示为:故选B.【点评】本题考查的是在数轴上表示不等式的解集,熟知小于向左,大于向右是解答此题的关键.5.不等式﹣2x>的解集是()A.x<﹣ B.x<﹣1 C.x>﹣D.x>﹣1【考点】C6:解一元一次不等式.【专题】选择题【分析】根据不等式的基本性质两边都除以﹣2可得.【解答】解:两边都除以﹣2可得:x<﹣,故选:A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连接AC′交A′C于D,则△C′DC的面积为()A.10 B.8 C.6 D.4【考点】Q2:平移的性质.【专题】选择题【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即6,故选C.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.下列条件能判定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.AB=5,AC=12,BC=13C.∠A=50°,∠B=80°D.∠A:∠B:∠C=3:4:5【考点】KI:等腰三角形的判定.【专题】选择题【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解;A、当∠A=30°,∠B=60°时,∠C=90°,不是等腰三角形,所以A选项错误.B、当AB=5,AC=12,BC=13,52+122=132,所以是直角三角形,不是等腰三角形,错误;C、当A=50°,∠B=80°,∠C=50°,是等腰三角形,正确,D、当∠A:∠B:∠C=3:4:5,不是等腰三角形,所以D选项错误.故选C.【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是熟练掌握三角形内角和定理.8.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.4【考点】KF:角平分线的性质.【专题】选择题【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:A.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E.若CE=2,则AB的长是()A.4 B.4C.8 D.8【考点】KO:含30度角的直角三角形;KG:线段垂直平分线的性质.【专题】选择题【分析】由ED是线段AB的垂直平分线,根据线段垂直平分线定理得到EA=EB,根据等边对等角可得∠A和∠ABE相等,由∠A的度数求出∠ABE的度数,得出∠EBC=∠EBA=30°,再由角平分线上的点到角的两边的距离相等得出DE=CE=2.由30°角所对的直角边等于斜边的一半,可得AE=2ED=4,由勾股定理求出AD,那么AB=2AD.【解答】解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC﹣∠EBA=30°,又∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直角三角形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD==2,∴AB=2AD=4.故选B.【点评】此题考查了线段垂直平分线的性质,角平分线的性质,含30°角的直角三角形的性质,勾股定理,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.10.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【考点】C2:不等式的性质.【专题】选择题【分析】根据不等式的性质分别进行判断,即可求出答案.【解答】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.下列图形中,既是中心对称图又是轴对称图形的是()A.B. C.D.【考点】R5:中心对称图形;P3:轴对称图形.【专题】选择题【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图,不是轴对称图形,故本选项错误;C、既是中心对称图又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.把代数式x3﹣4x2+4x分解因式,结果正确的是()A.x(x2﹣4x+4)B.x(x﹣4)2C.x(x+2)(x﹣2)D.x(x﹣2)2【考点】55:提公因式法与公式法的综合运用.【专题】选择题【分析】根据提公因式,完全平方公式,可得答案.【解答】解:原式=x(x2﹣4x+4)=x(x﹣2)2,故选:D.【点评】本题考查了因式分解,利用提公因式,完全平方公式是解题关键.13.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.【考点】KI:等腰三角形的判定.【专题】填空题【分析】由于没有说明哪一条边是腰,故需要分情况讨论.【解答】解:∵AC=6,BC=8,∴由勾股定理可知:AB=10,当点P在CB上运动时,由于∠ACP=90°,∴只能有AC=CP,如图1,∴CP=6,∴t==3,当点P在AB上运动时,①AC=AP时,如图2,∴AP=6,PB=AB﹣CP=10﹣6=4,∴t==6,②当AP=CP时,如图3,此时点P在线段AC的垂直平分线上,过点P作PD⊥AC于点D,∴CD=AC=3,PD是△ACB的中位线,∴PD=BC=4,∴由勾股定理可知:AP=5,∴PB=5,∴t==6.5;③AC=PC时,如图4,过点C作CF⊥AB于点F,∴cos∠A==,∴AF=3.6,∴AP=2AF=7.2,∴PB=10﹣7.2=2.8,∴t==5.4;综上所述,当t为3或6或6.5或5.4时,△ACP是等腰三角形.故答案为:3或6或6.5或5.4.【点评】本题考查等腰三角形的性质,解题的关键是根据腰的情况进行分类讨论,本题属于中等题型.14.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为.【考点】KF:角平分线的性质.【专题】填空题【分析】作PE⊥OB于E,如图,然后根据角平分线的性质求解.【解答】解:作PE⊥OB于E,如图,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=6,即点P到边OB的距离为6,故答案为6.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.15.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有个.【考点】KI:等腰三角形的判定.【专题】填空题【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【解答】解:如图,AB是腰长时,红色的4个点可以作为点C,AB是底边时,黑色的4个点都可以作为点C,所以,满足条件的点C的个数是4+4=8,故答案为8.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.16.因式分解多项式2a2b3+6ab2,应提取的公因式是.【考点】52:公因式.【专题】填空题【分析】直接利用公因式的定义分别得出系数最大公约数以及公共字母进而得出答案.【解答】解:2a2b3+6ab2=2ab2(ab+3b),故因式分解多项式2a2b3+6ab2,应提取的公因式是2ab2.故答案为:2ab2.【点评】此题主要考查了公因式,注意确定公因式的方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.17.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.【考点】KI:等腰三角形的判定;JA:平行线的性质.【专题】解答题【分析】由平行可求得∠EFC,由三角形的外角可求得∠FCD,则可证明FD=FC,可证得结论.【解答】证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形.【点评】本题主要考查等腰三角形的判定,利用条件求得∠FCD的度数是解题的关键,注意三角形外角性质的应用.18.已知:如图所示,Rt△ABC中,∠C=90°,∠A、∠B的平分线AD、BE交于F,求∠AFB的度数.【考点】KN:直角三角形的性质;K7:三角形内角和定理.【专题】解答题【分析】先根据C=90°,求得∠CAB+∠CBA=90°,再根据AD、BE平分∠CAB、∠CBA,即可得到∠FAB+∠FBA=45°,最后根据三角形内角和定理即可得到∠AFB=135°.【解答】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵AD、BE平分∠CAB、∠CBA,∴∠FAB+∠FBA=45°,∴∠AFB=135°.【点评】本题主要考查了直角三角形的性质以及三角形内角和定理的运用,解题时注意:有一个角为90°的三角形,叫做直角三角形.19.如图,在△ABC中,边AB的垂直平分线交BC,AB于点E,M,边AC的垂直平分线交BC,AC于点F,N,△AEF的周长是10.(1)求BC的长度;(2)若∠B+∠C=45°,EF=4,求△AEF的面积.【考点】KG:线段垂直平分线的性质.【专题】解答题【分析】(1)根据线段垂直平分线的性质得到BE=AE,FA=FC,根据三角形的周长公式计算即可;(2)根据题意得到∠EAF=90°,利用完全平方公式解答.【解答】解:(1)∵ME是边AB的垂直平分线,NF是AC的垂直平分线,∴BE=AE,FA=FC,∴BC=BE+EF+FC=AE+EF+AF=10;(2)∵∠B+∠C=45°,∴∠BAC=135°,∵BE=AE,FA=FC,∴∠EAB=∠B,∠FAC=∠C,∴∠EAF=90°,∴AE2+AF2=16,又AE+AF=10﹣4=6,∴△AEF的面积=AE×AF=[(AE+AF)2﹣(AE2+AF2)]=5【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.将下列不等式化成“x>a”或“x<a”的形式:(1)x﹣17<﹣5;(2)>﹣3.【考点】C2:不等式的性质.【专题】解答题【分析】(1)不等式移项合并,即可得到结果;(2)不等式x系数化为1,即可得到结果.【解答】解:(1)移项合并得:x<12;(2)两边乘以﹣2得:x<6.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.21.某班50名学生上体育课,老师出了一道题:现在我拿出一些篮球,如果每5名同学打一个篮球,有些同学就会没有球打;如果每6名同学打一个篮球,其中有一个篮球打的人数就会不足6人.请写出篮球数x与人数的不等关系.【考点】CD:由实际问题抽象出一元一次不等式组.【专题】解答题【分析】利用不等式结合未知数分别分析得出实际意义.【解答】解:设篮球数为x,根据题意可得:,解得:<x<10,因为取整数,所以x=9.【点评】此题主要考查了一元一次不等式的实际意义,结合未知数以及不等关系分析是解题关键.22.因式分解:(1)xy(x﹣y)﹣x(x﹣y)2(2)(a2+b2)2﹣4a2b2.【考点】54:因式分解﹣运用公式法.【专题】解答题【分析】(1)根据提公因式,可得答案;(2)根据完全平方公式,可得答案.【解答】解:(1)原式=x(x﹣y)[y﹣(x﹣y)]=x(x﹣y)(2y﹣x);(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.【点评】本题考查了因式分解,解(1)的关键是提公因式,解(2)的关键是利用公式法.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.【考点】59:因式分解的应用.【专题】解答题【分析】运用完全平方公式进行正确的计算后即可得到正确的结果.【解答】解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.【点评】本题考查了因式分解的应用,解题的关键是了解完全平方公式的形式并正确的应用.。

北京市西城区三十五中八年级数学下学期期中考试试题 北师大版

北京市西城区三十五中八年级数学下学期期中考试试题 北师大版

一、选择题(每小题的四个选项中,只有一个是符合题目要求的.请将你认为符合要求的一项的序号填在题中的括号内.每小题3分,共30分)1. 下列二次根式中,属于最简二次根式的是( ).A.21B. 8C. 4D. 5 2. 已知反比例函数y =5m x-的图象在第二、四象限,则m 的取值范围是( ). A. m ≥5 B . m >5 C. m ≤5 D . m <5 3. 下列各式中,计算正确的是( ).A . 562432=+ B. 3327=÷ C. 632333=⨯ D. 3)3(2-=-4. 直角三角形的两条直角边的长分别为5,12,则斜边上的中线为( ).A.8013cm B. 13cm C. 6cm D. 132cm5. 下列各组数中, 能成为直角三角形的三条边长的是 ( ).A .9, 80, 81 B. 10,24,25 C. 9 ,15,20 D. 8,15,17 6. 已知一次函数y 1=kx+b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示, 则当y 1<y 2时,x 的取值范围是( ) A .x <﹣1或0<x <3 B .﹣1<x <0或x >3C .﹣1<x <0D .x >37. 已知正比例函数y kx =的图象与反比例函数6ky x-=的图象的一个交点坐标是(13),,则另一个交点的坐标是( ).A.(13)--, B.(31)--, C.(12)--, D.(23)--,8. 如图,在□ABCD 中,已知AD =8cm ,AB =6cm , DE 平分∠ADC 交BC 边于点E ,则BE 等于( ). A .2cm B .4cm C .6cm D .8cm9. 如下图,矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为( )试卷说明:1、本试卷共6页,计四类大题,26道小题;2、本次考试卷面分值100分,考试时间为90分钟;3、认真审题,所有试题全部在卷面作答。

北师大版八年级数学下册全套试卷

北师大版八年级数学下册全套试卷

北师大版八年级数学下册全套试卷全套试卷共8份。

试卷内容如下:1. 第一单元使用2. 第二单元使用3. 第三单元使用4. 第四单元使用5. 第五单元使用6. 第六单元使用7. 期中检测卷8. 期末检测卷第一章达标测试卷一、选择题(每题3分,共30分)1.若等腰三角形的底角为40°,则它的顶角度数为() A.40°B.50°C.60°D.100°2.已知等腰三角形两边长是8 cm和4 cm,那么它的周长是() A.12 cm B.16 cm C.16 cm或20 cm D.20 cm3.用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于c B.a,b都不垂直于cC.a与b相交D.a⊥b4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,4, 5 B.1,2, 3 C.6,7,8 D.2,3,4 5.如图,直线a∥b,直线l与a,b分别相交于A,B两点,过点A 作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°(第5题) (第6题) (第7题) 6.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB =5,AD=3,则BC的长为()A.5 B.6 C.8 D.107.如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D ,DE ⊥AB 于点E ,则下列说法错误的是( )A .∠CAD =30°B .AD =BDC .BE =2CD D .CD =ED8.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD(第8题) (第9题)9.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB =7,则△ABC 的周长为( )A .7B .14C .17D .2010.如图,在△ABC 中,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,E ,F为垂足,则下列四个结论:(第10题)①∠DEF =∠DFE ;②AE =AF ;③DA 平分∠EDF ;④EF 垂直平分AD .其中正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD =________.(第11题) (第12题) (第14题) 12.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是________.13.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:____________________________________________,该逆命题是________(填“真”或“假”)命题.14.如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β=________.15.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是________.(第15题) (第16题) (第17题) 16.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC=________.17.如图,已知∠ABD=∠BDA=∠ADC=∠DCA=75°.请你写出由已知条件能够推出的三个有关线段关系的正确结论(注意:不添加任何字母和辅助线):①______________;②______________;③______________.18.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E,AD=3,BE=1,则DE=________.(第18题) (第19题) (第20题) 19.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为________.20.如图,等边△ABC的边长为12,AD是BC边上的中线,M是AD 上的动点,E是AC边上的一点.若AE=4,则EM+CM的最小值为________.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.已知:如图,∠ABC,射线BC上一点D.求作:等腰三角形PBD,使线段BD为等腰三角形PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(要求:请用直尺、圆规作图,不写作法,但要保留作图痕迹)(第21题)22.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE 和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.(第22题)23.如图,锐角三角形ABC的两条高BE,CD相交于点O,且OB =OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.(第23题)24.如图,在4×4的正方形网格中,每个小正方形的边长均为1,线段AB的端点在格点上,按要求画图.(1)在图①中画出一个面积为4的等腰三角形ABC(点C在格点上),使A,B,C中任意两点都不在同一条网格线上;(2)在图②中画出一个面积为5的直角三角形ABD(点D在格点上),使A,B,D中任意两点都不在同一条网格线上.(第24题)25.如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速运动,其中点P 运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t;若不能,请说明理由.(第25题)26.数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.答案一、1.D2.D3.C4.B5.C6.C7.C8.D9.C 10.C点拨:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,DE=DF.∴∠DEF=∠DFE.∵AD=AD,∴Rt△ADE ≌Rt△ADF.∴AE=AF,∠ADE=∠ADF.∴AD垂直平分EF.∴①②③正确,④不正确.二、11.110°12.313.如果两个三角形的面积相等,那么这两个三角形全等;假14.20°15.416.70°17.(答案不唯一)①BD=CD②AB=AD=AC③AD⊥BC18.2点拨:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠DAC +∠DCA=90°.∵∠ACB=90°,∴∠ECB+∠DCA=90°.∴∠DAC=∠ECB.又∵AC=CB,∴△ACD≌△CBE.∴AD=CE=3,CD=BE=1.∴DE=CE-CD=3-1=2.19.3 320.47点拨:如图,在AB上截取AE′=4,易知E′与E关于AD 对称,则ME′=ME.连接CE′,当点M为CE′与AD的交点时,EM +CM的值最小,即为线段CE的长度.过点C作CF⊥AB,垂足为F.(第20题)∵△ABC 是等边三角形,∴AF =12AB =6,CF =AC 2-AF 2=6 3.∴E ′F =AF -AE ′=2.∴CE ′=CF 2+E ′F 2=47.三、21.解:如图,△PBD 为所求作的三角形.(第21题)22.(1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE .∵∠A =∠B ,∴∠BEO =∠2.又∵∠1=∠2,∴∠1=∠BEO .∴∠AEC =∠BED .在△AEC 和△BED 中,⎩⎪⎨⎪⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED (ASA ).(2)解:∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE .在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°.∴∠BDE=∠C=69°.23.(1)证明:∵OB=OC,∴∠OBC=∠OCB.∵BE,CD是两条高,∴∠BDC=∠CEB=90°.又∵BC=CB,∴△BDC≌△CEB(AAS).∴∠DBC=∠ECB.∴AB=AC,即△ABC是等腰三角形.(2)解:点O在∠BAC的平分线上.理由:如图,连接AO.(第23题) ∵△BDC≌△CEB,∴DC=EB.∵OB=OC,∴OD=OE.又∵∠BDC=∠CEB=90°,∴点O在∠BAC的平分线上.24.解:(1)如图①所示.(第24题)(2)如图②所示.25.解:(1)当点Q 到达点C 时,PQ 与AB 垂直. 理由:∵AB =AC =BC =6 c m , ∴当点Q 到达点C 时,BP =3 c m. ∴点P 为AB 的中点. ∴PQ ⊥AB . (2)能. ∵∠B =60°,∴当BP =BQ 时,△BPQ 为等边三角形. ∴6-t =2t ,解得t =2.∴当t =2时,△BPQ 是等边三角形.26.解:(1)若∠A 为顶角,则∠B =(180°-80°)÷2=50°; 若∠A 为底角,∠B 为顶角,则∠B =180°-2×80°=20°; 若∠A 为底角,∠B 为底角,则∠B =80°. 故∠B =50°或20°或80°. (2)分两种情况:①当90≤x <180时,∠A 只能为顶角, ∴∠B 的度数只有一个. ②当0<x <90时,若∠A 为顶角,则∠B =⎝ ⎛⎭⎪⎫180-x 2°;若∠A 为底角,∠B 为顶角,则∠B =(180-2x )°;若∠A 为底角,∠B 为底角,则∠B =x °. 当180-x 2≠180-2x 且180-2x ≠x 且180-x2≠x , 即x ≠60时,∠B 有三个不同的度数.综上所述,当0<x <90且x ≠60时,∠B 有三个不同的度数.第二章达标测试卷一、选择题(每题3分,共30分)1.现有以下数学表达式:①-3<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3. 其中不等式有( )A .5个B .4个C .3个D .1个 2.若3x >-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.不等式5x ≤-10的解集在数轴上表示为( )4.如图,直线y =kx +b 交坐标轴于A ,B 两点,则不等式kx +b >0的解集是( )A .x >-2B .x >3C .x <-2D .x <3(第4题)(第6题)5.下列说法中,错误的是( )A .不等式x <2的正整数解只有一个B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个6.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .|a -c |>|b -c |B .-a <cC .a +c >b +c D.a b <cb 7.使不等式x -2≥2与3x -10<8同时成立的x 的整数值是( ) A .3,4 B .4,5 C .3,4,5 D .不存在 8.已知点P (2a -1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )9.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -2m <0,x +m >2有解,则m 的取值范围为( )A .m >-23B .m ≤23C .m >23D .m ≤-23 10.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3 000元,若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个 二、填空题(每题3分,共30分)11.若x >y ,则-3x +2________-3y +2(填“<”或“>”). 12.若(m -2)x |m -1|-3>6是关于x 的一元一次不等式,则m =________.13.小明借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,设以后几天里每天读x 页,所列不等式为____________________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.函数y =mx +n 和函数y =kx 在同一坐标系中的图象如图所示,则关于x 的不等式mx +n >kx 的解集是____________.(第15题) (第16题)16.已知关于x 的不等式2x -a >-3的解集如图所示,则a 的值是________.17.不等式组⎩⎨⎧3x +10>0,163x -10<4x的最小整数解是________.18.对于x ,y 定义一种新运算“*”:x *y =3x -2y ,等式右边是通常的减法和乘法运算,如2*5=3×2-2×5=-4,那么(x +1)*(x -1)≥5的解集是__________.19.若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,则实数a 的取值范围是__________.20.游泳池的水质要求三次检验的PH 的平均值不小于7.2,且不大于7.8,前两次检验,PH 的读数分别为7.4和7.9,要使水质合格,设第三次检验的PH 的值为x ,则x 的取值范围是____________.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.解不等式()223x +≤并把解集在数轴上表示出来.22.解不等式组()41710,85,3x x x x ⎧+≤+⎪⎨--<⎪⎩并写出它的所有非负整数解.23.若关于x ,y 的方程组30,350x y a x y a +=-⎧⎨+=+⎩的解都是非负数,求a的取值范围.24.若关于x 的不等式组()10,23354413x x x a x a +⎧+>⎪⎨⎪++>++⎩恰有三个整数解,求实数a 的取值范围.25.如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0.(第25题)26.去年夏天,某地区遭受到罕见的水灾.“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?答案一、1.B 2.A 3.C 4.A 5.C 6.A 7.B 8.C9.C 点拨:20,2.x m x m -<⎧⎨+>⎩①② 解不等式①得x <2m ,解不等式②得x >2-m .∵不等式组有解,∴2m >2-m . ∴m >23. 10.A二、11.< 12.0 13.2×5+(10-2)x ≥7214.a <1 15.x <-1 16.1 17.-3 18.x ≥0 19.a ≤-1 20.6.3≤x ≤8.1三、21.解:去分母,得4(x +2)≤7(x -1)-6. 去括号,得4x +8≤7x -7-6. 移项、合并同类项,得-3x ≤-21. 系数化为1,得x ≥7.解集在数轴上表示,如图所示.(第21题)22.解:⎩⎨⎧4(x +1)≤7x +10,①x -5<x -83.②由①得x ≥-2,由②得x <72, ∴-2≤x <72.∴非负整数解为0,1,2,3.23.解:解方程组,得⎩⎪⎨⎪⎧x =10+a ,y =20-2a .依题意有⎩⎪⎨⎪⎧10+a ≥0,20-2a ≥0, 解得-10≤a ≤10.24.解:由不等式x 2+x +13>0,解得x >-25.由不等式3x +5a +4>4(x +1)+3a ,解得x <2a .∵不等式组恰有三个整数解,∴2<2a ≤3.∴1<a ≤32.25.解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12.将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x ≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点为(4,0),直线y 2=-3x +5与x 轴的交点为⎝ ⎛⎭⎪⎫53,0. 从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.26.解:(1)设饮用水有x 件,则蔬菜有(x -80)件.依题意,得x +(x -80)=320,解这个方程,得x =200,x -80=120.答:饮用水和蔬菜分别有200件和120件.(2)设租用甲型货车n 辆,则租用乙型货车(8-n )辆.依题意,得⎩⎪⎨⎪⎧40n +20(8-n )≥200,10n +20(8-n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数,∴n =2或3或4.∴安排甲、乙两种型号的货车时有3种方案,分别是①甲型货车2辆,乙型货车6辆;②甲型货车3辆,乙型货车5辆;③甲型货车4辆,乙型货车4辆.(3)3种方案的运费分别为方案①:2×400+6×360=2 960(元);方案②:3×400+5×360=3 000(元);方案③:4×400+4×360=3 040(元).∴方案①运费最少,最少运费是2 960元.答:选择甲型货车2辆,乙型货车6辆,可使运费最少,最少运费是2 960元.第三章达标测试卷一、选择题(每题3分,共30分)1.下面的每组图形中,平移左图可以得到右图的一组是( )2.下列图形既是轴对称图形又是中心对称图形的是( )3.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为()A.(2,2) B.(2,-2) C.(2,5) D.(-2,5)(第3题)(第5题)(第6题)(第7题) 4.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1),则点B的对应点的坐标为()A.(5,3) B.(-1,-2) C.(-1,-1) D.(0,-1) 5.如图,将一个含30°角的Rt△ABC绕点A旋转,使得点B,A,C′在同一条直线上,则△ABC旋转的角度是()A.60°B.90°C.120°D.150°6.如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A′B′C′,则其旋转中心的坐标是()A.(1.5,1.5) B.(1,0) C.(1,-1) D.(1.5,-0.5) 7.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点的坐标是()A.(2,2) B.(1,2) C.(-1,2) D.(2,-1)8.如图,△DEF是△ABC经过平移得到的.已知∠A=54°,∠ABC =36°,则下列结论不一定成立的是()A.∠F=90°B.∠BED=∠FEDC.BC⊥DF D.DF∥AC(第8题)(第9题)(第10题)9.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,点C在B′C′上,使得CC′∥AB,则∠BAB′等于()A.30°B.35°C.40°D.50°10.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y 轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,1) B.(2,1) C.(1,3) D.(2,3)二、填空题(每题3分,共30分)11.点(2,-1)关于原点O对称的点的坐标为__________.12.如图,△A′B′C′是由△ABC沿射线AC方向平移得到的.已知∠A =55°,∠B=60°,则∠C′=________.(第12题)(第13题)(第14题)(第15题) 13.如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4 cm2,∠AOB=120°,则图中阴影部分的面积为__________.14.如图,将等边三角形ABC绕顶点A顺时针方向旋转,使边AB 与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是______.15.如图,在△ABC中,AB=AC,BC=12 cm,点D在AC上,DC =4 cm.将线段DC沿着CB的方向平移7 cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为____________.16.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=________.(第16题) (第17题)(第18题) (第19题) 17.如图,OA⊥OB,△CDE的边CD在OB上,∠ECD=45°,CE =4.若将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC=________.18.如图,直线y=-43x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是__________.19.如图,将Rt△ABC沿着直角边CA所在的直线向右平移得到Rt△DEF,已知BC=a,CA=b,F A=13b,则四边形DEBA的面积等于__________.(第20题)20.如图,将含有30°角的直角三角板ABC放入平面直角坐标系中,顶点A,B分别落在x轴,y轴的正半轴上,∠OAB=60°,点A 的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°……),当点B第一次落在x轴上时,则点B运动的路径与两坐标轴围成的图形的面积是____________.三、解答题(每题10分,共60分)21.在如图①所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,a,b,c均为顶点都在格点上的三角形(每个小方格的顶点叫做格点).(1)在图①中,a经过一次__________变换(填“平移”“旋转”或“轴对称”)可以得到b;(2)在图①中,c是可以由b经过一次旋转变换得到的,其旋转中心是点________(填“A”“B”或“C”);(3)在图②中画出a绕点A顺时针旋转90°后的d.(第21题)22.如图,将△ABC向右平移7个单位长度,再向下平移6个单位长度,得到△A1B1C1.(1)不画图,直接写出点A1,B1,C1的坐标(点A1,B1,C1分别是点A,B,C的对应点);(2)求△A1B1C1的面积.(第22题)23.如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕点O顺时针旋转180°,试解决下列问题:(1)画出四边形ABCD旋转后的图形;(2)求点C在旋转过程中经过的路径长.(第23题)24.如图,已知Rt△ABC≌Rt△DEC,∠ACB=∠DCE=90°,∠ABC =∠DEC=60°.将Rt△ECD沿直线BD向左平移到Rt△E′C′D′的位置,使E点落在AB上的点E′处,点P为AC与E′D′的交点.(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.(第24题)25.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC 上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.(第25题)26.已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF 按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.(1)利用图①证明:EF=2BC.(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.(第26题)答案一、1.D 2.B 3.A 4.C 5.D 6.C 7.A 8.B 9.A 10.D 二、11.(-2,1) 12.65° 13.4 cm 2 14.60° 15.13 cm 16.20°17.2 18. (7,3) 19.23ab 20.3+1712π 点拨:如图所示.(第20题)由题意得点B 运动的路径与两坐标轴围成的图形的面积是两个三角形面积与两个扇形面积之和.∵点A (1,0),∠OAB =60°,∴AB =2,OB =3,AC =1,BC =3,故S =S △AOB +S 扇形BAB ′ +S △AB ′ C ′+ S 扇形B ′C ′B ″=2×12×1×3+60×π×22360+90×π×(3)2360=3+1712π. 三、21.解:(1)平移 (2)A (3)如图所示.(第21题)22.解:(1)A 1(5,-1),B 1(3,-7),C 1(9,-3). (2)S △A 1B 1C 1=S △ABC =6×6-12×6×2-12×6×4-12×4×2=14. 23.解:(1)旋转后的图形如图所示.(第23题)(2)如图,连接OC.由题意可知,点C的旋转路径是以O为圆心,OC的长为半径的半圆.∵OC=12+22=5,∴点C在旋转过程中经过的路径长为5π.24.(1)解:由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠C′E′D′=∠CED=60°,∴∠BE′C′=∠BAC=90°-60°=30°.∴∠BE′D′=∠BE′C′+∠C′E′D′=90°.∴AB⊥E′D′.25.(1)解:补全图形,如图所示.(第25题)(2)证明:由旋转的性质得:∠DCF=90°,DC=FC,∴∠DCE+∠ECF=90°.∵∠ACB=90°,∴∠DCE+∠BCD=90°.∴∠ECF=∠BCD.∵EF ∥DC ,∴∠EFC +∠DCF =180°. ∴∠EFC =90°, 在△BDC 和△EFC 中, ⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC (SAS). ∴∠BDC =∠EFC =90°.26.(1)证明:∵△ABC 是等边三角形, ∴∠ACB =60°,AC =BC . ∵∠F =30°,∴∠CAF =60°-30°=30°. ∴∠CAF =∠F .∴CF =AC .∴CF =AC =BC . ∴EF =2BC . (2)解:成立.证明:∵△ABC 是等边三角形, ∴∠ACB =60°,AC =BC . ∵∠F =30°,∴∠CHF =60°-30°=30°. ∴∠CHF =∠F . ∴CH =CF . ∵EF =2BC , ∴BE +CF =BC .又∵AH +CH =AC ,AC =BC ,∴AH =BE .第四章达标测试卷一、选择题(每题3分,共30分)1.下列等式从左到右的变形中,属于因式分解的是() A.x2-6x+9=(x-3)2B.(x+3)(x-1)=x2+2x-3 C.x2-9+6x=(x+3)(x-3)+6x D.6ab=2a·3b2.下列四个多项式中,能因式分解的是()A.a-1 B.a2+1 C.x2-4y D.x2-4x+43.下列各式中能用完全平方公式进行因式分解的是() A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-10x+254.分解因式-2m(n-p)2+6m2(p-n)时,应提取的公因式为() A.-2m2(n-p)2B.2m(n-p)2C.-2m(n-p) D.-2m 5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是()A.a3-a=a(a2-1) B.m2-2mn+n2=(m-n)2C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)6.下列分解因式正确的是()A.-x2+4x=-x(x+4)B.x2+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)2D.x2-4x+4=(x+2)(x-2)7.分解因式a m-a m+1(m为正整数)的结果为()A .a m (1+a )B .a m (1-a )C .a (1-a m) D .am +1⎝⎛⎭⎪⎫1a -1 8.若a 为实数,则整式a 2(a 2-1)-a 2+1的值( )A .不是负数B .恒为正数C .恒为负数D .不等于0 9.从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )(第9题)A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )10.已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 二、填空题(每题3分,共30分)11.分解因式:3m 3+6m 2+9m =____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.分解因式:(2a +1)2-a 2=__________________.14.若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是________.15.已知二元一次方程组⎩⎪⎨⎪⎧x +2y =-12 019,2y -x =2 0197,不解方程组直接求出代数式x 2-4y 2的值为________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为__________. 18.计算:123 456 7892-123 456 788×123 456 790=________. 19.甲、乙两农户各有两块地,如图所示.2019年,这两个农户决定共同投资饲养业,为此,他们准备将4块土地换成一块地,所换土地的长为(a +b )m ,为了使所换土地的面积与原来4块地的总面积相等,所换土地的宽应该是__________m.(第19题)20.观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=____________________________________.三、解答题(21题16分,26题12分,其余每题8分,共60分) 21.把下列各式因式分解:(1)4x 2-64; (2)a 3b +2a 2b 2+ab 3;(3)(a -b )2-2(b -a )+1; (4)x 2-2xy +y 2-16z 2.22.给出三个多项式:12x 3+3+4x 2+x ,12x 3-2x 2,请选择你喜欢的两个多项式进行加法运算,再把结果因式分解.23.已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.24.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b +13=0,求这个等腰三角形的周长.25.仔细阅读下面的例题,并解答问题:例题:已知二次三项式x 2-4x +m 有一个因式是x +3,求另一个因式以及m 的值.解:设另一个因式为x +n ,则x 2-4x +m =(x +3)(x +n ),即x 2-4x +m =x 2+(n +3)x +3n ,∴⎩⎪⎨⎪⎧n +3=-4,m =3n ,解得⎩⎪⎨⎪⎧n =-7,m =-21. 故另一个因式为x -7,m 的值为-21. 问题:仿照以上方法解答下面问题:已知二次三项式2x 2+3x -k 有一个因式是2x -5,求另一个因式及k 的值.26.观察猜想如图,大长方形是由四个小长方形拼成的,请根据此图填空:(第26题)x 2+(p +q )x +pq =x 2+px +qx +pq =(______)(______). 说理验证事实上,我们也可以用如下方法进行变形:x 2+(p +q )x +pq =x 2+px +qx +pq =(x 2+px )+(qx +pq )=________________=(______)(______).于是,我们可以利用上面的方法进行多项式的因式分解. 尝试运用例题:把x 2+3x +2因式分解.解:x 2+3x +2=x 2+(2+1)x +2×1=(x +2)(x +1). 请利用上述方法将下列多项式因式分解:(1)x 2-7x +12; (2)(y 2+y )2+7(y 2+y )-18.答案一、1.A 2.D 3.D 4.C 5.A 6.C 7.B 8.A 9.D 10.D 二、11.3m (m 2+2m +3) 12.-x -2 13.(3a +1)(a +1) 14.±1 15.1716.(x +y +2)(x +y -2) 17.(x -4)2 18.1 19.(a +c ) 20.(x -1)(x n +x n -1+…+x +1)三、21.解:(1)原式=4(x 2-16)=4(x +4)(x -4); (2)原式=ab (a 2+2ab +b 2)=ab (a +b )2; (3)原式=(a -b )2+2(a -b )+1=(a -b +1)2; (4)原式=(x -y )2-(4z )2=(x -y +4z )(x -y -4z ).22.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6); 或12x 3+2x 2-x +12x 3-2x 2=x 3-x =x (x 2-1)=x (x +1)(x -1); 或12x 3+4x 2+x +12x 3-2x 2=x 3+2x 2+x =x (x 2+2x +1)=x (x +1)2. 23.解:∵x +y =4,∴(x +y )2=16. ∴x 2+y 2+2xy =16. 而x 2+y 2=14,∴xy =1.∴x 3y -2x 2y 2+xy 3=xy (x 2-2xy +y 2)=14-2=12.24.解:a 2+b 2-4a -6b +13=(a -2)2+(b -3)2=0,故a =2,b =3. 由题意可知第三边长为2或3, 所以所求三角形的周长为7或8. 25.解:设另一个因式为x +a , 则2x 2+3x -k =(2x -5)(x +a ), 即2x 2+3x -k =2x 2+(2a -5)x -5a ,∴253,5,a a k -=⎧⎨-=-⎩解得4,20.a k =⎧⎨=⎩故另一个因式为x +4,k 的值为20.26.解:x +p ;x +q ;x (x +p )+q (x +p );x +p ;x +q (1)原式=(x -3)(x -4);(2)原式=(y 2+y +9)(y 2+y -2)=(y 2+y +9)(y +2)(y -1).第五章达标测试卷一、选择题(每题3分,共30分)1. 函数y =1x +2中,x 的取值范围是( )A .x ≠0B .x >-2C .x <-2D .x ≠-22.计算a 3·⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .a B .a 5 C .a 6 D .a 93.下列各式:①k 22π;②1m +n ;③m 2-n 24;④2b 3a ;⑤(x +1)2x -1;⑥1x ,其中分式有( )A .6个B .5个C .4个D .3个4.分式方程232x x=-的解为( ) A .x =0 B .x =3 C .x =5 D .x =95.化简211x xx x+--的结果为( ) A .x +1 B .x -1 C .-x D .x 6.下列各式从左到右的变形中,正确的是( )A .12212x y x yxy xy--=B .0.2222a b a b a b a b ++=++C .11x x x y x y +--=-- D .a b a b a b a b +-=-+7.若关于x 的分式方程31m x --=1的解为x =2,则m 的值为( )A .5B .4C .3D .28.如果a -b =23,那么代数式222a b ab a a b ⎛⎫+-⋅ ⎪-⎝⎭的值为( ) A . 3 B .2 3 C .3 3 D .4 39.一艘轮船在静水中的最大航速为30 km/h ,它以最大航速沿江顺流航行100 km 所用时间,与以最大航速逆流航行80 km 所用时间相等,设江水的流速为v km/h ,则可列方程为( )A .1008030v v=+ B .100803030v v =-+ C .100803030v v=+- D .100803030v v =-+10.已知m 2-3m +2=0,则代数式22mm m -+的值是( )A .3B .2C .13D .12 二、填空题(每题3分,共30分)11.若分式242x x -+的值为0,则x 的值为________.12. 在分式:①3a x ;②22x yx y +-;③()2a b a b --;④x y x y +-中,是最简分式的是__________(填序号).13. 化简:2212124x x x x x --+÷--=__________. 14.计算:2b a b a b++-=__________. 15.若a 2-6ab +9b 2=0(a ,b 均不为0),则a ba b-+=________.16.已知1x x +=6,则221x x +-2=________.17.当x =________时,41x +与31x -互为相反数.18.已知关于x的分式方程32xx--=2-2mx-会产生增根,则m=____________.19.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产________台机器.20.关于x的分式方程21x ax++=1的解为负数,则a的取值范围为____________.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.计算下列各式:(1)222 44155a b a bab a b+⋅-;(2)22169 211x x xx x-++⎛⎫-÷⎪+-⎝⎭.22.解下列方程:(1)32x x --+1=32x -;(2)32-131x -=562x -.23.先化简,再求值:22211244x x x x x ⎛⎫+++÷ ⎪--+⎝⎭,其中x 满足x 2-2x -5=0.24.当m 为何值时,关于x 的分式方程212326x x x mx x x x +--=+-+-的解不小于1?25.某超市预测某饮料有发展前途,用1 600元购进一批饮料,面市后果然供不应求,又用6 000元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若两次购进饮料按同一价格销售,两批全部售完后,获利不少于1 200元,那么销售单价至少为多少元?26.阅读下面的材料:∵11×3=12×⎝⎛⎭⎪⎫1-13,13×5=12×⎝⎛⎭⎪⎫13-15,15×7=12×⎝⎛⎭⎪⎫15-17,…,117×19=12×⎝ ⎛⎭⎪⎫117-119, ∴11×3+13×5+15×7+…+117×19=12×⎝⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+12×⎝ ⎛⎭⎪⎫117-119=12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+117-119=12×⎝ ⎛⎭⎪⎫1-119=919. 解答下列问题:(1)在和式11×3+13×5+15×7+…中,第6项是________,第n 项是________________;(2)材料是通过逆用____________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以______________,从而达到求和的目的;(3)根据上面的方法,请你解下面的方程:()()()()()111333669218x x x x x x x ++=++++++.答案一、1.D 2.A 3.C 4.D 5.D 6.A 7.B 8.A 9.C 10.D 点拨:∵m 2-3m +2=0,∴m ≠0.∴m -3+2m =0.∴m +2m =3.则原式=121m m+-=13-1=12. 二、11.2 12. ①④ 13.x +2x -1 14.a 2a -b15.12 16.32 17.1718.-1 19.200 20.a >1且a ≠2三、21.解:(1)原式=4(a +b )5ab ·15a 2b (a +b )(a -b )=12aa -b ;(2)原式=2(x +1)-(x -1)x +1÷(x +3)2(x +1)(x -1)=x +3x +1·(x +1)(x -1)(x +3)2=x -1x +3. 22.解:(1)把方程两边同时乘以x -2, 得x -3+x -2=-3,解得x =1. 检验:当x =1时,x -2=1-2=-1≠0, ∴原方程的解为x =1.(2)方程两边同时乘以2(3x -1), 得3(3x -1)-2=5,解得x检验:当x =109时,2(3x -∴x =109是原方程的解.23.解:⎝ ⎛⎭⎪⎫1+x 2+2x -2÷x +1x 2-4x +4=x 2+x x -2·(x -2)2x +1=x (x +1)x -2·(x -2)2x +1=x 2-2x .∵x 2-2x -5=0,∴x 2-2x =5. ∴原式=5.24.解:由原方程,得x (x -2)-(x +1)·(x +3)=x -2m. 整理,得-7x =3-2m ,解得x =237m -. ∵分式方程x x +3-x +1x -2=226x mx x -+-的解不小于1,且x ≠-3,x ≠2,。

北师大版八年级数学下册期中学情评估 附答案 (2)

北师大版八年级数学下册期中学情评估 附答案 (2)

北师大版八年级数学下册期中学情评估一、选择题(每题3分,共30分)1.下列图形中是中心对称图形的是( )2.用反证法证明命题“若在△ABC中,AB≠AC,则∠B≠∠C”时,首先应假设( ) A.∠A=∠B B.AB=ACC.∠A=∠C D.∠B=∠C3.已知a<b,则下列式子一定成立的是( )A.a-3>b-3 B.ac<bcC.2a3<2b3D.3-2a<3-2b4.不等式x+3≥1的解集在数轴上表示正确的是( )A. B.C. D.5.如图,在△ABC中,∠ABC=90°,沿BC所在的直线向右平移得到△DEF,下列结论中,不一定成立的是( )A.EC=CF B.∠A=∠DC.AC∥DF D.∠DEF=90°6.某地计划在A,B,C三个村庄附近建一个文化活动中心,并且要求这三个村庄到活动中心的距离相等,其中AB=1 000米,BC=600米,AC=800米,则活动中心的位置应在( )A.AC中点B.BC中点C.AB中点D.∠C的平分线与AB的交点7.如图,直线y=kx+b(k≠0)经过点(-1,2),则不等式kx+b≤2的解集为( ) A.x>-1 B.x<-1C.x≥3 D.x≤-1(第7题) (第10题) (第14题)8.若△ABC的三边长a,b,c满足(a-c)2=b2-2ac,则( )A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形9.我们用[a]表示不大于a的最大整数,例如:[1.3]=1,[2.7]=2,若[x]+3=1,则x的取值范围是( )A.-4≤x<-3 B.-3≤x≤-2C.-2≤x<-1 D.0≤x<210.如图,在△AOB中,BO=3.将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,连接BB′.则线段BB′的长为( )A.2 B.2 2C.3 D.3 2二、填空题(每题3分,共15分)11.在平面直角坐标系内,将点A(2,3)向右平移4个单位长度得到的点的坐标是________.12.已知等腰三角形的两边长a,b满足|a-5|+b-4=0,则该等腰三角形的周长为________.13.一元一次不等式x-32>1的最小整数解是________.14.如图,△ABC的三条角平分线交于点O,若O到AB的距离为3,且△ABC的周长为18,则△ABC的面积为________.15.若不等式组⎩⎨⎧x -1>a ,1-3x ≥x -7无解,则a 的取值范围是______. 三、解答题(一)(每题8分,共24分)16.解不等式组⎩⎨⎧2(x +2)>x -1,①x +8>4x -1,②并把它的解集在数轴上表示出来.17.如图,在边长均为1的正方形网格中建立如图所示的平面直角坐标系,已知A (1,0),B (4,2),C (2,4).(1)将△ABC 沿着x 轴向左平移5个单位长度后得到△A ′B ′C ′,请在图中画出△A ′B ′C ′,则C 的对应点C ′的坐标为________;(2)线段A ′B ′可以看成是线段BA 绕着某个定点旋转180°后得到的图形,这个定点的坐标是________.18.如图,在△ABC 中,∠ACB =90°,将△ABC 沿AB 方向平移至△DEF ,AE =8 cm ,DB =2 cm.连接CF .(1)AC 和DF 的数量关系为________,位置关系为________;(2)∠BGF =________°;(3)求△ABC 沿AB 方向平移的距离;(4)若AC =4 cm, 求四边形AEFC 的周长.四、解答题(二)(每题9分,共27分)19.如图,在Rt △ABC 中,已知∠ACB =90°,AD 平分∠BAC ,点D 在BC 上,DE⊥AB ,垂足为E ,EF ∥BC .求证:EC 平分∠FED .20.OF 是∠MON 的平分线,点A 在射线OM 上,P ,Q 是直线ON 上的两动点,点Q在点P 的右侧,且PQ =OA ,作线段OQ 的垂直平分线,分别交直线OF ,ON 于点B ,点C ,连接AB ,PB .(1)如图①,当P ,Q 两点都在射线ON 上时,线段AB 与PB 的数量关系是________;(2)如图②,当P ,Q 两点都在射线ON 的反向延长线上时,线段AB ,PB 是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由.21.阅读下列材料:求不等式(2x -1)(x +1)>0的解集.解:根据“同号两数相乘,积为正”可得:①⎩⎨⎧2x -1>0,x +1>0或②⎩⎨⎧2x -1<0,x +1<0.解①得x>12;解②得x<-1.∴不等式的解集为x>12或x<-1.请你仿照上述方法解决问题:(1)求不等式(2x-3)(x+3)<0的解集;(2)求不等式13x-1x+2≥0的解集.五、解答题(三)(每题12分,共24分)22.某校开展“冰雪结缘”滑雪体验课程.先后两次在某商场购买滑雪护具和防护头盔,第一次买6套滑雪护具和5个防护头盔共花费1 900元;第二次买2套滑雪护具和7个防护头盔共花费1 700元.(1)求每套滑雪护具和每个防护头盔各多少元;(2)如果现在商场均以标价的8折对滑雪护具和防护头盔进行促销,学校决定从该商场一次性购买总量为20的滑雪护具和防护头盔,且总费用不能超过2 900元,那么最多可以购买多少个防护头盔?23.(1)阅读理解:如图①,等边三角形ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的大小.思路提示:考虑到PA,PB,PC不在一个三角形中,采用转化与化归的数学思想,可以将△ABP绕顶点A逆时针旋转60°到△ACP′处,连接PP′,此时△ACP′≌△ABP,这样,就可以利用全等三角形的知识,并结合已知条件,将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB=________;(2)变式拓展:请你利用第(1)问的方法,解答下面问题:如图②,在△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点且∠EAF=45°,BE=8,CF=6,求EF的大小;(3)能力提升:如图③,在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,则(OA+OB+OC)2=________.答案一、1.C 2.D 3.C 4.D 5.A 6.C 7.D 8.B 9.C10.D 提示:∵将△AOB绕点O逆时针方向旋转90°,得到△A′OB′,∴B′O =BO=3,∠BOB′=90°,∴BB′=BO2+B′O2=9+9=32,故选D.二、 11.(6,3) 12.13或14 13.6 14.2715.a≥1 提示:解不等式x-1>a,得x>a+1,解不等式1-3x≥x-7,得x ≤2.∵不等式组无解,∴a+1≥2,∴a≥1.三、 16.解:解不等式①,得x>-5,解不等式②,得x<3,则不等式组的解集为-5<x<3,将不等式组的解集在数轴上表示如下:17.解:(1)如图.(-3,4) (2)(0,1)18.解:(1)AC=DF;AC∥DF(2)90(3)由平移得AD=BE,∵AE=8 cm,DB=2 cm,∴AD=BE=8-22=3(cm),∴平移的距离为3 cm.(4)在Rt△ABC中,∵∠ACB=90°,AC=4 cm,AB=AD+DB=3+2=5(cm),∴BC=52-42=3(cm),∴EF=BC=3 cm.又∵CF=AD=3 cm,∴四边形AEFC的周长=AC+AE+EF+CF=4+8+3+3=18(cm).四、19.证明:∵AD平分∠BAC,∠ACB=90°,DE⊥AB,∴DE =DC ,∴∠DCE =∠DEC .∵EF ∥BC ,∴∠DCE =∠FEC ,∴∠FEC =∠DEC ,∴EC 平分∠FED .20.解:(1)AB =PB提示:如图①,连接BQ .∵BC 垂直平分OQ ,∴BO =BQ ,∴∠BOQ =∠BQO ,∵OF 平分∠MON ,∴∠AOB =∠BOQ ,∴∠AOB =∠BQO ,∵OA =PQ ,∴△AOB ≌△PQB (SAS),∴AB =PB .(2)存在,证明如下:如图②,连接BQ .∵BC 垂直平分OQ ,∴BO =BQ ,∴∠BOQ =∠BQO ,∵OF 平分∠MON ,∠BOQ =∠FON ,∴∠AOF =∠BOQ ,∴∠AOF =∠BQO ,∴∠AOB =∠BQP ,∵OA =PQ ,∴△AOB ≌△PQB (SAS),∴AB =PB .21.解:(1)根据“异号两数相乘,积为负”可得:①⎩⎨⎧2x -3>0,x +3<0或②⎩⎨⎧2x -3<0,x +3>0.解①得无解;解②得-3<x <32. ∴不等式的解集为-3<x <32. (2)易得:①⎩⎨⎧13x -1≥0,x +2>0或② ⎩⎨⎧13x -1≤0,x +2<0.解①得x ≥3;解②得x <-2.∴不等式的解集为x ≥3或x <-2.五、22.解:(1)设每套滑雪护具x 元,每个防护头盔y 元,根据题意,得⎩⎨⎧6x +5y =1 900,2x +7y =1 700,解得⎩⎨⎧x =150,y =200. 答:每套滑雪护具150元,每个防护头盔200元.(2)设购买m 个防护头盔,则滑雪护具需购买(20-m )套,根据题意,得 200×0.8m +150×0.8(20-m )≤2 900,解得m ≤12.5,∵m 是正整数,∴m =12.答:最多可以购买12个防护头盔.23.解:(1)150°(2)如图,把△ABE 绕点A 逆时针旋转90°得到△ACE ′,连接E ′F .由旋转的性质得AE ′=AE ,CE ′=BE ,∠CAE ′=∠BAE ,∠ACE ′=∠B ,∠EAE ′=90°.∵∠EAF =45°,∴∠E ′AF =90°-45°=45°,∴∠EAF =∠E ′AF .在△EAF 和△E ′AF 中,∵AE =AE ′,∠EAF =∠E ′AF ,AF =AF ,∴△EAF ≌△E ′AF (SAS),∴E ′F =EF .∵∠CAB =90°,AB =AC ,∴∠B =∠ACB =45°,∴∠E ′CF =45°+45°=90°.由勾股定理得E ′F 2=CE ′2+FC 2,即EF 2=BE 2+FC 2.∴EF 2=82+62=100,解得EF =10.(3)7 提示:如图,将△AOB 绕点B 顺时针旋转60°至△A ′O ′B 处,连接OO ′,在Rt △ABC 中,∠ACB =90°,AC =1,∠ABC =30°,∴AB =2,∴BC =AB 2-AC 2=22-12=3,∵△AOB 绕点B 顺时针旋转60°得到△A ′O ′B ,∴A ′B =AB =2,BO =BO ′,A ′O ′=AO ,∠A ′BA =∠O ′BO =60°.∴△BOO ′是等边三角形,∠A ′BC =∠ABC +60°=30°+60°=90°.∴BO =OO ′,∠BOO ′=∠BO ′O =60°.∵∠AOC =∠COB =∠BOA =120°,∴∠COB +∠BOO ′=∠BO′A′+∠BO′O=120°+60°=180°,∴C,O,A′,O′四点共线,在Rt△A′BC中,A′C=BC2+A′B2=(3)2+22=7,∴OA+OB+OC =A′O′+OO′+OC=A′C=7,∴(OA+OB+OC)2=7.故答案为7.11。

北师大版八年级数学下册期中考试试卷及答案

北师大版八年级数学下册期中考试试卷及答案

八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。

在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为()A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)2.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF3.下列四个判断:其中正确的有()①若ac2>bc2,则a>b;②若a>b,则a|c|>b|c|;<1;③若a>b,则ba④若a>0,则b−a<b,A. 1个B. 2个C. 3个D. 3个4.下列式子中,是不等式的有()①2x=7;②3x+4y;③−3<2;④2a−3≥0;⑤x>1;⑥a−b>1.A. 5个B. 4个C. 3个D. 1个5.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中等边三角形是()A. ①②③B. ①②④C. ①③④D. ①②③④6.在△ABC中,已知a,b,c分别是∠A,∠B,∠C的对边,则下列条件中,不能判定△ABC是等腰三角形的是()A. a=3,b=3,c=4B. a∶b∶c=2∶3∶4C. ∠B=50°,∠C=80°D. ∠A∶∠B∶∠C=1∶1∶27.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90∘,得到△A′B′C′,则点A的对应点A′的坐标是()A. (0,4)B. (2,−2)C. (3,−2)D. (−1,4)8.下列剪纸图形中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个9.若关于x的不等式组{2−x2>2x−43,−3x>−2x−a的解集是x<2,则a的取值范围是()A. a≥2B. a<−2C. a>2D. a≤210.不等式4x+1>x+7的解集在数轴上表示正确的是()A. B.C. D.11.如图,点P是∠AOB的平分线上一点,PC⊥OA于点C,PD⊥OB于点D,连接CD交OP于点E,下列结论不一定正确的是()A. PC=PDB. OC=ODC. OP垂直平分CDD. OE=CD12.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是()A. ④B. ②③C. ①②③D. ①②③④13.如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:①AP的最小值是1,最大值是4;②当AP=2时,△APO是等腰三角形;③当AP=1时,△APO是等腰三角形;④当AP=√3时,△APO是直角三角形;⑤当AP=√5时,△APO是直角三角形.其中正确的是()A. ①④⑤B. ②③⑤C. ②④⑤D. ③④⑤14.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为()A. 11B. 12C. 13D. 1415.如图,已知P(3,2),B(−2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q 移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A. (0,12)B. (0,23)C. (0,43)D. (0,45)卷Ⅱ二、填空题(本大题共5小题,共25.0分) 16. 如图,将△ABC 绕点C 顺时针旋转至△DEC ,使点D 落在BC 的延长线上,已知∠A =27°,∠B =40°,则∠ACE =________°.17. 由不等式a >b 得到am <bm ,则m 应满足的条件是 . 18. 在Rt △ABC 中,∠C =90°,∠B =40°,则∠A 的度数是 .19. 若关于x 的不等式(a +1)x >a +1的解集为x >1,则a 的取值范围是 .20. 图甲所示的四张牌,若只将其中一张牌旋转180°后得到图乙,则旋转的牌是 .三、解答题(本大题共7小题,共80.0分) 21. (8分)(1)计算:(−3)2−√4+(12)0;(2)解不等式组:{x −2<32x +1>7.22. (8分)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点距离相等. (1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =40°,求∠CAD 的度数.23.(12分)如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)剩余草坪的面积是多少平方米?(3)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是216平方米,求通道的宽度是多少米?24.(10分)如图,△ABC中,AB=AC=2,∠ACB=30∘,将△ABC沿边AC所在的直线折叠,点B落在点E处,再将△ACE沿射线CA的方向平移,得到△A′C′E′,连接A′B,若A′B=2√3.求:(1)BC的长;(2)平移的距离.25.(12分)王老师所在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65700第二次37710第三次78693(1)王老师是第_____________次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买多少个篮球?26.(14分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE//OA交OB于点E.判断△CED的形状,并说明理由.27.(16分)如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2√2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.答案1.C2.D3.B4.B5.D6.B7.D8.B9.A10.A11.D12.D13.C14.D15.A16.4617.m<018.50°19.a>−120.方块521.(1)解:原式=9−2+1=8.(2)解:{x−2<3 ①2x+1>7 ②,由①得,x<5;由②得,x>3.∴不等式组的解为3<x<5.22.解:(1)如图,点D为所作;(2)△ABC中,∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD=BD,∴∠B=∠BAD=40°,∴∠CAD=∠BAC−∠BAD=10°.23.解:(1)S通道=b(2a+3b)+b(4a+3b)−b2 =2ab+3b2+4ab+3b2−b2=(6ab+5b2)(平方米).答:通道的面积共有(6ab+5b2)平方米;=(4a+3b)(2a+3b)−(6ab+5b2)(2)S草坪=8a2+6ab+12ab+9b2−(2ab+3b2+4ab+3b2−b2)=8a2+18ab+9b2−6ab−5b2=(8a2+12ab+4b2)(平方米).答:剩余草坪的面积是(8a2+12ab+4b2)平方米;=(4a+3b)(2a+3b)−[2b(2a+3b)+b(4a+3b)−2b2] (3)S草坪=8a2+18ab+9b2−(4ab+6b2+4ab+3b2−2b2)=8a2+18ab+9b2−8ab−7b2=8a2+10ab+2b2, ∵a=2b,∴32b2+20b2+2b2=54b2=216,∴b2=4,∴b=2(米).答:通道的宽度是2米.24.解:(1)作AD⊥BC于D,在Rt△ADC中,AC=2,∠ACB=30∘,AC=1,∴AD=12∴DC=√AC2−AD2=√22−12=√3,∵AB=AC,∠ADC=90∘,∴BC=2DC=2√3.(2)∵A′B=BC=2√3,∠ACB=30∘,∴∠2=∠ACB=30∘,∴∠1+∠3=180∘−30∘−30∘=120∘,∵AB=AC,∠ACB=30∘,∴∠1=∠ACB=30∘,∴∠3=90∘.在Rt△ABA′中,∠2=30∘,AB=2,∴AA′=4.即平移的距离是4.25.解:(1)三(2)足球的标价为50元,篮球的标价为80元.(3)最多可以购买38个篮球.26.解:△CED是等边三角形,理由如下:∵OC平分∠AOB,∠AOB=60°,∴∠AOC=∠COE=30°.∵CE//OA,∴∠AOB=∠CED=60°.∵CD⊥OC,∴∠OCD=90°.∴∠EDC=60°.∴△CED是等边三角形.27.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴DE=√(2√2)2+(2√2)2=4,∴AD=√42−12=√15.∴AB=AD+BD=√15+1;(3)如图,过C作CG⊥AB于G,则AG=12AB,∵∠ACB=90°,AC=BC,∴CG=12AB,即CGAB=12,∵点F为AD的中点,∴FA=12AD,∴FG=AG−AF=12AB−12AD=12(AB−AD)=12BD,由(1)可得:BD=AE,∴FG=12AE,即FGAE=12,∴CGAB =FGAE,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下期中质量检测数学试题及答案
说明:本卷共有六个大题,25个小题;全卷满分120分;考试时间100分钟. 一、选择题(本大题共8小题,每小题3分,共24分) 1、若分式
2
3
x -有意义,则x 应满足的条件是 ( )
A .x ≠0
B .x ≥3
C .x ≠3
D .x ≤3
2、若229y mxy x ++是一个完全平方式,则=m
( )
A .6
B .12
C .±6
D .±12
3、若032=-b a ,则
b
a
的值为 ( )
A .2
3
B .2
3
-
C .
3
2
D .3
2-
4、把多项式x x 43-分解因式所得的结果是 ( )
A.(x +2)(x -2)
B.x (x 2-4)
C.x (x +4)(x -4)
D.x (x +2) (x -2)
5、如图,已知AB AD =AC AE =BC DE =3
2 ,且△ABC 的周长为15cm,
则△ADE 的周长为
( ) A .6cm B .9cm
C .10cm
D .12cm
6、已知x 2+3x +☆分解因式得 (x +1)(x +◇),则☆的值为 ( ) A .2
B .3
C .-2
D .-3
7、若x :y :z =2:3:4,且x +y -z =5,则x -y 的值是
( )
A .5
B .-5
C .20
D .-20
8、已知a ,b 为实数,则解可以为 – 2<x <2的不等式组是( )
A .⎩⎨⎧>>11bx ax
B .⎩⎨⎧<>11bx ax
C .⎩⎨⎧><11bx ax
D .⎩⎨⎧<<11bx ax
二、填空题(本大题共8小题,每小题3分,共24分) 9、计算:x -1x +1
x = .
10、用1:50000的比例尺绘出某市的地图,某一步行街在地图上只有2.5cm ,则这条步行街实际有 m . 11、20122013)2(2--= .
12、已知一次函数y =kx +b 中(k 、b 为常数,且k <0)与x 轴交点坐标是(-2,0),则关于x 的不等式kx +b ≤0的解集是 .
13、已知AB=4cm ,C 是AB 的黄金分割点(AC >BC ),则AC -BC= cm . 14、已知关于x 的方程1x-2 =k x +4
x (x-2) 有增根,则k 的值为 . 15、若关于x 的不等式组{
23335
x x x a >-->有实数解,则a 的取值范围是 .
16、设a >b >0,a 2+b 2—6ab =0,则
a b
b a
+-的值等于 . 三、(本大题共4个小题,第17小题8分,第19小题10分,其余每小题6分,共30分)
17、(8分)分解因式: (1)2234
1ab b a a +-
(2))(4)(22x y n y x m -+-
18、(6分)解方程112
142
-=-++-x x x
19、(10分)(1)解不等式组⎪⎩⎪
⎨⎧+<≥+,②,①31202x x x ,并把解集在数轴上表示出来.
(2)先化简,再求值:1
22)12143(22+-+÷---+x x x x x x ,其中x 是(1)中的整数解.
20、(6分)已知关于x 、y 的方程组⎩⎨⎧+=---=+a y x a
y x 317的解都是非正数,求a 的取
值范围.
四、(本大题共2个小题,第21小题6分,第22小题8分,共14分) 21、(6分)某中学和交警大队联合举行了“我当一日小交警”活动,选派部分学生到交通路口值勤.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派了多少名值勤学生?
22、(8分)如图,喜羊羊在研究数学问题时发现了一个有趣的现象
.
(1)请你用数学表达式.....
在下框中补充完整喜羊羊发现的这个有趣的现象.
(2)请你证明喜羊羊发现的这个有趣结论.
五、(本大题共2小题,每小题9分,共18分)
23、(9分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔但这次每支的进价是第一次进价的
4
5
倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
24、(9分)小杰到学校食堂买饭,看到A 、B 两窗口前面排队的人一样多(设为a 人,a >8),就站在A 窗口队伍的后面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人.
(1)此时,若小杰继续在A 窗口排队,则他到达窗口所花的时间是多少?(用含a 的代数式表示)
(2)此时,若小杰迅速从A 窗口队伍转移到B 窗口后面重新排队,且到达B 窗口所花的时间比继续在A 窗口排队到达A 窗口所花的时间少,求a 的取值范围.(不考虑其它因素)
六、(本大题1小题,共10分)
25、(10分)我市的出租车收费y(元)与路程x(千米)之间的函数关系如图所示. (1)图中AB段的意义是.
(2)当x>2时,y与x的函数关系式为. (3)蒋老师打算乘出租车从甲地去丙地,但需途经乙地办点事.已知甲地到乙地的路程为1km,乙地至丙地的路程超过3km.现有两种打车方案:
方案一:先打车从甲地到乙地,办完事后,再打另一部出租车去丙地;
方案二:先打车从甲地到乙地,让出租车司机等候,办完事后,继续乘该车去丙地(出租车等候期间,蒋老师每分钟支付0.2元).
蒋老师应选择哪种方案较为合算?试说明理由.
参考答案。

相关文档
最新文档