北师大版八年级数学期中试卷

合集下载

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试题一、单选题1.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为()A .(2,15)B .(2,5)C .(5,9)D .(9,5)2.下列各线段的长,能构成直角三角形的是()A .2,3,4B .5,12,13C .4,6,9D .5,11,133.下列运算中,正确的是()A ±3B2C .(﹣2)0=0D .2﹣1=﹣24.在2,13-,π,0,227,2.101010…(相邻两个1之间有1个0),3.14,0.1212212221…(相邻两个1之间2的个数逐次加1)这些数中无理数的个数是()A .1B .2C .3D .45.在下列各组数中,互为相反数的是()A .2与B .-2与12-C .与D .26.下列根式中不是最简二次根式的是()A B C D7.点A 关于y 轴的对称点1A 坐标是()2,1--,则点A 的坐标是()A .()1,2--B .()2,1C .()2,1-D .()2,1-8.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x≤5)的函数表达式为()A .y =﹣0.3x +6B .y =﹣0.3x ﹣6C .y =0.3x +6D .y =0.3x ﹣69.下列运算正确的是()A =B .=﹣32C .±=D 1100=10.点A (﹣3,2)关于y 轴的对称点的坐标为()A .(3,2)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,3)二、填空题11.2(2.5)-的平方根是__________.12.比较大小:.(用<、>或=来表示)13.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为_____.14.如图,在水塔O 的东北方向8m 处有一抽水站A ,在水塔的东南方向6m 处有一建筑物工地B ,在AB 间建一条直水管,则水管的长为______.15.如图,数轴上点B 表示的数为2,过点B 作BC OB ⊥于点B ,且1CB =,以原点O 为圆心,OC 为半径作弧,弧与数轴负半轴交于点A ,则点A 表示的实数是_______.16.若函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,则m =_____.1750b +-=,则()2a b -的值是_____.18.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.三、解答题19.计算:(2)1023)--;2)+;;(5)(1-2(1+2)-)2;(6)÷20.已知一个正数的平方根是a+3和2a-15.(1)求a 的值;(2)求这个正数.21.如图在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (4,0),B (﹣1,4),C (﹣3,1)(1)在图中作△A′B′C′使△A′B′C′和△ABC 关于x 轴对称;(2)写出点A′,B′,C′的坐标.22.如图,圆柱外底面A 点处有一只蚂蚁,想去壁外点P 处吃蜂蜜,已知底面圆的直径AB 为16πcm ,圆柱高为12cm ,P 为BC 的中点,求蚂蚁从A 点爬到P 点的最短距离.23.已知点P (2m+4,m -1),请分别根据下列条件,求出点P 的坐标.(1)点P 在x 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 在过点A (2,-4)且与y 轴平行的直线上.24.已知y =(k ﹣1)x IkI +(k 2﹣4)是一次函数.(1)求k 的值;(2)求x =3时,y 的值;(3)当y =0时,x 的值.25.如图,a ,b ,c 是数轴上三个点A ,B ,C 所对应的实数.试化简:233()c a b a b b c--++--26.如图,在四边形ACBD 中,AC =6,BC =8,AD =5BD =5DE 是△ABD 的边AB 上的高,且DE =4,求△ABC 的边AB 上的高.参考答案1.C 【解析】【分析】根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.【详解】∵(2,15)表示2排15号可知第一个数表示排,第二个数表示号∴5排9号可以表示为(5,9),故选:C .【点睛】本题是有序数对的考查,解题关键是弄清楚有序数对中的数字分别对应的是行还是列2.B 【解析】【分析】根据题意利用判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方进行分析即可.【详解】解:A 、22223134+=≠,故A 选项构成不是直角三角形;B 、22251216913+==,故B 选项构成是直角三角形;C 、22246529+=≠,故C 选项构成不是直角三角形;D 、22251114613+=≠,故D 选项构成不是直角三角形.故选:B .【点睛】本题考查勾股定理的逆定理的应用.注意掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B 【解析】【分析】根据算术平方根、立方根、零指数幂和负整数指数幂的运算法则分析每个选项的计算正确与否即可求解.【详解】解:A3,原计算错误,不符合题意;B、2,原计算正确,符合题意;C、(﹣2)0=1,原计算错误,不符合题意;D、2﹣1=1,原计算错误,不符合题意,2故选:B.【点睛】本题考查算术平方根、立方根、零指数幂和负整数指数幂,熟练掌握运算法则是解答的关键.4.B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:无理数有π,0.1212212221…(相邻两个1之间的2的个数逐次加1),共2个.故选:B.【点睛】本题考查了对无理数的定义的应用,能正确理解无理数的定义是解此题的关键.5.C【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A、都是2,故A错误;B、互为倒数,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、都是2,故D错误.故选:C.【点睛】本题考查了实数的性质,利用只有符号不同的两个数互为相反数判断是解题关键.6.C 【解析】【详解】最简二次根式必须满足两个条件:被开方数不含分母,被开方数中不含能开的尽方的因数或因式.,故不是最简二次根式.故选C .7.D 【解析】【分析】直角坐标系中,点关于y 轴对称的特点是,横坐标变为相反数,纵坐标不变,据此解题即可.【详解】根据题意,A 关于y 轴的对称点1A 坐标是()21--,,则点A 的坐标是()21-,,故选:D .【点睛】本题考查关于y 轴对称的点的坐标,是基础考点,难度较易,掌握相关知识是解题关键.8.C 【解析】【分析】用初始的水位高度加上升的高度得到水库的水位高度,从而得到y 与x 的关系式.【详解】解:∵初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,∴水库的水位高度y 米与时间x 小时(0≤x≤5)的函数关系式为y=0.3x+6,故选:C .【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.9.D【解析】【分析】根据二次根式的有关运算以及立方根和平方根的定义,对选项逐个判断即可.【详解】解:A+=,选项错误,不符合题意;B、33(22=--=,选项错误,不符合题意;C、=±D1100=,选项正确,符合题意;故选:D【点睛】此题考查了二次根式的有关运算以及立方根和平方根的求解,解题的关键熟练掌握相关运算法则.10.A【解析】【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y 轴的对称点P′的坐标是(-x,y),进而得出答案.【详解】解:点A(﹣3,2)关于y轴的对称点的坐标为(3,2),故选:A【点睛】此题主要考查了关于y轴对称点的性质,正确把握对称点横、纵坐标的关系是解题关键.11. 2.5±【解析】【分析】先计算出2(2.5)-的值,再根据平方根的定义即可得出答案.【详解】2(2.5)52 6.=-,则6.25的平方根为 2.5=±.故答案为: 2.5±.【点睛】本题主要考查的是平方根的定义,注意一个正数的平方根有两个,它们互为相反数;0的平方根还是0;负数没有平方根.12.>【解析】【分析】的大小,根据实数的大小比较即可求解.【详解】解:∵162025<<,∴45<<,∴5>故答案为:>.【点睛】本题考查了无理数的大小比较,正确的估算是解题的关键.13.5【解析】【分析】设斜边长为x ,根据勾股定理即可求解.【详解】解:设斜边长为x ,根据题意可得,2916x =+,解得5x =(负值已舍),故答案为:5.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.14.10m【解析】【分析】由题意可得三角形AOB是直角三角形,且AB是斜边,所以由勾股定理即可算得AB的值.【详解】解:已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=8m,OB=6m,∴AB=10(m).故答案为:10m.【点睛】本题考查勾股定理的应用,在判断三角形为直角三角形及三角形直角边和斜边的基础上利用勾股定理求解是解题关键.15.【解析】【分析】直接利用勾股定理得出CO的长,再利用数轴得出答案.【详解】解:BC OB⊥,∴∠=︒,OBC90∴∆是直角三角形,OBCBC=,OB=2,1∴==OC,∴点A表示的实数是:故答案为:【点睛】此题主要考查了实数与数轴,正确数形结合分析是解题关键.16.5【解析】【分析】直接利用正比例函数的定义进而得出答案.【详解】解:∵函数y =(m ﹣2)x+5﹣m 是关于x 的正比例函数,∴50m -=,20m -≠,解得:m =5.故答案为:5.【点睛】本题主要考查了正比例函数的定义,正确把握定义是解题关键.17.16【解析】【分析】根据算术平方根与绝对值的非负性可求出a 、b 的值,然后代入求解即可.【详解】50b +-=,∴10,50a b -=-=,解得:1,5a b ==,∴()()221516a b -=-=;故答案为16.【点睛】本题主要考查算术平方根与绝对值的非负性,熟练掌握算术平方根与绝对值的非负性是解题的关键.18.-3或7【解析】【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的左边或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标和A 点的纵坐标相同,都是4,又∵A (-2,4),AB =5,∴当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.19.(2)0(3)2(4)13-3【解析】【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先计算负整数指数幂,零次幂,化简二次根式,再合并即可;(3)先计算二次根式的乘法,再合并同类二次根式即可;(4)先计算算术平方根,立方根,再合并即可;(5)先计算二次根式的乘法,再合并同类二次根式即可;(6)先计算二次根式的除法运算,再合并即可.(1)解:原式=13⨯=(2)原式=131110;22-+=-+=(3)原式=22++(4)原式=11 22;33 --=-(5)原式=112(31)1142152---=--+-+(6)原式=3 3.+=20.(1)4;(2)49【分析】(1)根据平方根的性质“正数有两个平方根,互为相反数”列出方程,解方程即可;(2)求出a+3和2a-15,即可求出这个正数.【详解】(1)依题意得:(a+3)+(2a-15)=0解得:a=4;(2)当a=4时,a+3=7,2a-15=-7,∴这个正数为(±7)2=49.21.(1)见解析(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1)【分析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A′,B′,C′,顺次连接即可;(2)根据点的位置写出坐标即可.(1)解:△A′B′C′如图,(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).【点睛】本题考查作图−轴对称变换,坐标与图形,解题的关键是掌握轴对称的性质.22.蚂蚁从A 点爬到P 点的最短距离为10cm【解析】【分析】把圆柱的侧面展开,连接AP ,利用勾股定理即可得出AP 的长,即蚂蚁从A 点爬到P 点的最短距离.【详解】∵圆柱底面直径AB =16πcm 、母线BC =12cm ,P 为BC 的中点,∴圆柱底面圆的半径是8πcm ,BP =6cm ,∴如图:AB =12×2×8π=8(cm ),在Rt △ABP 中,AP ==10(cm ),∴蚂蚁从A 点爬到P 点的最短距离为10cm .【点睛】本题考查的是勾股定理求最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.23.(1)(6,0)(2)(-12,-9)(3)(2,-2)【解析】【分析】(1)直接利用x 轴上点的坐标特点为纵坐标为零,进而得出答案;(2)利用点P 的纵坐标比横坐标大3,进而得出答案;(3)利用经过()2,4A -且平行于y 轴,则其横坐标为2,进而得出答案.(1)解: 点()24,1P m m +-,点P 在x 轴上,10m ∴-=,解得:1m =,则246m +=,故()6,0P ;(2)解: 点P 的纵坐标比横坐标大3,()1243m m ∴--+=,解得:8m =-,故()12,9P --;(3)解: 点P 在过()2,4A -点且与y 轴平行的直线上,242m ∴+=,解得:1m =-,12m ∴-=-,故()2,2P -.【点睛】本题主要考查了坐标与图形的性质,正确分析各点坐标特点是解题关键.24.(1)k =﹣1;(2)y =﹣9;(3)x =32-.【解析】【分析】(1)直接利用一次函数的定义得出k 的值即可;(2)利用(1)中所求,再利用x=3时,求出y 的值即可;(3)利用(1)中所求,再利用y=0时,求出x 的值即可.【详解】解:(1)由题意可得:|k|=1,k ﹣1≠0,解得:k =﹣1;(2)当x=3时,y=﹣2x﹣3=﹣9;(3)当y=0时,0=﹣2x﹣3,解得:x=3 2-.【点睛】本题考查一次函数的定义,正确把握一次函数的定义是解题关键.25.3b【解析】【分析】利用数轴可得出a-b>0,c>0,b-c<0,a+b<0,进而取绝对值开平方得出即可.【详解】由数轴可得:c>0,a﹣b>0,a+b<0,b﹣c<0,a b b c--+--=c﹣a+b+a+b+b﹣c=3b.【点睛】此题主要考查了数轴与实数,涉及算术平方根和立方根,得出各项符号并利用绝对值的性质化简是解题关键.26.△ABC的边AB上的高为4.8.【解析】【分析】先根据勾股定理求出AE和BE,求出AB,根据勾股定理的逆定理求出△ABC是直角三角形,再求出面积,进一步得到△ABC的边AB上的高即可.【详解】∵DE是AB边上的高,∴∠AED=∠BED=90°,在Rt△ADE中,由勾股定理,得AE2==.同理:在Rt△BDE中,由勾股定理得:BE=8,∴AB=2+8=10,在△ABC中,由AB=10,AC=6,BC=8,得:AB2=AC2+BC2,∴△ABC是直角三角形,设△ABC的AB边上的高为h,则12×AB×h=12AC×BC,即:10h=6×8,∴h=4.8,∴△ABC的边AB上的高为4.8.。

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试卷及答案

北师大版八年级上册数学期中考试试题一、单选题1237-,3π,0中,无理数有()A .1个B .2个C .3个D .4个2.16的算术平方根是()A .4B .4±C .8D .8±3.下列各组数据中不能构成直角三角形三边长的是()A .2,3,4B .3,4,5C .6,8,10D .14.下列函数中y 是x 的一次函数的是()A .1y x=B .31y x =+C .21y x =D .231y x =+5.下列计算正确的是()A B=1CD 6.点21P a a -+(,)在x 轴上,则a 的值为()A .2B .0C .1D .-17的值在()A .2到3之间B .3到4之间C .4到5之间D .5到6之间8.一次函数21y x =-的图象经过()A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限9.下列各点中,在函数23y x =-的图象上的点是()A .()2,1-B .()2,1-C .()3,0D .()0,310.已知一次函数y kx b =+中y 随x 的增大而减小,且0kb <,则在直角坐标系内它的大致图象是()A .B .C .D .二、填空题11.9的平方根是_______;8-的立方根是_________.12.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标是________.13.四个实数﹣2,013中,最小的实数是_____.14.某正比例函数的图像经过点(1-,3),则此函数关系式为________.15.若,x y 为实数,且30x ++,则2021()x y +的值为_______.16.在直线y =12x +1上,且到x 轴或y 轴的距离为2的点的坐标是________.三、解答题17.计算:()01322π-18)1119.已知△ABC 中,AB =AC ,CD ⊥AB 于D ,若AB =5,CD =3,求BC 的长.20.(1)已知:2a+1的算术平方根是3,3a ﹣b ﹣1的立方根是2的值.(2)已知a b 是它的小数部分,求a 2+(b+3)2的值.21.如图,四边形ABCD 中,90B ∠=︒,BC =,2AB =,3CD =,5AD =.(1)求证:AC CD;(2)求四边形ABCD的面积.22.已知一次函数y=1.5x-3.(1)请在平面直角坐标系中画出此函数的图像.(2)求出此函数与坐标轴围成的三角形的面积.23.如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,A(﹣5,0)、B(﹣2,4)、C(﹣1,﹣2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC关于x轴对称的△A2B2C2的三个顶点的坐标;24.阅读下列材料,然后解答问题.这样的式子,其实我们还可以将其进一步化简:21.以上将分母中的根号化去的过程,叫做分母有理化.请参照以上方法化简下列各式:(1(2;(3...+25.如图是一支蜡烛点燃以后,其长度()cm y 与时间()h t 的函数图象,请解答以下问题:(1)这支蜡烛点燃前的长度是多少cm ?每小时燃烧是多少cm ?(2)写出y 与t 的函数解析式,并求t 的取值范围;参考答案1.B 【解析】【分析】根据无理数的定义和特征逐个判断即可.【详解】237-,3π,0中,237-,03π是无理数;故选:B .【点睛】此题主要考查了无理数的定义:无限不循环小数是无理数.其中初中范围内学习的无理数有:π,2π等;开不尽的方根;以及像0.1010010001…,等有这样规律的数.2.A 【解析】【分析】利用算术平方根定义计算即可求出值.【详解】解:∵42=16,∴数16的算术平方根是4.故选:A .【点睛】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.A 【解析】【分析】先求出两小边的平方和,再求出最长边的平方,看看是否相等即可.【详解】解:A 、∵22+32≠42,∴以2,3,4为边不能组成直角三角形,故本选项符合题意;B 、∵32+42=52,∴以3,4,5为边能组成直角三角形,故本选项不符合题意;C 、∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项不符合题意;D 、∵12+()2=()2,∴以1,故选:A .【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.4.B 【解析】【分析】根据一次函数的定义逐一判断即可.【详解】A :1y x=,未知数x 充当了分母,不是(0)y kx b k =+≠的形式,故此选项错误;B :31y x =+,是一次函数,故此选项正确;C :21y x=,未知数x 充当了分母,不是(0)y kx b k =+≠的形式,故此选项错误;D :231y x =+,未知数x 的次数为2,故此选项错误;故答案选B 【点睛】本题主要考查了一次函数的定义,熟悉掌握一次函数的表达式和定义是解题的关键.5.C 【解析】【分析】根据二次根式的运算方法判断选项的正确性.【详解】解:A 选项错误,不是同类二次根式不可以加减;B 选项错误,不是同类二次根式不可以加减;C 选项正确;D 选项错误,2故选:C .【点睛】本题考查二次根式的计算,解题的关键是掌握二次根式的运算方法.6.D【解析】【分析】根据题意直接利用x轴上点的坐标特点得出a+1=0,进而得出答案.【详解】解:∵P(a-2,a+1)在x轴上,∴a+1=0,解得:a=-1.故选:D.【点睛】本题主要考查点的坐标,正确掌握x轴上点的坐标特点即点在x轴上其纵坐标为0是解题关键.7.B【解析】【分析】利用”夹逼法“+1的范围.【详解】解:∵4<6<9,<<,<<23∴34<<,故选:B.8.B【解析】【分析】根据一次函数的性质即可判断该一次函数的图象经过哪些象限.【详解】20b=-<,k=>,10∴21=-经过第一、三、四象限.y x故选:B.本题考查了一次函数的性质,准确记忆一次函数的性质是解题的关键.9.B【解析】【分析】把4个点的坐标分别代入函数关系式,满足关系式的在此函数图象上.【详解】解:A,把(2,−1)代入函数关系式:4−3=1≠−1,故此点不在函数图象上;B,把(−2,1)代入函数关系式:4−3=1,故此点在函数图象上;C,把(3,0)代入函数关系式:9−3=6≠0,故此点不在函数图象上;D,把(0,3)代入函数关系式:0−3=−3≠3,故此点不在函数图象上;故选:B.【点睛】此题主要考查了二次函数图象上点的坐标特征,关键是把点的坐标代入函数关系式,满足关系式的在此函数图象上,反之,则不在.10.A【解析】【分析】kb<即可判断根据一次函数的图象及性质由y随x的增大而减小即可判断k的符号,再由0b的符号,即可得出答案.【详解】=+中y随x的增大而减小,解: 一次函数y kx b∴0k<,kb<,又 0∴>,b=+的图象经过一、二、四象限,∴一次函数y kx b故选A.【点睛】本题考查了一次函数的图象及性质,解题关键在于熟练掌握一次函数四种图象的情况.11.±3-2【详解】因为3的平方是9,-3的平方是9,所以9的平方根是3±,因为-2的立方是-8,所以-8的立方根是-2,故答案为:3±,-2.12.3,2(-)【解析】【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(3,2)关于x 轴对称的点的坐标是3,2(-),故答案为3,2(-).【点睛】本题主要考查了关于x 轴对称点的坐标,关键是掌握点的坐标的变化规律.13【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得-2<0<13,∴四个实数-2,0,13中,最小的实数是故答案为【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.14.3y x=-【分析】设正比例函数解析式为y=kx ,把已知点的坐标代入y=kx 中求出k 即可.【详解】解:设正比例函数解析式为y=kx ,把(-1,3)代入y=kx 得k=-3,所以正比例函数解析式为y=-3x .故答案为y=-3x .【点睛】本题考查了待定系数法求正比例函数的解析式:设正比例函数的解析式为y=kx (k≠0),然后把一组对应值代入求出k 即可.15.-1【解析】【分析】直接利用非负数的性质得出x ,y 的值,再利用有理数的乘方运算法则计算得出答案.【详解】解:∵30x ++=∴30,20x y +=-=解得,3,2x y =-=∴(x+y )2021=(-3+2)2021=-1.故答案为:-1.【点睛】此题主要考查了非负数的性质、有理数的乘方运算等知识,正确得出x ,y 的值是解题关键.16.(2,2)或(-2,0)或(-6,-2)【解析】【分析】由点在直线y =12x +1上,到x 轴或y 轴的距离为2,即已知直线y =12x +1上点的横坐标为±2或纵坐标为±2,求对应的纵坐标和横坐标,然后根据一次函数图形上点的坐标特征求解.把x=2代入y =12x +1得y=2;把x=-2代入y =12x +1得y=0;把y=2代入y =12x +1得2=12x +1,解得x=2;把y=-2代入y =12x +1得-2=12x +1,解得x=-6;所以在直线y =12x +1上,到x 轴或y 轴的距离为2的点为(2,2),(-2,0)或(-6,-2),故答案为(2,2)或(-2,0)或(-6,-2).【点睛】本题考查了一次函数图形上点的坐标特征:一次函数y=kx+b ,(k≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(b k-,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y=kx+b .17.3【解析】【分析】根据零指数幂,立方根,二次根式以及绝对值的计算法则进行求解即可.【详解】解:()01322π---()(11422=---⨯-142=+-+3=.【点睛】本题主要考查了零指数幂,立方根,二次根式以及绝对值,解题的关键在于能够熟练掌握相关计算法则.18.5【解析】【分析】根据二次根式的除法法则和平方差公式化简后再合并即可得到答案.)11=+3-1=5+【点睛】本题主要考查了二次根式的混合运算,熟练掌握运算法则以及平方差公式是解答本题的关键.19【解析】【分析】在Rt△CDA中,利用勾股定理求出AD的长,然后求出BD的长,最后在Rt△CBD中,利用勾股定理求出CB的长度.【详解】解:在Rt△CDA中,∵AC=AB=5,CD=3,∴4,=∴BD=AB-AD=5-4=1,在Rt△CBD中,=20.(1)4;(2)19.【解析】(1)利用算术平方根,立方根定义求出a与b的值,代入原式计算即可求出值;(2)估算得出a与b的值,代入原式计算即可求出值.【详解】(1)∵2a+1的算术平方根是3,3a﹣b﹣1的立方根是2,∴2a+1=9,3a﹣b﹣1=8,解得:a=4,b=3,则原式=4;(2)由题意得:a=3,3,则原式=9+10=19.21.(1)证明见解析;(2)6.【解析】(1)根据勾股定理求出AC ,求出AC 2+CD 2=AD 2,再根据勾股定理的逆定理得出即可;(2)求出△ABC 和△ACD 的面积,相加即可得出答案.【详解】(1)证明:∵在△ABC 中,∠B=90°,BC =,AB=2,∴由勾股定理得:4AC =,∵CD=3,AD=5,∴AC 2+CD 2=AD 2,∴∠ACD=90°,即AC ⊥CD ;(2)解:四边形ABCD 的面积S=S △ABC +S △ACD1122AB BC AC CD =⨯⨯+⨯⨯1123422=⨯⨯+⨯⨯6=+.22.(1)图形见解析;(2)函数与坐标轴围成的三角形的面积为3.【解析】(1)将y=0代入y=1.5x-3,可得:x=2,得到点A 的坐标,将x=0代入y=1.5x-3,可得:y=-3,得到点B 的坐标,根据一次函数的性质,过,A B 两点作直线即可.(2)根据三角形的面积公式求解即可.【详解】(1)将y=0代入y=1.5x-3,可得:x=2,∴点A 的坐标为(2,0),将x=0代入y=1.5x-3,可得:y=-3,∴点B 的坐标为(0,-3),故图像如图:(2)函数与坐标轴围成的三角形的面积为:12332⨯⨯=.23.(1)见解析;(2)A 2(-5,0)、B 2(-2,-4)、C 2(-1,2)【解析】(1)先根据关于y 轴对称的点的坐标特征,先得到A 、B 、C 关于y 轴对称的点A 1、B 1、C 1,然后顺次连接A 1、B 1、C 1即可得到答案;(2)根据关于x 轴对称的点的坐标特征:横坐标相同,纵坐标互为相反数进行求解即可.【详解】解:(1)如图所示,111A B C △即为所求;(2)∵A 2、B 2、C 2分别是A (-5,0)、B (-2,4)、C (-1,-2)关于x 轴对称的点,∴A 2(5,0)、B 2(-2,-4)、C 2(-1,2).24.(1)33;(221+;(3)202112【解析】(1)分母是含有根式的单项式,故分子分母同时乘以分母的根号部分,整理即可;(2)分母是含有根式的多项式,故分子分母同时乘以有理化因式(和原分母相乘配成平方差公式的因式),整理即可;(3)分别按照(2)的方法分母有理化,整理即可.【详解】(1=3;(21=;(3 25.(1)这支蜡烛点燃前的长度是24cm ,每小时燃烧4cm ;(2)()42406y t t =-+#.【解析】(1)首先补全函数图象,然后根据函数图象可得这支蜡烛点燃前的长度,然后再计算每小时燃烧的长度即可;(2)根据“剩余长度=点燃前的长度-燃烧的长度”列出函数关系式,求出y=0时t 的值,即可得到t 的取值范围.【详解】解:(1)根据纵坐标的刻度补全函数图象,如图:∵当t=0时,y=24,∴这支蜡烛点燃前的长度是24cm ,∵t=1.5时,y=18,∴每小时燃烧的长度为:241841.5-=cm ;(2)由题意得:244424y t t =-=-+,当y=0时,即4240t -+=,解得:t=6,∴t 的取值范围是:0≤t≤6,故y 与t 的函数解析式是:()42406y t t =-+#.【点睛】本题考查了从函数图象获取信息以及列函数关系式,解题关键是正确理解和把握题目中隐含的数量关系,只有充分理解已知条件,才能列出函数关系式.。

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试卷含答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,是无理数的是()A .227B C .-3.14D 2.下列四组线段中,能组成直角三角形的是()A .a=1,b=2,c=3B .a=2,b=3,c=4C .a=2,b=4,c=5D .a=3,b=4,c=53.若点P (a ,b )是第二象限内的点,则点Q (b ,a )在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列计算错误的是()AB C D .5.若函数()15m y m x =--是一次函数,则m 的值是()A .±1B .1-C .1D .26.下列二次根式中,最简二次根式是()A .B CD 7.一次函数24y x =-+的图象与y 轴的交点坐标是()A .(4,0)B .(0,4)C .(2,0)D .(0,2)8.如图,在Rt ABC △中分别以三角形的三条边为边向外作正方形,面积分别记为1S ,2S ,3S ,若14S =,216S =,则3S 的值为()A .10B .6C .12D .209.一次函数23y x =-的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限10.如图,在数轴上,点O 对应数字O ,点A 对应数字2,过点A 作AB 垂直于数轴,且AB=4,连接OB ,绕点O 顺时针旋转OB ,使点B 落在数轴上的点C 处,则点C 所表示的数介于()A .2和3之间B .3和4之间C .4和5之间D .5和6之间二、填空题11=________.12.已知点(),1A a 与点()4,B b -关于原点对称,则a-b 的值为________13有意义的x 的取值范围是14.点A(1,a)在直线y =-2x +3上,则a =_________15.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”,他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.16.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是_____.17.如果正比例函数的图象经过点(2,1),那么这个函数的解析式是__________.三、解答题18.计算(1)-19.计算:(1(2)2(2(2-+.20.如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?21.已知点P (a ,b )在第二象限,且|a|=3,|b|=8,求点P 的坐标.22.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?23.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2,并写出其顶点坐标;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是__________________.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=,CD=BC=8,求四边形ABCD的面积.25.已知一次函数y=-2x+4.求:(1)求图象与x轴、y轴的交点A、B的坐标.(2)画出函数的图象.(3)求△AOB的面积.26.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为1y(元),B套餐为2y(元),月通话时间为x分钟.(1)分别表示出1y与x,2y与x的函数关系式;(2)月通话时间多长时,A,B两种套餐收费一样?(3)某客户每月的通话时间大概是500分钟,他应该选择哪种套餐更省钱?(4)如果某公司规定员工的话费最多是200元,他应该选择哪种套餐?参考答案1.B【解析】【分析】根据有理数和无理数的定义直接求解,无限不循环小数是无理数.【详解】解:A.227是有理数,故本选项不符合题意;C. 3.14-是有理数,故本选项不符合题意;2=是有理数,故本选项不符合题意.故选:B【点睛】本题主要考查了有理数和无理数的判断,熟练掌握有理数和无理数的概念是解答此题的关键.2.D【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A.∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B.∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C.∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D.∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选D.【点睛】本题考查了勾股定理的逆定理.解题的关键是,验证两小边的平方和等于最长边的平方即可证明直角三角形.3.D【解析】【分析】应先判断出所求的点的横坐标的符号,进而判断其所在的象限.【详解】解:∵点P (a 、b )在第二象限,∴a<0,b>0,∴点Q (b ,a )在第四象限,故选D .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,-);第二象限(-,+);第三象限(-,-)第四象限(+,-).4.B 【解析】【分析】根据二次根式的运算直接进行计算化简判断即可.【详解】A,正确;BC =D故选:B .【点睛】本题主要考查二次根式的化简运算,熟练掌握二次根式的运算是解题的关键.5.B 【解析】【分析】函数()15my m x =--是一次函数,根据一次函数的定义,求出m 的值即可.【详解】∵函数()15m y m x =--是一次函数,∴1m =,且10m -≠,解得:1m =-,故答案选:B .【点睛】本题考查一次函数的定义:一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,正确判断未知数的次数与系数是解答本题的关键.6.A 【解析】【分析】根据最简二次根式的两个条件逐项判定即可.【详解】解:A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意;B 、被开方数含能开得尽方的因数或因式,故B 不符合题意;C 、被开方数含分母,故C 不符合题意;D 、被开方数含能开得尽方的因数或因式,故D 不符合题意.故选:A .【点睛】本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.7.B 【解析】【分析】求一次函数图像与y 轴的交点坐标,令x=0,求出y 值即可.【详解】令x=0,得y=-2×0+4=4,∴一次函数与y 轴的交点坐标是(0,4),故选B.【点睛】本题考查一次函数与坐标轴的交点坐标问题,求图像与y 轴交点坐标时,令x=0,解出y 即可;求图像与x 轴交点坐标时,令y=0,解出x 即可.8.D【分析】根据勾股定理的验证计算即可;【详解】在Rt ABC △中,222AC AB BC +=,由正方形的面积公式可得21S AB =,222S AC =,223S BC =,∵14S =,216S =,∴31241620S S S =+=+=;故选D .【点睛】本题主要考查了勾股定理的应用,准确分析计算是解题的关键.9.B 【解析】【分析】根据一次函数(0)y ax b a =+≠的a 、b 的符号判定该一次函数所经过的象限即可.【详解】解: 一次函数23y x =-的20k =>,30b =-<,∴一次函数23y x =-经过第一、三、四象限,即一次函数23y x =-不经过第二象限.故选:B .【点睛】本题考查了一次函数的图象,即直线y kx b =+所在的位置与k 、b 的符号有直接的关系.解题的关键是掌握当0k >时,直线必经过一、三象限.0k <时,直线必经过二、四象限.0b >时,直线与y 轴正半轴相交.0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.10.C 【解析】【分析】因为△OAB 是一个直角三角形,且有OC=OB ,所以可求得OB 的长度即得C 点所表示的数,可判断其大小.解:∵AB ⊥OA∴在直角三角形OAB 中有OA 2+AB 2=OB 2∴.OB ==∴45又∵OC=OB∴点C 所表示的数介于4和5之间故选:C .【点睛】此题考查勾股定理,无理数的估算,重点就是由垂直而组成的直角三角形的性质,从而解得答案.11.2【解析】【分析】先根据二次根式的性质化简,再合并即可.【详解】22==,故答案为:2.12.5【分析】直接利用关于原点对称点的性质得出a ,b 的值,代入求解即可.【详解】解:∵点A (a ,1)与点B (﹣4,b )关于原点对称,∴4a =,1b =-,∴5a b -=,故答案为:5.13.x≥3【分析】根据二次根式有意义的条件,可推出30x -≥,然后通过解不等式,即可推出5x ≥【详解】解:若30x -≥,原根式有意义,3x ∴≥,故答案为3x ≥.14.1【详解】将点A 的坐标(1,a)代入直线的解析式y=-2x+3,得a=-2+3=1.故答案为:115.4【分析】少走的距离是AC+BC-AB ,在直角△ABC 中根据勾股定理求得AB 的长即可.【详解】解:如图,∵在Rt ABC 中,222AB AC BC =+,∴5AB ===米,则少走的距离为:3452AC BC AB +-=+-=米,∵2步为1米,∴少走了4步.故答案为:4.16.x=2【解析】由直线y=2x+b 与x 轴的交点坐标是(2,0),求得b 的值,再将b 的值代入方程2x+b=0中即可求解.【详解】把(2,0)代入y=2x+b,得:b=-4,把b=-4代入方程2x+b=0,得:x=2.故答案为:x=2.17.y=12x【详解】设该正比例函数的解析式为y=kx(k≠0).将点(2,1)的坐标代入该正比例函数的解析式y=kx,得2k=1,∴12k=,∴该正比例函数的解析式为12y x =.故答案为:12 y x =18.(1)-1(2)32-【分析】(1)根据平方差公式,结合二次根式的性质进行计算即可;(2)先根据二次根式的性质进行化简,然后再进行运算即可.(1)解:22=-56=-1=-(2)23==32=19.(1)(2)8﹣【分析】(1)先利用二次根式的乘除法则计算,然后化简后合并即可;(2)根据完全平方公式和平方差公式计算即可;【详解】解:(1+=(2)原式=4343-++-=8﹣20.0.8【分析】在直角三角形ABC 中运用勾股定理求出BC 的长,进而求得CE 的长,再在直角三角形EDC 中运用勾股定理求出DC 的长,最后求得AD 的长即可.【详解】解:∵在Rt ABC 中, 2.5,0.7AB AC ==∴ 2.4BC ==∴2CE BC BE =-=∵在Rt CDE 中 2.5DE =∴ 1.5CD ==∴0.8AD CD AC =-=.答:梯子的底部向外滑0.8米.21.(-3,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数确定出a 、b 的值,然后写出点的坐标即可.【详解】解:∵点P(a ,b)在第二象限,且|a|=3,|b|=8,∴a=−3,b=8,∴点P 的坐标为(−3,8).22.发生火灾的住户窗口距离地面14米【分析】在Rt △ACB 中,利用勾股定理求出BC 即可解答.【详解】解:由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得:12BC ===,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.23.(1)见解析;(2)A 2(-2,0),B 2(-1,3),C 2(1,2),(3)P (m-3,-n )【分析】(1)直接利用关于x 轴对称点的性质得出答案;(2)利用平移的性质可直接进行作图,然后由图象可得各个顶点的坐标;(3)直接利用平移变换的性质得出点2P 的坐标.【详解】解:(1)如图所示:△111A B C 就是所要求作的图形;(2)如图所示:△222A B C 就是所要求作的图形,其顶点坐标为A 2(-2,0),B 2(-1,3),C 2(1,2);(3)如果AC 上有一点(,)P m n 经过上述两次变换,那么对应22A C 上的点2P 的坐标是:2(3,)P m n --.故答案为:(3,)m n --.【点睛】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.24.4+3【解析】【分析】先根据勾股定理求出BD的长,再根据勾股定理逆定理求得△BCD是直角三角形,四边形ABCD的面积是两个直角三角形的面积之和.【详解】∵AB=AD,∠BAD=90°,AB=22∴BD22AB AD=4,∵BD2+CD2=42+(432=64,BC2=64,∴BD2+CD2=BC2,∴△BCD为直角三角形,∴S四边形ABCD =S△ABD+S△BCD=12×2222+12×43=4+325.(1)A(2,0)B(0,4);(2)见解析;(3)S△AOB=4【解析】【分析】(1)分别让y=0,x=0,即可求得此一次函数的的交点A、B的坐标;(2)根据(1)中求出的交点坐标,过这两点作直线即得函数的图象;(3)直接利用三角形的面积公式求解.【详解】解:(1)让y=0时,∴0=-2x+4解得:x=2;让x=0时,∴y=-2×0+4=4,∴一次函数y=-2x+4的图象与x轴、y轴的交点坐标是A(2,0),B(0,4);(2)如下图是一次函数y=-2x+4的图象;(3)S△AOB=11244 22AO BO⨯⨯=⨯⨯=【点睛】本题考查了一次函数的图象和性质、一次函数的画法、三角形的面积,做题的关键是求出A、B的坐标.26.(1)y1=0.1x+15,y2=0.15x;(2)300分钟;(3)A套餐;(4)A套餐.【解析】【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)由当12y y <时A 套餐更省钱,即当x >300时,A 套餐优惠;否则B 套餐优惠,据此解答即可;(3)令y 1=200和y 2=200元,分别求得x ,选x 较大的实惠.【详解】解:(1)由题意可知,A 套餐的收费方式:10.115y x =+,B 套餐的收费方式为:20.15y x =.(2)由12y y =,得0.1150.15x x +=,解得300x =,即月通话时间为300分钟时,A ,B 两种套餐收费一样.(3)当12y y <时A 套餐更省钱,即0.1150.15x x +<,解得300x >因为500>300分钟时,所以他应选选A 套餐;(4)令y 1=200,有200=0.1x+15,解得:x=1850;令y 2=200,有200=0.15x ,解得:x≈1333;∵1850>1333∴应选择A 套餐.。

2024-2025学年八年级数学上学期期中模拟卷(四川成都专用,北师大版八上第1~4章)(全解全析)

2024-2025学年八年级数学上学期期中模拟卷(四川成都专用,北师大版八上第1~4章)(全解全析)

2024-2025学年八年级数学上学期期中模拟卷(四川成都专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大版八年级上册第1章~第4章。

5.难度系数:0.65。

A 卷(共100分)第Ⅰ卷(共32分)一、选择题(本大题共8个小题,每小题4分,共32分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑).1.下列计算结果正确的是( )A .3+=B ´=C =D .22=2.下列说法不正确的是( )A .y 轴上的点的横坐标为0B .点()2,5P -到x 轴的距离是5C .若点()2,3A a ---在第四象限,那么2a <-D .若0xy >,那么点(),Q x y 在第一象限【答案】D【解析】解:A .y 轴上的点的横坐标为0,说法正确,不合题意;B .点()2,5P -到x 轴的距离是5,说法正确,不合题意;C .若点()2,3A a ---在第四象限,则20a -->,解得2a <-,说法正确,不合题意;D .若0xy >,则0x >,0y >,或0x <,0y <,因此点(),Q x y 在第一象限或第三象限,该选项说法不正确,符合题意;故选D .3.如图,以Rt ABC △的两直角边为边向外分别作两个正方形,以Rt ABC △的斜边为直径向外作半圆,若半圆的面积为8π,则两个正方形的面积的和为( )A .32πB .64C .8πD .164.关于函数21y x =-+,下列结论错误的是( )A .图象必经过点()0,1B .图象经过第一、三、四象限5操作:{}{}{}727288221®=®=®=第一次第二次第三次,即对72进行3次操作后变为1,对整数m 进行3次操作后变为2,则m 的最大值为( )A .80B .6400C .6561D .6560【答案】D6.数学中有许多优美、寓意美好的曲线.在平面直角坐标系中,绘制如图所示的曲线,给出下列四个结论:①曲线经过的整点即横、纵坐标均为整数的点中,横纵坐标互为相反数的点有2个;②曲线在第一、二象限中的任意一点到原点的距离都大于1;③曲线所围成的“心形”区域的面积大于3,其中正确的有()A.①②B.①②③C.①③D.②③)1,1,(―1,1),∴①1,0,()在第一、二象限中的任意一点都在以O为圆心,以1为半径的圆外,在第一、二象限中的任意一点到原点的距离大于1,∴②,∴曲线C 所围成的“心形”区域的面积大于3,∴③正确;故选∶D .7.如图,长方形纸片ABCD ,6cm 8cm AB BC =,=,现将其沿EF 对折,使得点C 与点A 重合,则AEF△的面积为( )A .754B .18C .214D .6948.在平面直角坐标系中,直线:1l y x =-与x 轴交于点1A ,如图所示,依次作正方形111A B C O ,正方形2221A B C C ,¼,正方形,使得点1A 、2A 、3A 、¼,在直线l 上,点1C ,2C ,3C ,¼,在y 轴正半轴上,则点251B 的坐标为( )A .()2502512,21-B .()2512512,2C .()2522512,21-D .()2502512,21+【答案】A【解析】解:在1y x =-中,令0x =,得1y =-,令0y =,得1x =,所以直线1y x =-与x 轴交于点1(1,0)A ,与y 轴的交点坐标为(0,1)-,因此有1111111OA A B B C OC ====,112A B A △、223A B A △、334A B A △,L 都是等腰直角三角形,所以点1B 的横坐标为012=,纵坐标为1121=-,点2B 的横坐标为122=,纵坐标为212321+==-,点3B 的横坐标为242=,纵坐标为3124721++==-,点4B 的横坐标为382=,纵坐标为412481521+++==-,LL 点251B 的横坐标为2502,纵坐标为25121-,即点()2502512,21-.故选A .第Ⅱ卷(共68分)二、填空题(本大题共5个小题,每题4分,满分20分,将答案填在答题纸上)9.已知某个点在第二象限,且它的横坐标与纵坐标的和为3,请写出一个符合这样条件的点的坐标 .11.我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为()3,4,5,可以看作()2221,22,21-´+;同时8,6,10也为勾股数组,记为()8,6,10,可以看作()2231,32,31-´+.类似的,依次可以得到第三个勾股数组()15,8,17.请根据上述勾股数组规律,写出第5个勾股数组: .【答案】()35,12,37【解析】上述四组勾股数组的规律是:222222222345,6810,81517+=+=+=,即()()()22222121n n n -+=+,∴()()()22222612661-+´=+所以第5个勾股数组为()35,12,37,故答案为:()35,12,37.12.y 与x 之间的函数关系可记为()y f x =.例如:函数2y x =可记为()2f x x =.若对于自变量取值范围内的任意一个x ,都有()()f x f x -=,则()f x 是偶函数;若对于自变量取值范围内的任意一个x ,都有()()f x f x -=-,则()f x 是奇函数.例如:2()f x x =是偶函数,()f x x =是奇函数.已知函数()f x 是奇函数,当0x >时,2()51f x x =+,那么(4)f -= .【答案】81-【解析】∵()f x 是奇函数,∴()()44f f -=-,∵()2454181f =´+=,∴()()4481f f -=-=-.故答案为:81-.13.如图,在ABC V 中,2,,AB BC AO BO P ===是射线CO 上的动点,60AOC Ð=°,则当PAB V 是直角三角形时,AP 的长为当90APB Ð=°,情况1:AO BO =Q ,PO BO \,60AOC Ð=°Q ,BOP \Ð=°,BOP \V 为等边三角形,1BP OB \==,2AB BC ==Q ,23AP AB BP \=-=;情况2:,90AO BO APB =аQ ,PO AO \=,60AOC Ð=°Q ,AOP \△为等边三角形,三、解答题 (本大题共5小题,其中14题12分,15-16题,每题8分,17-18题,每题10分,共48分.解答应写出文字说明、证明过程或演算步骤.)14.(满分12分)计算:(1)(3))21-;(4)64ææ-ççççèè.15.(满分8分)在平面直角坐标系中,已知点(63P m -,1)m +.(1)若P 到y 轴的距离为2,求m 的值;(2)若点P 的横纵坐标相等,求点P 的坐标;(3)在(2)的条件下,在第二象限内有一点Q ,使PQ //x 轴,且3PQ =,求点Q 的坐标.16.(满分8分)如图,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离 2.5m BD =.小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离 1.5m AC =,点A 到地面的距离 1.5m AE =,将他从A 处摆动后的坐板记为A ¢.(1)当A B AB ¢^时,求A ¢到BD 的距离;(2)当A ¢距地面最近时,求A ¢到地面的距离(结果精确到0.1 3.606=).90°;在RtA FB ¢V 中,1390Ð+Ð=23\Ð=Ð;(2分)A FBТ,(AAS)ACB BFA ¢\V V ≌;\17.(满分10分)阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,221×=-=;223×=-=,它们的积是有理数,7==+==,像这样,通过分子、分母同乘以一个式子把分母中的根号化去或根号中的分母化去,叫作分母有理化.解决问题:(1)3的有理化因式是____________;(2)“<”“>”或“=”填空);(3)×××一、填空题(每题4分,满分20分,将答案填在答题纸上)19290,5,C BC D Ð=°=在BC 上且2BD AC ==“>”或“<”或“=”).20.已知实数a 满足|2023|a a -=,那么22024a -的值是。

北师大版八年级上册数学期中考试试题含答案

北师大版八年级上册数学期中考试试题含答案

北师大版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)2.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为()A .4B .8C .16D .643.已知点P (m+3,2m+4)在x 轴上,那么点P 的坐标为()A .(﹣1,0)B .(1,0)C .(﹣2,0)D .(2,0)4.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .a=5,b=12,c=13C .∠A=∠B+∠CD .∠A :∠B :∠C=3:4:55.下列各式的计算中,正确的是()A =B =C =D=-6.在函数y =1x -中,自变量x 的取值范围是()A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠17.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对8.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了()A .2cmB .3cmC .4cmD .5cm9.化简二次根式)AB C D10.如图,在正方形ABCD 纸片上有一点P ,PA =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),则∠APD 的度数为A .150°B .135°C .120°D .108°11|1|0-=b ,那么()2017a b +的值为()A .-1B .1C .20173D .20173-12.如图1,点G 为BC 边的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边运动,运动路径为G→C→D→E→F→H ,相应的△ABP 的面积y (cm 2)关于运动时间t (s )的函数图象如图2,若AB =6cm ,则下列结论正确的个数有()①图1中BC 长4cm ;②图1中DE 的长是6cm ;③图2中点M 表示4秒时的y 值为24cm 2;④图2中的点N 表示12秒时y 值为15cm 2.A .4个B .3个C .2个D .1个二、填空题13.-27的立方根为________________,________.14.已知函数y =(a+1)x+a 2﹣1,当a_____时,它是一次函数;当a_____时,它是正比例函数.15.如图,△ABC 的边BC 在数轴上,AB ⊥BC ,且BC =3,AB =1,以C 为圆心,AC 长为半径画圆分别交数轴于点A′、点A″,那么数轴上点A′、点A″所表示的数分别是_____、_____.16.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y =x 上,OA 1=1,且△B 1A 1A 2,△B 2A 2A 3,△B 3A 3A 4,…△B n A n A n +1…分别是以A 1,A 2,A 3,…A n …为直角顶点的等腰直角三角形,则△B 10A 10A 11的面积是________.三、解答题17.计算:|13|+(2019﹣20﹣(12)﹣2182818(263)(263)32)2--19.如图,在平面直角坐标系中,正方形ABCD 和正方形EFGC 面积分别为64和16.(1)请写出点A ,E ,F 的坐标;(2)求S △BDF .204792737272,请你观察上述式子规律后解决下面问题.(1)规定用符号[m]表示实数m 的整数部分,例如:[45]=0,[π]=3,填空:10+2]=;[5=.(2)如果a ,5b ,求a 2﹣b 2的值.21.如图,在长方形ABCD 中,AB =8,AD =10,点E 为BC 上一点,将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,且DF =6.(1)试说明:△ADF 是直角三角形;(2)求BE 的长.22.先阅读下面的解题过程,然后再解答.我们只要找到两个数a ,b ,使a b m +=,ab n =,即22m +==0)b => .这里7m =,12n =,由于437+=,4312⨯=,所以227,+=,2+..23.(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?24.在平面直角坐标系中,已知点A(-3,-1),B(-1,0),C(-2,3),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.25.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA 上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.①请写出C、D两点的坐标;②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.参考答案1.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.2.D【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR2及PQ2,又三角形PQR为直角三角形,根据勾股定理求出QR2,即为所求正方形的面积.【详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又∵△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.【点睛】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.3.B【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,2m+4)在x轴上,∴2m+4=0,解得m=−2,∴m+3=−2+3=1,∴点P的坐标为(1,0).故选B.【点睛】本题考查的知识点是点的坐标,解题关键是熟记x轴上的点纵坐标为0.4.D【分析】根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.【详解】解:A、a2+b2=c2,是直角三角形,故本选项不符合题意;B、∵52+122=132,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A=∠B+∠C∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°∴∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符号要求;故选D.【点睛】本题考查勾股定理及三角形内角和定理,熟知以上知识是解答此题的关键.5.D【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C、D进行判断.【详解】解:A、原式=A选项错误;B、原式==B选项错误;CC选项错误;D=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.C【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故x的取值范围是x≥0且x≠1.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.7.C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C8.A 【分析】根据勾股定理可以得到AD 和BD 的长度,然后用AD+BD-AB 的长度即为所求.【详解】根据题意可得BC=4cm ,CD=3cm ,根据Rt △BCD 的勾股定理可得BD=5cm ,则AD=BD=5cm ,所以橡皮筋被拉长了(5+5)-8=2cm .【点睛】主要考查了勾股定理解直角三角形.9.B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】202a a ∴+<∴<-a a a ∴∙=--故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.10.B 【分析】连接PG ,由题意得出PD =GD =2,∠CDP =∠ADG ,得出∠PDG =∠ADC =90°,得出△PDG 是等腰直角三角形,由等腰直角三角形的性质得出∠GPD =45°,PGPD =,得出AP 2+PG 2=AG 2,由勾股定理的逆定理得出∠GPA =90°,即可得出答案.【详解】解:连接PG ,如图所示:∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,AG =PC =3,∵PA =1,PD =2,PC =3,将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),∴PD =GD =2,∠CDP =∠ADG ,∴∠PDG =∠ADC =90°,∴△PDG 是等腰直角三角形,∴∠GPD =45°,PG PD =,∵AG =PC =3,AP =1,PG =,∴AP 2+PG 2=AG 2,∴∠GPA =90°,∴∠APD =90°+45°=135°;故选:B .【点睛】本题考查了勾股定理、勾股定理的逆定理、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握正方形的性质和勾股定理的逆定理是解题的关键.11.A【分析】根据算术平方根和绝对值的非负性,确定a 、b 的值,再代入代数式求值即可.【详解】解:由题意得:a+2=0,b-1=0,即a=-2,b=1所以,()()()201720172017==211=1a b +-+--故答案为A.【点睛】本题主要考查了非负数的性质,利用非负数的性质确定待定的字母的值是解答的关键12.C【分析】理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【详解】解:由图象可得:0~2秒,点P在GC上运动,则GC=2×2=4cm,∵点G是BC中点,∴BC=2GC=8cm,故①不合题意;由图象可得:2﹣4秒,点P在CD上运动,则第4秒时,y=S△ABP =12×6×8=24cm2,故③符合题意;由图象可得:4﹣7秒,点P在DE上运动,则DE=2×3=6cm,故②符合题意;由图象可得:当第12秒时,点P在H处,∵EF=AB﹣CD=6﹣4=2cm,∴t=22=1s,∴AH=8+6﹣2×(12﹣5﹣1)=6,∴y=S△ABP =12×6×6=18cm2,故④不合题意,∴正确的是②③,故选:C.【点睛】本题考查了动点问题的函数图象,关键是能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.13.-3;2 ;【分析】根据立方根、平方根的定义和倒数乘积等于1即可解题.【详解】解:(1)∵(-3)×(-3)×(-3)=-27,∴-27的立方根为-3;(24=±2;(3)∵(1⎛⨯= ⎝⎭,∴5的倒数为故答案为:-3;±2;14.≠1,=1【分析】根据一次函数的定义、正比例函数的定义,可得答案.【详解】解:已知函数y =(a+1)x+a 2﹣1,当a=-1时,a+1=0,y=a 2﹣1,∴当a≠﹣1时,它是一次函数;当a =1时,a 2﹣1=0,它是正比例函数,故答案为:≠1,=1.【点睛】本题主要考查了一次函数和正比例函数的定义,一次函数y kx b =+的定义条件是:k 、b 为常数,0k ≠,自变量次数为1,0b =是一次函数是正比例函数.15.1、1【解析】【分析】根据勾股定理求出AC ,得到OA′和OA′′的长,根据数轴的概念解答即可.【详解】由勾股定理得,AC ,则CA′=CA′′,∴OA′﹣1,OA′′+1,∴A′、点A″所表示的数分别是1故答案为:1【点睛】本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c,那么a2+b2=c2.16.217【解析】【分析】根据OA1=1,可得点A1的坐标为(1,0),然后根据△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,求出A1A2,B1A2,A2A3,B2A3…的长度,然后找出规律,求出点B10的坐标.结合等腰直角三角形的面积公式解答.【详解】∵OA1=1,∴点A1的坐标为(1,0).∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1(1,1).∵△B1A1A2是等腰直角三角形,∴A1A2=1,B1A2∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2(2,2),同理可得:B3(22,22),B4(23,23),…B n(2n﹣1,2n﹣1),∴点B10的坐标是(29,29),∴△B10A10A11的面积是:12×29×29=217.故答案为:217.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.17【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解::|1(2019﹣)0﹣(1 2)﹣21+1﹣44【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.18.﹣3【分析】根据二次根式的混合运算顺序,先对各项利用二次根式的乘除化简,再用加减法进行计算即可.【详解】((22222⎡⎤⎡--+-⨯⎢⎥⎢⎣⎦⎣5(243)(29=+---3=.【点睛】本题考查了二次根式的混合运算、平方差公式、完全平方公式,解决本题的关键是熟练运用公式.19.(1)A (0,8),E (8,4),F (12,4);(2)S △BDF =32【分析】(1)根据正方形的面积求出两个正方形的边长,再求出OG ,然后写出各点的坐标即可;(2)根据S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF 列式计算即可得解.【详解】解:(1)∵正方形ABCD 和正方形EFGC 面积分别为64和16,∴正方形ABCD 和正方形EFGC 的边长分别为8和4,∴OG =8+4=12,∴A (0,8),E (8,4),F (12,4);(2)S △BDF =S △BDC +S 梯形BCGF ﹣S △DGF ,=12×8×8+12×(4+8)×4﹣12×(8+4)×4,=32+24﹣24,=32.【点睛】本题考查了坐标与图形性质,三角形的面积,难点在于(2)列出BDF ∆的面积的表达式.20.(1)5,1;(2)a 2﹣b 2的值为7【分析】(1)根据题目中所给规律即可得结果;(2)把无理数的整数部分和小数部分分别表示出来,再代入计算即可.【详解】解:(1的整数部分为33,∴2]5+=;[51=.故答案为5、1.(2)根据题意,得34<< ,859∴<+<,583a ∴=-.152<514b ∴==-1a b ∴+=,7a b -=.22()()a b a b a b ∴-=+-7=-.∴22a b -的值为7.【点睛】本题考查了估算无理数的大小,解决本题的关键是根据无理数的整数部分确定小数部分.21.(1)见解析;(2)BE =4.【分析】(1)由折叠的性质可知AF=AB=8,然后再依据勾股定理的逆定理可证明△ADF 为直角三角形;(2)由题意可证点E 、D 、F 在一条直线上,设BE=x ,则EF=x ,DE=6+x ,EC=10-x ,在Rt △CED 中,依据勾股定理列方程求解即可.【详解】(1)将△ABE 沿AE 折叠,使点B 落在长方形内点F 处,∴AF =AB =8,∵AF 2+DF 2=62+82=100=102=AD 2,∴∠AFD =90°∴△ADF 是直角三角形(2)∵折叠∴BE =EF ,∠B =∠AFE =90°又∵∠AFD =90°∴点D ,F ,E 在一条直线上.设BE =x ,则EF =x ,DE =6+x ,EC =10-x ,在Rt △DCE 中,∠C =90°,∴CE 2+CD 2=DE 2,即(10-x )2+82=(6+x )2.∴x =4.∴BE =4.【点睛】本题主要考查的是翻折的性质、勾股定理的逆定理、勾股定理的定理,依据勾股定理列出关于x 的方程是解题的关键.22.见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+==【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.23.(1)13cm ;(2;(3)13(cm )【分析】(1)利用勾股定理直接求出木棒的最大长度即可.(2)将长方体展开,利用勾股定理解答即可;(3)将容器侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:(1)由题意得:如图,该长方体中能放入木棒的最大长度是:=;cm13()(2)①如图,AG,②如图,AG=,③如图,AG ,;(3) 高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,5A D cm ∴'=,12312BD AE cm =-+=,∴将容器侧面展开,作A 关于EF 的对称点A ',连接A B ',则A B '即为最短距离,13()A B cm '=.【点睛】本题考查了平面展开—最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.24.画图见解析.【解析】分析:首先在平面直角坐标系中描出各点,然后顺次连接得到△ABC ,找出三个顶点关于y 轴对称的点坐标,然后顺次连接,得出对称后的图形.详解:如图所示:点睛:本题主要考查的是图形的轴对称,属于基础题型.关于y 轴对称的两个点,他们的横坐标互为相反数,纵坐标相等.25.(1)见解析;(2)能,见解析;(3)①C 、D 两点的坐标为C (0,32),D (2,0);②符合条件的所有点M 的坐标为:(716,0)、(92,0);、(﹣2,0)、(﹣12,0)【分析】(1)根据梯形的面积的两种表示方法即可证明;(2)根据四边形ABCD 的面积的两种表示方法即可证明;(3)①根据翻折的性质和勾股定理即可求解;②根据等腰三角形的性质分四种情况求解即可.【详解】解:(1)∵S 梯形ABCD =211222ab c ⨯+S 梯形ABCD =()()12a b a b ++21112()()222ab c a b a b ∴⨯+=++22222ab c a ab b ∴+=++222c a b ∴=+.(2)连接BD ,如图:S 四边形ABCD =()21122c a b a +-,S 四边形ABCD =21122ab b +,∴221111()2222c a b a ab b +-=+,222c a b ∴=+.(3)①设OC a =,则4AC a =-,又5AB =,根据翻折可知:5BD AB ==,4CD AC a ==-,532OD BD OB =-=-=.在Rt COD ∆中,根据勾股定理,得22(4)4a a -=+,解得32a =.3(0,)2C ∴,(2,0)D .答:C 、D 两点的坐标为3(0,)2C ,(2,0)D .②如图:当点M 在x 轴正半轴上时,CM DM =,设CM DM x ==,则2223(2)()2x x =-+,解得2516x =,7216x ∴-=,7(16M ∴,0);CD MD =,35422=-=,59222+=,9(2M ∴,0);当点M 在x 轴负半轴上时,CM CD =,2OM OD == ,(2,0)M ∴-;DC DM =,35422=-=,51222OM ∴=-=,1(2M ∴-,0).∴符合条件的所有点M 的坐标为:7(16,0)、9(2,0)、(2,0)-、1(2-,0).【点睛】本题考查了等腰三角形的判定和性质,勾股定理,折叠的性质,是三角形的综合题,解决本题的关键是分情况讨论思想的运用.。

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试卷带答案

北师大版八年级上册数学期中考试试题一、单选题1.下列实数中,最小的数是()A .-3B .3C .13D .-π2.在下列各数0,13,3.14,π,0.731)A .1B .2C .3D .43.与数轴上的点一一对应的是()A .有理数B .无理数C .实数D .正数和负数4.在平面直角坐标系中,点(5,-7)在()A .第一象限B .第二象限C .第三象限D .第四象限5.点A(-3,4)关于y 轴对称的点的坐标是()A .(3,-4)B .(-3,-4)C .(3,4)D .(-4,-3)6.如图:在△ABC 中,∠C =90°,AB =13,BC =5,则以AC 为直径的半圆面积为()A .6πB .12πC .36πD .18π7.已知△ABC 为直角三角形,在下列四组数中,不可能是它的三边长的一组是()A .3,4,5B .6,8,10C .5,12,13D .3,3,58.下列说法正确的是()A .-4没有立方根B .1的立方根为±1C .5的立方根为D .136的立方根是169.下列函数:①y=8x ;②y=-8x;③y=2x 2;④y=-2x+1.其中是一次函数的个数为A .0B .1C .2D .310.已知一次函数y kx b =+的图象如图示,则k ,b 的取值范围是()A .0,0k b <>B .0,0k b <<C .0,0k b >>D .0,0k b ><二、填空题11.计算:328.12.比较大小(填“>、<或=”)55-121213.若函数y=(a-1)x+2a -1是正比例函数,则a=_____________.14.在坐标系中,已知两点A (3,-2)、B (-3,-2),则直线AB 与x 轴的位置关系是__________.15.如图,在△ABC 中,AB =10,AC =13,AD ⊥BC ,垂足为D ,M 为AD 上任一点,则MC 2﹣MB 2等于_____.16.若实数a ,b 10a a b ++,则代数式20212022a b +=________.17.已知点A(a ,0)和点B(0,4),且直线AB 与坐标轴围成的三角形的面积10,则a 的值是______.三、解答题18.计算:12793(2)(1312364324-⎛⎫----+- ⎪⎝⎭;57)572+;21220482333⎛÷ ⎝19.如图,方格纸中每个小正方形的边长都是1,△ABC的三个顶点都在格点上,如果用(0,0)表示A点的位置,用(4,-1)表示B点的位置.(1)画出直角坐标系;(2)画出与△ABC关于x轴对称的图形△DEF;(3)分别写出点D、E、F的坐标.20.小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面.求旗杆的高度.21.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.;①求证:EC BD②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.x+3与x轴相交于点A,与y轴相交于点B22.如图,直线y=12(1)直接写出△AOB的面积;(2)若C为y轴上一点,且△ABC的面积是12,求点C的坐标;(3)若P是x轴上一点,且AB=AP,求P的坐标.23.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.(1)分别求AB、EB的长;(2)求CD的长.24.某教育网站对下载资源规定如下:若注册VIP用户,则下载每份资源收0.2元,另外每年收500元的VIP会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用()1分别写出注册VIP用户的收费1(y元)和注册普通用户2(y元)与下载数量(x份)之间的函数关系式()2某学校每年要下载1500份资源,那么注册哪种用户比较合算?()3一年内下载多少份资源是两种用户收费一样?25.如图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,求EF的长参考答案1.D【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵-π<−3<13<3,∴最小的数是-π,故选:D.【点睛】此题考查了实数的大小比较,解题的关键是掌握实数的大小比较法则.2.B【解析】【分析】根据无理数的定义即可求解.【详解】解:在下列各数0,13,3.14,π,0.7312π2两个.故选:B【点睛】本题考查了无理数的定义,无理数是指无限不循环小数,熟知无理数的定义是解题的关键.3.C【解析】【详解】∵实数与数轴上的各点是一一对应关系,∴与数轴上的点一一对应的是实数.故选C.4.D【解析】【分析】根据各象限的点的坐标的符号特点判断即可.【详解】解:在平面直角坐标系中,点(5,-7)所在的象限为第四象限.故选:D.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点A(-3,4)关于y轴对称的点坐标(3,4).故选:C.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.6.D 【解析】【详解】∵∠C=90°,AB=13,BC=5,∴=12,∴以AC 为直径的半圆的面积=211822AC ππ=(故选D .7.D 【解析】【详解】A 选项:∵32+42=52,∴三条线段能组成直角三角形,故A 选项不符题意;B 选项:∵62+82=102,∴三条线段能组成直角三角形,故B 选项不符题意;C 选项:∵52+122=132,∴三条线段能组成直角三角形,故C 选项不符题意;D 选项:∵32+32≠52,∴三条线段不能组成直角三角形,故D 选项符合题意;故选D .8.C 【解析】【分析】根据正数的立方根是正数,负数的立方根是负数,可以求出题目中各式子的结果,然后分析即可.【详解】解:∵正数的立方根是正数,负数的立方根是负数,∴A .-4有立方根,故选项错误,不符合题意;B .1的立方根是1,故选项错误,不符合题意;C .5的立方根,故选项正确,符合题意;D .136的立方根是故选:C .【点睛】此题考查了立方根,解题的关键是明确正数的立方根是正数,负数的立方根是负数.9.D【解析】【详解】根据一次函数定义可知:③由于的自变量x的指数是2,故不是一次函数,其它都是一次函数,共计有3个.故选D.10.D【解析】【分析】观察图象,找到一次函数y=kx+b的图象过的象限,进而分析k、b的取值范围,即可得答案.【详解】观察图象可得,一次函数y=kx+b的图象过一、三、四象限;故k>0,b<0;故选:D.【点睛】本题要求学生根据图象分析出k、b参数的取值范围,考查学生对一次函数中k、b参数的意义的了解与运用.11【解析】【分析】【详解】解:-=【点睛】本题考查了二次根式的加减,熟知二次根式的加减运算法则是解题关键,注意将二次根式化简后被开方数相同的二次根式才能进行加减运算.12.>>【解析】【分析】根据二次根式比较大小的方法:作差法及平方法进行求解即可.【详解】解:∵25=,22=4,∴5>4,;12=,∴1122->0,∴1122,故答案为:>;>.【点睛】本题考查了二次根式的大小比较,解题的关键是熟练掌握二次根式的大小比较的方法.13.-1【详解】解: 函数y=(a-1)x+2a -1是正比例函数,解得:1,a =-故答案为:1-【点睛】本题考查的是正比例函数的定义,掌握“正比例函数的定义”是解本题的关键.14.平行【解析】【详解】∵A (3,-2)、B (-3,-2),∴点A 、点B 到x 轴的距离相等,∴AB∥x轴,故答案是:平行.15.69【解析】【分析】在Rt△ABD及Rt△ADC中可分别表示出BD2及CD2,在Rt△BDM及Rt△CDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【详解】解:在Rt△ABD和Rt△ADC中,BD2=AB2−AD2,CD2=AC2−AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2−AD2+MD2,MC2=CD2+MD2=AC2−AD2+MD2,∴MC2−MB2=(AC2−AD2+MD2)−(AB2−AD2+MD2),=132−102,=69.故答案为:69.【点睛】此题考查了勾股定理的知识,解题的关键是熟练掌握勾股定理,分别两次运用勾股定理求出MC2和MB2.16.0【解析】【分析】首先根据二次根式的非负性,即可求得a,b的值,再把a,b的值代入代数式,即可求得其值.【详解】解: 0+=,0≥0≥100a ab +=⎧∴⎨+=⎩解得11a b =-⎧⎨=⎩20212022∴+a b ()2021202211=-+11=-+0=故答案为:0【点睛】本题考查了利用算术平方根的非负性求参数及代数式的值,熟练掌握和运用利用二次根式的非负性求参数的方法是解决本题的关键.17.±5【解析】【分析】根据坐标先表示,4,OA a OB ==再利用三角形的面积公式列方程即可.【详解】解: 点A(a ,0)和点B(0,4),直线AB 与坐标轴围成的三角形的面积10,故答案为:5±【点睛】本题考查的是坐标与图形,直线与坐标轴围成的图形面积,掌握“表示坐标系内线段的长度”是解本题的关键.18.(1)3;(2)3;(3)0;(4)3-.【解析】(1)333=+33=+2833=;(2)解:(101224-⎛⎫-- ⎪⎝⎭()()(1442=---+-1442=+-+3=(3)解:2+=5-7+2=0;(4)⎛÷ ⎝3⎛÷ ⎝==.【点睛】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,立方根的定义,绝对值的化简等知识,综合性较强,熟练掌握二次根式的运算法则和相关定义是解题关键.19.(1)见解析;(2)见解析;(3)D(0,0),E(4,1),F(1,2)【解析】【分析】(1)根据平面直角坐标系的定义以点A为坐标原点建立即可;(2)根据网格结构找出点A、B、C关于x轴对称的点D、E、F的位置,然后顺次连接即可;(3)根据平面直角坐标系写出各点的坐标即可.【详解】解:(1)如图所示;(2)△DEF如图所示;(3)由图可知:D(0,0),E(4,1),F(1,2).【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.12米【解析】【分析】设旗杆的高度为x米,根据勾股定理列方程求解即可.【详解】解:设旗杆的高度为x米,则绳长为(x+1)米,根据题意得:(x+1)2=x2+52,即2x-24=0,解得:x=12.答:旗杆的高度是12米.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.21.①证明见解析;②见解析.【分析】①通过AAS 证得CAE BCD ∆≅∆,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【详解】①证明:∵90ACB ︒∠=,∴90ACE BCD ︒∠+∠=.∵90ACE CAE ︒∠+∠=,∴CAE BCD ∠=∠.在△AEC 与△BCD 中,CEA BDCCAE BCD AC CB∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CAE BCD AAS ∆∆≌.∴EC BD =;②解:由①知:BD CE a==CD AE b==∴1()()2AEDB S a b a b =++梯形221122a ab b =++.又∵AEC BCD ABCAEDB S S S S =++ 梯形2111222ab ab c =++212ab c =+.∴222111222a ab b abc ++=+.整理,得222+=a b c .【点睛】主要考查了同角的余角相等,全等三角形的判定和性质,勾股定理的证明,解本题的关键是判断两三角形全等.22.(1)9;(2)(0,-1)或(0,7);0)或0).【解析】【分析】(1)先求出点A 、B 的坐标,即可求出△AOB 的面积;(2)设点C(0,y),根据△ABC 的面积是12,得到12×6×∣3-y ∣=12,求出y ,问题得解;(3)根据勾股定理求出P 坐标.(1)解:∵直线y=12x+3与x 轴相交于点A ,与y 轴相交于点B ,∴点A(-6,0),点B(0,3),∴AO=6,BO=3,∴△AOB 的面积=12×AO×BO=12×6×3=9;(2)解:设点C(0,y),∵△ABC 的面积是12,∴12×6×∣3-y ∣=12∴y=-1或y=7∴点C 的坐标为(0,-1)或(0,7);(3)解:∵AO=6,BO=3,∠AOB=90°,∴∴∴点0)或0).【点睛】本题为一次函数综合题,考查了一次函数与坐标轴交点问题,面积问题,勾股定理等知识,综合性较强,理解题意,学会用点的坐标表示线段的长是解题关键.23.(1)10cm,4cm AB BE ==(2)3cm CD =【解析】【分析】(1)根据勾股定理求得AB 的长,根据折叠的性质可得AE AC =,根据BE AB AE =-即可求解(2)由勾股定理求得AB=10cm ,然后由翻折的性质求得BE=4cm ,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在△BDE 中,利用勾股定理列方程求解即可.【详解】解:(1)∵在Rt △ABC 中,两直角边AC=6cm ,BC=8cm ,10cm AB ∴===.由折叠的性质可知:DC=DE ,AC=AE=6cm ,1064cmBE AB AE ∴=-=-=(2)由折叠的性质可知:DC=DE ,AC=AE=6cm ,∠DEA=∠C=90°,∴∠DEB=90°,设DC=xcm ,则BD=(8-x )cm ,DE=xcm ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x )2,解得:x=3,3CD ∴=cm【点睛】本题主要考查的是翻折变换以及勾股定理的应用;熟练掌握翻折的性质和勾股定理是解题的关键.24.(1)VIP 用户:10.2500y x =+,普通用户:20.4y x =.(2)当1500x =时,注册普通用户比较合算;(3)当下载量为2500份时,注册两种用户的收费相等.【解析】【分析】(1)依据若注册VIP 用户,则下载每份资源收0.2元,另外每年收500元的VIP 会员费,若注册普通用户,则下载每份资源收0.4元,不收其它费用,即可得到VIP 用户的收费(y 1元)和注册普通用户y 2(元)与下载数量x (份)之间的函数关系式;(2)依据x=1500,分别求得y 1和y 2的值,即可得到结论;(3)由y 1=y 2得:0.2x+500=0.4x ,进而得出当下载量为2500份时,注册两种用户的收费相等.【详解】解:()1VIP 用户:10.2500y x =+,普通用户:20.4y x =.()2 当1500x =时,10.25000.21500500800(y x =+=⨯+=元)20.40.41500600(y x ==⨯=元)12y y ∴>∴当1500x =时,注册普通用户比较合算;()3由1y =2y 得:0.25000.4x x +=,解得:2500x =,所以当下载量为2500份时,注册两种用户的收费相等.【点睛】这道题主要考查了一次函数的定义和综合应用的知识点,只要掌握这个知识点进行计算即可.25.5【解析】【分析】根据折叠的性质得到AF=AD ,DE=EF ,根据勾股定理计算即可.【详解】解:∵四边形ABCD 是长方形,BC=10cm ,AB=8cm ∴AD=BC=10cm ,AB=CD=8cm又∵AF 为AD 折叠所得∴AF=AD=10cm ,,DE EF ∴BF 2=AF 2-AB 2=36∴BF=6cm∴FC=BC-BF=4设CE 长为x cm ,则DE 长为(8-x )cm ,则EF 长为(8-x )cm .在RT △CEF 中,x 2+42=(8-x)2解得:x=3∴CE=3cm∴EF=8-3=5cm故EF 的长为5cm .。

北师大版八年级上册数学期中考试试题带答案

北师大版八年级上册数学期中考试试题带答案

北师大版八年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案,每小题3分)1.在−1.414π,2 3.212212221…,17这些数中,无理数的个数为( )A .2B .3C .4D .52.下列函数中,y 是x 的正比例函数的是( )A .y =−2x +1B .3x y =-C .y =2x 2D .1y x=3.在平面直角坐标系中,点P (−1,在()A .第一象限B .第二象限C .第三象限D .第四象限4.下列数据中,哪一组不是勾股数()A .7,24,25B .9,40,41C .3,4,5D .8,15,195.下面计算正确的是()A .3=B 3=C D 2±6.在平面直角坐标系中,点P (-3,5)关于x 轴的对称点的坐标是()A .(3,-5)B .(-3,-5)C .(3,5)D .(5,-3)7.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而增大,则一次函数y=kx+k 的图象大致是()A .B .C .D .8.坐标平面上,在第二象限内有一点P ,且P 点到x 轴的距离是4,到y 轴的距离是5,则P 点的坐标为()A .(-5,4)B .(-4,5)C .(4,5)D .(5,-4)9.若一个直角三角形的三边分别为a 、b 、c ,a 2=144,b 2=25,则c 2=( )A .169B .119C .169或119D .13或2510.下列哪个点在函数112y x =+的图象上()A .(2,1)B .(2,1)-C .(2,0)-D .(2,0)11.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是()A .32B C D .1.412.如图,点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,点B 的坐标为()A .(0,0)B .(-12,12)C .(2,-2)D .(12,-12)二、填空题13_____.14.从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y (千米)与行驶时间t (时)的函数表达式为_____.15.已知点(−2,y 1),(3,y 2)都在直线y =kx +1上,且k <0,则y 1______y 2.(填>,<或=)16.我国古代有这样一个数学问题,其题意是:如图所示,把枯木看作一个圆柱体,该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则葛藤的最短长度是_______尺.三、解答题17.计算:(1(2(3)21)-(4)0111.414)()14--+-18.在如图所示的正方形网格中,每个小正方形的单位长度均为1,△ABC 的三个顶点都是正方形网格的格点.(1)写出图中△ABC 各顶点的坐标;(2)求出△ABC 的面积.19.已知函数y =(2m+1)x+m ﹣3;(1)若函数图象经过原点,求m 的值;(2)若函数图象在y 轴的截距为﹣2,求m 的值;(3)若函数的图象平行直线y =3x ﹣3,求m 的值;(4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.20.已知,如图,折叠长方形的一边AD 使点D 落在BC 边的点F 处,折痕为AE ,已知AB =6cm ,BC =10cm ,求EC 的长.21.如图,直线L :122y x =-+与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点()0,4C ,动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.()1求A 、B 两点的坐标;()2求COM ∆的面积S 与M 的移动时间t 之间的函数关系式;()3当t 为何值时COM ∆≌AOB ∆,并求此时M 点的坐标.22.如图,在一棵树CD 的10m 高处的B 点有两只猴子,它们都要到A 处池塘边喝水,其中一只猴子沿树爬下走到离树20m 处的池塘A 处,另一只猴子爬到树顶D 后直线跃入池塘的A 处.如果两只猴子所经过的路程相等,试问这棵树多高?23.如图,在直角坐标系中,Rt AOB 的两条直角边OA OB ,分别在x 轴的负半轴,y 轴的负半轴上,且21OA OB ==,.将Rt AOB 绕点O 按顺时针方向旋转90 ,再把所得的像沿x 轴正方向平移1个单位,得CDO .(1)写出点A C ,的坐标;(2)求点A 和点C 之间的距离.24.如图,在平面直角坐标系中,原点为O ,点A (0,3),B (2,3),C (2,-3),D (0,-3).点P ,Q 是长方形ABCD 边上的两个动点,BC 交x 轴于点M .点P 从点O 出发以每秒1个单位长度沿O→A→B→M的路线做匀速运动,同时点Q也从点O出发以每秒2个单位长度沿O→D→C→M的路线做匀速运动.当点Q运动到点M时,两动点均停止运动.设运动的时间为t秒,四边形OPMQ的面积为S.(1)当t=2时,求S的值;(2)若S<5时,求t的取值范围.25.已知△ABC中,AB=AC,(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.参考答案1.C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在−1.414π,2 3.212212221…,17π,23.212212221…,共4个,故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.B 【分析】根据正比例函数的定义:一般地,两个变量x ,y 之间的关系式可以表示成形如y =kx (k 为常数,且k ≠0)的函数,那么y 就叫做x 的正比例函数.【详解】解:根据正比例函数的定义可知选B .故选:B .【点睛】主要考查正比例函数的定义:一般地,两个变量x ,y 之间的关系式可以表示成形如y =kx (k 为常数,且k ≠0)的函数,那么y 就叫做x 的正比例函数.3.B 【分析】应先判断出所求点P 的横坐标、纵坐标的符号,进而判断其所在的象限.【详解】解:∵−1<0,0,∴点P 在第二象限.故选:B .【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.D 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、22272425+=,能构成直角三角形,是正整数,故是勾股数;B 、22294041+=,能构成直角三角形,是正整数,故是勾股数;C 、222345+=,能构成直角三角形,是正整数,故是勾股数;D 、22281519+≠,不能构成直角三角形,故不是勾股数;故选:D .【点睛】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知ABC ∆的三边满足222+=a b c ,则ABC ∆是直角三角形.5.B 【详解】分析:A .根据合并二次根式的法则即可判定;B .根据二次根式的除法法则即可判定;C .根据二次根式的乘法法则即可判定;D .根据二次根式的性质即可判定.详解:A .不是同类二次根式,不能合并.故选项错误;B.故选项正确;CD=2.故选项错误.故选B .点睛:本题考查了二次根式的计算,要掌握各运算法则.二次根式的加减运算,只有同类二=.=6.B【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】点P(−3,5)关于x轴的对称点的坐标是(−3,−5).故选:B.【点睛】考查关于x轴的对称点的坐标特征:横坐标不变,纵坐标互为相反数.7.A【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得答案.【详解】∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限;故答案为:A.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.8.A【详解】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0;又∵P到x轴的距离是4,到y轴的距离是5,∴点P的纵坐标是4,横坐标是-5;故点P的坐标为(-5,4),故选A.9.C【分析】分c是斜边和直角边两种情况讨论求解.【详解】解:c是斜边时,c2=a2+b2=144+25=169,c是直角边时,c2=a2-b2=144-25=119,综上所述,c2=169或119.故选:C.【点睛】本题考查了勾股定理,难点在于分情况讨论.10.C【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【详解】解:(1)当x=2时,y=2,所以(2,1)不在函数112y x=+的图象上,(2,0)也不在函数112y x=+的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数112y x=+的图象上,(−2,0)在函数112y x=+的图象上.故选C.【点睛】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.11.B【详解】A故选B. 12.D【详解】∵B在直线y=-x上,∴设B坐标为(a,-a),则2222213||(1)2212()24AB a a a a a =-+=-+=-+所以,当a=12即B (12,12-)时,AB 最短,故选D.13.2【详解】,4的算术平方根是2,2.【点睛】16的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.14.y=60﹣35t .【详解】试题分析:根据题意可得摩托车距黄岛的距离y=大村到黄岛的距离为60千米﹣摩托车行驶t 的距离.解:由题意得:y=60﹣35t ,故答案为y=60﹣35t .【点评】此题主要考查了列函数解析式,关键是正确理解题意,找出题目中的等量关系.15.>【分析】直线系数k <0,可知y 随x 的增大而减小,-2<3,则y 1>y 2.【详解】解:∵直线y=kx-1中k <0,∴函数y 随x 的增大而减小,∵-2<3,∴y 1>y 2.故答案为>.【点睛】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b :当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.16.25【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴(尺).故答案为25尺.【点睛】本题考查的是平面展开-最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.17.(1(2)1;(3)13-(4【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)根据把二次根式化为最简二次根式,然后合并后,再二次根式的乘除法则运算;(3)利用完全平方公式计算即可;(4)根据0指数,负整数幂运算的意义,去绝对值的方法,数的开方计算即可.【详解】解:(1==(2,1=;(3)21)-,2211=-⨯+,121=-,13=-(4)0111.414)()14--+-,())1441=---+,1441=+-+,【点睛】本题主要考查了二次根式的混合运算,要熟练掌握二次根式的化简,0指数、负指数指数幂及绝对值的运算.先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(1)A(2,2),B(−2,−1),C(3,−2);(2)△ABC 的面积为9.5【分析】(1)根据平面直角坐标系的特点写出各点的坐标即可;(2)根据△ABC 的面积=S 矩形DECF ﹣S △BEC ﹣S △AFC ﹣S △ADB ,即可解答.【详解】解:A(2,2),B(−2,−1),C(3,−2);故答案为:(1)A(2,2),B(−2,−1),C(3,−2);(2)△ABC 的面积为9.5.(2)如图所示:S△ABC=S矩形DECF﹣S△BEC﹣S△ADB﹣S△AFC=111 54514341 222⨯-⨯⨯-⨯⨯-⨯⨯=9.5.故答案为:9.5.【点睛】本题考查了坐标与图形的性质,熟练掌握平面直角坐标系的坐标的特点是解题的关键.19.(1)m=3;(2)m=1;(3)m=1;(4)m<﹣12.【分析】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.【详解】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣12.【点睛】此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.20.EC=83 cm.【分析】首先求出BF的长度,进而求出FC的长度;根据勾股定理列出关于线段EF的方程,即可解决问题.【详解】解:设DE=x cm.∵四边形ABCD是矩形,∴AD=BC=10cm,DC=AB=6cm;∠B=90°,由折叠的性质可得:AF=AD=10cm;DE=EF=x,EC=(6﹣x)cm;在Rt△ABF中,由勾股定理得:BF2=102﹣62=64,∴BF=8cm,CF=10﹣8=2cm;在Rt△EFC中,由勾股定理得:x2=22+(6﹣x)2,解得:x=10 3,∴EC=6﹣103=83(cm).【点睛】该题主要考查了翻折变换及其应用问题;解题的关键是根据翻折变换的性质找出图形中隐含的等量关系;根据有关定理灵活分析、正确判断、准确求解.21.(1)A (0,4),B (0,2);(2)()()8-2t 0t 4S 2t-8t 4<≤⎧⎪=⎨>⎪⎩;(3)当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).【分析】(1)由直线L 的函数解析式,令y =0求A 点坐标,x =0求B 点坐标;(2)由面积公式S =12OM•OC 求出S 与t 之间的函数关系式;(3)若△COM ≌△AOB ,OM =OB ,则t 时间内移动了AM ,可算出t 值,并得到M 点坐标.【详解】(1)∵y =﹣12x+2,当x =0时,y =2;当y =0时,x =4,则A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)∵C (0,4),A (4,0)∴OC =OA =4,当0≤t≤4时,OM =OA ﹣AM =4﹣t ,S △OCM =12×4×(4﹣t )=8﹣2t ;当t >4时,OM =AM ﹣OA =t ﹣4,S △OCM =12×4×(t ﹣4)=2t ﹣8;∴COM ∆的面积S 与M 的移动时间t 之间的函数关系式为:()()8-2t 0t 4S 2t-8t 4<≤⎧⎪=⎨>⎪⎩(3)∵OC =OA ,∠AOB =∠COM =90°,∴只需OB =OM ,则△COM ≌△AOB ,即OM =2,此时,若M 在x 轴的正半轴时,t =2,M 在x 轴的负半轴,则t =6.故当t =2或6时,△COM ≌△AOB ,此时M (2,0)或(﹣2,0).【点睛】本题考查了一次函数的性质和三角形的面积公式,以及全等三角形的判定与性质,理解全等三角形的判定定理是关键.22.15m【详解】试题分析:先由实际问题构造出数学模型,构造出直角三角形,然后列方程求解.试题解析:解:设BD 高为x ,则从B 点爬到D 点再直线沿DA 到A 点,走的总路程为x+AD ,其中AD=而从B 点到A 点经过路程(20+10)m=30m ,根据路程相同列出方程x+=30,可得=30﹣x ,两边平方得:(10+x )2+400=(30﹣x )2,整理得:80x=400,解得:x=5,所以这棵树的高度为10+5=15m .故答案为15m .考点:勾股定理23.(1)点A 的坐标是(20)-,,点C 的坐标是(12),.(2)AC =【分析】(1)x 轴上点纵坐标为0,旋转的图形全等,则2CD OA ==,而1OD =,因此点A 的坐标是(20)-,,点C 的坐标是(12),(2)点A 和点C 之间的距离就是线段AC 的长,把线段AC 放到,运用勾股定理即可.【详解】(1)点A 的坐标是(20)-,,点C 的坐标是(12),.(2)连结AC ,在Rt ACD △中,3AD OA OD =+=,2CD =,222222313AC CD AD ∴=+=+=,AC ∴=24.(1)S =5;(2)1.5<t <2或3<t <4【解析】试题分析:设OPM 的面积为1S ,OQM 的面积为则12S S S =+.()1当t =2时,点P (0,2),Q (1,−3),过点Q 作QE ⊥x 轴于点E .根据三角形的面积公式分别求出1S ,2S ,进而得出S 的值;()2设点P 运动的路程为t ,则点Q 运动的路程为2t .分五种情况进行讨论:①0 1.5t <≤;②1.5 2.5t <≤;③2.53t <≤;④34t <<;⑤4t =.针对每一种情况,首先确定出对应范围内点,P Q 的位置,再根据三角形的面积公式求解即可.试题解析:设OPM 的面积为1S ,OQM 的面积为2S ,则12S S S =+.(1)当t =2时,点P (0,2),Q (1,−3),过点Q 作QE ⊥x 轴于点E .11122222S OP OM =⋅=⨯⨯= ,21132322S QE OM =⋅=⨯⨯=,125S S S ∴=+=;(2)设点P 运动的路程为t ,则点Q 运动的路程为2t .①当0 1.5t <≤时,点P 在线段OA 上,点Q 在线段OD 上,此时四边形OPMQ 不存在,不合题意,舍去.②当1.5 2.5t <≤;时,点P 在线段OA 上,点Q 在线段DC 上,11223322S t t =⨯+⨯⨯=+,∵S <5,∴t +3<5,解得t <2.此时1.5<t <2.③当2.53t <≤;时,点P 在线段OA 上,点Q 在线段CM 上,1122(82)822S t t t =⨯+⨯⨯-=-,∵S <5,∴8−t <5,解得t >3.④当3<t <4时,点P 在线段AB 上,点Q 在线段CM 上,11232(82)11222S t t =⨯⨯+⨯-=-,∵S <5,∴11−2t <5,解得t >3.此时3<t <4.⑤当t =4时,点P 是线段AB 的中点,点Q 与M 重合,两动点均停止运动,此时四边形OPMQ 不存在,不合题意,舍去.综上所述,当S <5时,1.5<t <2或3<t <4.25.(1)证明见解析;(2)5;(3)CD 2=BD 2+4AH 2.证明见解析.【详解】分析:(1)、根据∠DAE=∠BAC 得出∠DAC=∠BAE ,结合已知条件得出△ACD 和△ABE 全等,从而得出答案;(2)、连接BE ,根据中垂线的性质以及∠DAE=60°得出△ADE 是等边三角形,根据△ABE 和△ACD 全等得出答案;(3)、过B 作BF ⊥BD ,且BF=AE ,连接DF ,则四边形ABFE 是平行四边形,设∠AEF=x ,∠AED=y ,则∠FED=x+y ,然后证明△ACD 和△EFD 全等,得出CD=DF ,然后根据BD 2+BF 2=DF 2得出答案.详解:(1)、如图1,证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAE=∠BAC+∠CAE ,即∠DAC=∠BAE .∴△ACD ≌△ABE (SAS ),∴CD=BE ;(2)、连接BE ,∵CD 垂直平分AE ∴AD=DE ,∵∠DAE=60°,∴△ADE 是等边三角形,∴∠CDA=∠ADE=×60°=30°,∵△ABE ≌△ACD ,∴BE=CD=4,∠BEA=∠CDA=30°,∴BE ⊥DE ,DE=AD=3,∴BD=5;(3)、如图,过B 作BF ⊥BD ,且BF=AE ,连接DF ,则四边形ABFE 是平行四边形,∴AB=EF ,设∠AEF=x ,∠AED=y ,则∠FED=x+y ,∠BAE=180°﹣x,∠EAD=∠AED=y,∠BAC=2∠ADB=180°﹣2y,∠CAD=360°﹣∠BAC﹣∠BAE﹣∠EAD=360°﹣(180°﹣2y)﹣(180°﹣x)﹣y=x+y,∴∠FED=∠CAD,∴△ACD≌△EFD(SAS),∴CD=DF,而BD2+BF2=DF2,∴CD2=BD2+4AH2.点睛:本题主要考查的是三角形全等的判定与性质,勾股定理的性质,综合性非常强.理解三角形全等的判定法则是解决这个问题的关键.。

2024-2025学年八年级数学上学期期中模拟卷(深圳专用,北师大版八上第1~4章)(考试版A4)

2024-2025学年八年级数学上学期期中模拟卷(深圳专用,北师大版八上第1~4章)(考试版A4)

2024-2025学年八年级数学上学期期中模拟卷(深圳专用)(考试时间:90分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:北师大八上第一章勾股定理+第二章实数+第三章位置与坐标+第四章一次函数。

5.难度系数:0.70。

第一部分(选择题 共24分)一、选择题(本大题共8小题,每小题3分,满分24分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.在实数 3.14,0,2p ,227,0.1616616661¼(两个1之间依次多一个6)中,无理数的个数是( )A .5B .4C .3D .22.下列二次根式中,是最简二次根式的是( )A B C D 3.如图,根据尺规作图痕迹,图中标注在点A 处所表示的数为( )A .B .1C .1-+D .1-4.三角形ABC 中,A Ð,B Ð,C Ð的对边分别记为a ,b ,c ,由下列条件不能判定三角形ABC 为直角三角形的是( )A .AB C=+∠∠∠B .::1:1:2A B C ÐÐÐ=C .222b a c =+D .::1:1:2a b c =5.已知点P 的坐标为()2,36a a -+,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A .()3,3B .()3,3-C .()6,6-D .()3,3或()6,6-6.在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A .B .C .D .7.某数学兴趣小组开展了笔记本电脑的张角大小的实践探究活动.如图,当张角为BAF Ð时,顶部边缘B 处离桌面的高度BC 为7cm ,此时底部边缘A 处与C 处间的距离AC 为24cm ,小组成员调整张角的大小继续探究,最后发现当张角为DAF Ð时(D 是B 的对应点),顶部边缘D 处到桌面的距离DE 为20cm ,则底部边缘A 处与E 之间的距离AE 为( )A .15cmB .18cmC .21cmD .24cm8.如图,直线483y x =-+分别与x ,y 轴交于点A ,B ,点C 在线段OA 上,将BOC V 沿BC 翻折,点O 恰好落在AB 边上的点D 处.则点C 的坐标为( )A .8,03æöç÷èøB .5,03æöç÷èøC .()20,D .()30,第二部分(非选择题 共76分)二、填空题(本大题共5小题,每小题3分,满分15分)9的算术平方根为 .10.已知x 的整数部分,y xy 的值 .11.如图是勾股树衍生图案,它由若干个正方形和直角三角形构成,1S ,2S ,3S ,S ₄分别表示其对应正方形的面积,若已知上方左右两端的两个正方形的面积分别是64,9,则1234S S S S -+-的值为12.如图,已知等边AOC △的边长为1,作OD AC ^于点D ,在x 轴上取点1C ,使1CC DC =,以1CC 为边作等边11A CC △;作111CD A C ^于点1D ,在x 轴上取点2C ,使1211C C D C =,以12C C 为边作等边212A C C V ;作1222C D A C ^于点2D ,在x 轴上取点3C ,使2322C C D C =,以23C C 为边作等边323A C C △;…,且点123,,,A A A A ,…都在第一象限,如此下去,则点2023D 的坐标为 .13.数形结合是数学的重要思想和解题方法,如:“当012x <<值”可看作两直角边分别为x 和2的Rt ACP V 12x -和3的Rt BDP V 的斜边长.于是将问题转化为求AP BP +的最小值,如图所示,当AP 与BP 共线时,AP BP +为最小.请你解决问题:当04x <<的最小值是 .三、解答题(本大题共7小题,满分61分.解答应写出文字说明,证明过程或演算步骤)14.(8分)计算:(1)0(2023)1|p -+-(2)+-.15.(7分)已知2x +的一个平方根是2-,21x y +-的立方根是3;(1)求x y 、的值;(2)的算术平方根.16.(7分)如图,在平面直角坐标系中,△ABC 顶点分别是()0,2A ,()2,2B -,()4,1C -.(1)在图中作出△ABC 关于y 轴对称的111A B C △;(2)直接写出对称点坐标1B ________,1C ________;(3)在图中第一象限格点中找出点D ,使AD =且同时CD (无需计算过程,请把点画清楚一些)17.(8分)如图,在三角形ABC 中,90ABC Ð=°,20AC =,12BC =.(1)设点P 在线段AB 上,连接PC ,若PAC PCA Ð=Ð,求AP 的长;(2)设点M 在线段AC 上,若MBC △是等腰三角形,求AM 的长.18.(10分)综合与实践【问题情境】在平面直角坐标系中,有不重合的两点()11,A x y 和点()22,B x y ,若12x x =,则AB y ∥轴,且线段AB 的长度为12y y -:若12y y =,则AB x ∥轴,且线段AB 的长度为12x x -.【知识应用】(1)若点()1,1A -,()2,1B ,则AB x ∥轴,AB 的长度为________;【拓展延伸】我们规定:平面直角坐标系中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212,d M N x x y y =-+-.例如:图1中,点()1,1M -与点()1,2N -之间的折线距离为()(),1112235d M N =--+--=+=.【问题解决】(2)如图2,已知()2,0E ,若()1,1F --,则(),d E F =________;(3)如图2,已知()2,0E ,()1,G t ,若(),3d E G =,则t 的值为________;(4)如图3,已知()2,0E ,()0,2H ,点P 是EOH △的边上一点,若(),d E P =P 的坐标.19.(10分)问题情境:在学习了《勾股定理》和《实数》后,某班同学们以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动,同学们想到借助曾经阅读的数学资料进行探究:材料1.古希腊的几何学家海伦(Heron ,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式S =(其中a b c ,,为三角形的三边长,2a b c p ++=,S 为三角形的面积).S a b c ,,,三角形的面积为S .(1)利用材料1解决下面的问题:当3a b c ===,(2)利用材料2解决下面的问题:已知ABC V 24-,记ABC V 的周长为ABC C V .①当2x =时,请直接写出ABC V 中最长边的长度;②若x 为整数,当ABC C V 取得最大值时,请用秦九韶公式求出△ABC 的面积.20.(11分)如图,点(0,)A a ,点(,0)B b 分别为y 轴正半轴、x 轴负半轴上的点,以点B 为直角顶点在第二象限作等腰Rt ABC △.(1)如图1,若a 、b 满足()230a -=,求点C 的坐标;(2)在x 轴上是否存在点P ,使PAB V 是以AB 为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.(3)如图2,点M 在AC 上,点N 在CA 的延长线上,45MBN Ð=°,探究线段CM 、AN 和MN 之间的关系,并加以证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学试题
一、选择题:(在各小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的
选项前面的字母代号填写在第II 卷上指定的位置. 本大题共10小题,每题3分,计30分) 1. 边长为1的正方形的对角线长是( )
A. 整数
B. 分数
C. 有理数
D. 无理数 2. 在下列各数中是无理数的有( ) -…,
4, 5, π-, , …(相邻两个1之间有1个0), …(小数部分由相继的正整
数组成).
个 B. 4个 C. 5个 D. 6个 3.下列说法正确的是( )
A.064.0-的立方根是
B.9-的平方根是3±
C. 16的立方根是316
D. 的立方根是 4. 因为32=9,下列表述正确的是( )
A. 9是3的平方根
B. 9是3的3倍
C. 3是9的算术平方根
D. 3是9的二次幂 5. 以下列各组数为边长,能组成直角三角形的是( )
、15、7 B. 8、10、6 C. 5、8、10 D. 8、39、40 6. 如图6:Rt △ABC 中,∠ACB=900,CD 是高,AC=4cm ,BC=3cm ,则CD=( ) A. 5cm
512 C. 12
5
cm
3
4
7.下列四个图形中,不能通过基本图形平移得到的是( )
8. 下列各式中正确的是( ) A.
7)7(2-=- B. 39±= C. 4)2(2=- D.33348=-
9. 下列说法:①一组对边平行的四边形是梯形;②直角梯形的对角线相等;③夹在梯形两底之间的垂线段叫做梯形的高;④等腰梯形同一个底上的两个角相等,其中正确的有( )
A. 1个
B. 2个
C. 3个
D. 4个 10.观察表一,寻找规律,表二、表三、表四分别是从表一中截取 的一部分,其中a 、b 、c 的值分别( )
C B
D A
图6
A .20,29,30
B .18,30,26
C .18,20,26
D .18,30,28 二、填空题:(请将解答结果填写在第II 卷上指定的位置.本大题共5小题,每题3分,计
15分)
11. 在Rt △ABC 中,∠C=90o ,其中a=6,b=8,则c= 。

12.
5的相反数是 ;33-的绝对值是 ;
2
π
的倒数是 。

13. 一条线段AB 的长是3cm ,将它沿水平方向平移4cm 后,得到线段CD ,则CD 的长是_________。

14. 如果一个多边形的内角和是它的外角和的两倍,那么这个多边形的边数n=____________.
15.已知在正方形网格,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,
位置如图所示,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形的面积为1 个平方单位,则点C 的个数为 个. 16. 求下列各式中x 的值。

(1)2x 2=8 (2)3(x -1)3=81
17. 把如图5的正方形剪成四个全等的直角三角形。

请用这4个全等的直角三角形拼成符合下例要求的图形(全部用上,互不重叠且不留空隙),把你的拼法按照实际大小画出。

(1)不是正方形的菱形; (2)不是正方形的矩形; (3) 梯形;
(4)既不是矩形也不是菱形的平行四边形; (5)不是梯形和平行四边形的凸四边形;
第15题图
A B
18. 化简: (1)
2328-+; (2)
0)31(3
3
122-++; (3)
)32)(32(-+
19. 如,在ABCD 中,点E 、F 分别为DC 、AB 边上的点,且DE =BF. 试说明四边形AFCE 是平行四边形.
20.已知:如图20,△ABC 中,DF ∥AC ,EF ∥AB ,AF 平分∠BAC 。

⑴ 你能判断四边形ADFE 是菱形吗?并说明理由。

⑵ ∠BAC 满足什么条件时,四边形ADFE 是正方形?并说明理由。

21.八年级二班两位同学在打羽毛球, 一不小心球落在离地面高为6米的树上. 其中一位同
D E C
B
F A 图19 A C E
F B D
图20
学赶快搬来一架长为7米的梯子, 架在树干上, 梯子底端离树干2米远, 另一位同学爬
上梯子去拿羽毛球. 问这位同学能拿到球吗?
22.如图22,长方体盒子(无盖)的长、宽、高分别是12cm ,8cm,30cm.
(1)在AB中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,有无数种走法,则最短路
程是多少?
(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?
23.如图23,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘
米,
求EC的长。

24. 细心观察图形24,认真分析各式,然后解答问题。

OA22=()2
1
12=
+
2
1
1
=
S;
OA32=12+()3
22=
2
2
2
=
S;
OA42=12+()4
32=
2
3
3
=
S
…………
(1)请用含有n(n是正整数)的等式表示上述变化规律.
(2)推算出
10
OA的长.
(3)若一个三角形的面积是5,计算说明他是第几个三角形?
图24
图23
A
B
C
D.
30
(4)求出2
10232221S S S S ++++ 的值. 25.如图25-1,已知P 为正方形ABCD 的对角线AC 上一点(不与A 、C 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F .
(1) 求证:BP =DP ;
(2) 如图25-2,若四边形PECF 绕点C 按逆时针方向旋转,在旋转过程中是否总有BP =DP ?若是,请给予证明;若不是,请用反例加以说明;
(3) 试选取正方形ABCD 的两个顶点,分别与四边形PECF 的两个顶点连结,使得到的两条线段在四边形PECF 绕点C 按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .
图25-2
图25-1。

相关文档
最新文档