05高数B(2)A卷
05级高数(下)试题及答案

南昌大学 2005~2006学年第二学期期末考试试卷及答案一、 填空题(每空 3 分,共 15 分)1. 曲线⎧=-+⎨=⎩21z y x ,绕z 轴旋转一周所得到的旋转曲面的方程是.2.曲线()⎧=⎪⎪⎨⎪=⎪-⎩2111x y z y 在点,,⎛⎫ ⎪⎝⎭1212处的法平面方程是.3. 设()=+22z f x y ,其中()f u 具有二阶连续导数,且()'=13f ,()''=12f ,则==∂∂2210x y z x=.4.级数∞=-∑1n nα,当α满足不等式 时收敛. 5.级数()∞=-⋅∑112nnn x n的收敛域是.二、 单项选择题 (每小题3分,共15分)1.设 a 与 b 为非零向量,则⨯=0 a b 是A. // a b 的充要条件;B. ⊥a b 的充要条件;C. = a b 的充要条件;D. //a b 的必要但非充分条件.2.平面--=3360x y 的位置是 A.垂直于z 轴; B.平行于z 轴;C.平行于xoy 面;D. 通过z 轴.3.设函数(),=⎧=⎨≠⎩0010当时当时xy f x y xy ,则下列说法正确的是A.()lim ,→→00x y f x y 存在且(),f x y 在点(),00处的两个偏导数也存在; B. ()lim ,→→00x y f x y 存在但(),f x y 在点(),00处的两个偏导数不存在;C. ()lim ,→→00x y f x y 不存在但(),f x y 在点(),00处的两个偏导数存在;D. ()lim ,→→00x y f x y 不存在且(),f x y 在点(),00处的两个偏导数也不存在; 4.曲线L 为圆周cos sin =⎧⎨=⎩33x ty t≤≤02t π,则()+⎰22 nLx yds 等于A. +⋅2123n π;B. +⋅19n π;C. ⋅63nπ; D.+⋅+211321n n . 5. 设正项级数∞=∑1n n u 收敛,则必有A. lim+→∞=<11n n nu u ρ;B. lim =>1n ρ;C. lim →∞=≠0n n u c ; D. lim →∞=0n n u . 三.(8分)在平面++=1x y z 上求一直线,使得它与直线=⎧⎨=-⎩11y z 垂直相交。
2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xx xdx ______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D)32ln 8+.[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( (A)πab . (B)π2ab . (C)π)(b a +. (D)π2ba + .[ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ ]字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy=dxπ- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim 23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x x xdx 4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰10221)2(xxxdx⎰-22cos )sin 2(cos sin πdttt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程xx y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= 43 . 【分析】 题设相当于已知1)()(lim 0=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 2==-+→k x x x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→nnn x x f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C)32ln 8+-. (D)32ln 8+.[ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()((A)πab . (B)π2ab . (C)π)(b a +. (D) π2ba + .[ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 =++⎰⎰σd y f x f y f b x f aD)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D⎰⎰+++++])()()()()()()()([21=.2241222ππσba b a d b a D+=⋅⋅+=+⎰⎰ 应选(D).(11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u ∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1-=-x x ex f 则(A) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则22211211=++αλαλαk k k ,)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得BA E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→xx x x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f (16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y Sx S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有 ⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--y xdtt t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ 两边对y 求导得)(ln )11(21y y yϕ-=-,故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2,.0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,得022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f2=∂∂,y yf2-=∂∂, 于是 )(),(2y C x y x f +=,且yy C 2)(-=',从而 Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=xfA ,)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,42>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D∈≤+=, }),(,1),{(222D y x y x y x D ∈>+=,于是 σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x =⎰⎰--221)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j jβ不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有1=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。
05-06高数期末(下)试题(A)

中国农业大学2005 ~2006 学年 第 二 学期 高等数学(A 、B ) 课程考试试题 (A 卷)试 题(2006/6)一、 填空题 (满分15分,每小题3分,共5道小题),请将答案写在横线上.1.函数yz x u 2=在点)1,1,1(P 处沿(2,2,1)方向的方向导数为_____________.2.函数xy z =在条件1=+y x 下的极大值=___________.3.设L 为圆周922=+y x ,取逆时针方向,则曲线积分⎰-+-L dy x x dx y xy )2()32(2=__________.4.设⎩⎨⎧<≤+<≤--=ππx x x x f 0101)(2,且以π2为周期,则)(x f 的傅里叶级数在点π=x 处收敛于_____________.5.微分方程0)(=++dx y x xdy 的通解为__________________.二、选择题 (满分15分,每小题3分,共5道小题),请将合适选项填在括号内.1. 设有直线L :21211-=+=-z y x 和平面0224:=-+-∏z y x ,则L 与∏ ( ) (A) 垂直; (B) L 在∏上 ; (C) 平行; (D) 斜交.2.下列命题不正确的是( )(A)),(y x f 在点),(00y x 可微,则),(y x f 在该点连续;(B)),(y x f 在点),(00y x 的偏导数存在,则),(y x f 在该点连续;(C)),(y x f 的偏导数在点),(00y x 连续,则),(y x f 在该点可微;(D)),(y x f 在点),(00y x 可微,则),(y x f 在该点的偏导数存在.3.设∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分,则曲面积分⎰⎰∑ydS 的值是( ) (A) 334 ; (B) 0; (C) 34; (D) π.4.设α为常数,则级数∑∞=-13]1sin [n nn n α( ) (A) 绝对收敛; (B) 条件收敛; (C) 敛散性与α有关; (D) 发散.5.若21,y y 是二阶齐次线性微分方程0)()(=+'+''y x Q y x P y 的两个特解,21,C C 为两个任意常数,则2211y C y C y +=( )(A ) 是该方程的解; (B ) 是该方程的特解;(C ) 是该方程的通解; (D ) 不一定是该方程的解.三、(10分)求过点)2,1,3(0-P 且通过直线12354:z y x l =+=-的平面方程.四、(10分)设函数),(y x z z =由方程)(22z x yf z x -=+确定,其中f 为可微函数, 证明:x y z y x z z =∂∂+∂∂.五、(10分)计算积分:⎰⎰⎰⎰+x x x dy y x dx dy y x dx 242212sin 2sin ππ.六、(11分)设)(x f 具有二阶连续导数,1)0(',0)0(==f f ,曲线积分dy y x x f dx y x f xy y x L ])('[])([222++-+⎰与路径无关,求)(x f .解:由xQ y P ∂∂=∂∂,整理得)(x f 满足微分方程2)()(x x f x f =+''七、(12分)求幂级数∑∞=-1121n n n x n 的收敛域,并求其和函数.八、(12分)计算曲面积分⎰⎰∑++++212222)()(z y x dxdy a z axdydz ,其中∑为222y x a z ---=的上侧,a 为大于零的常数.九、(5分)设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(,0)0(='=f f , 证明级数∑∞=1)1(n n f 绝对收敛.。
2004-2005学年第二学期高等数学试题(A卷)

命题方式: 教研组命题佛山科学技术学院2004—2005学年第二学期 《高等数学》(经济类)课程期末考试试题(A 卷)专业、班级: 姓名: 学号:一、单项选择题:(每小题3分,共15分. 在每小题给出的选项中,只有一项是符合题目要求的,把所选项前的字母填在该题括号内) 1.下列积分⑴ ⎰50231+x dxx , ⑵⎰11-2-1x xdx, ⑶⎰402235-)(/x xdx, ⑷⎰1ee xx dx/ln中,可直接使用牛顿——莱不尼兹公式的有 ( )A . ⑴B . ⑴⑶C . ⑴⑷D . ⑴⑵⑶⑷2.下面叙述中⑴ 发散级数加括号后所成的级数一定发散;⑵ 发散的正项级数加括号后所成的级数一定发散; ⑶ 交换级数的项的次序不会影响级数的敛散性,正确的有 ( ) A . ⑴ B . ⑵ C . ⑶ D . ⑵⑶3.设∑∞1=n n u 为任意项级数,且∑∞1=n n u || 发散,则 ( )A . 原级数绝对收敛B . 原级数发散C . 原级数敛散性不定D . 原级数条件收敛 4.设 ⎰⎰2=Ddxdy I ,其中}|),({4≤+≤1=22y x y x D ,则=I ( ) A . π B . π2 C . π6 D . π15 5.曲线3=x y 与直线2=x 、0=y 所围成的图形绕y 轴旋转产生立体的体积是( ) A . π7128 B . π596 C . π564D . π32二、填空题:(每小题3分,共12分.) 1.幂级数∑∞1=n nnnx 的收敛区间为 .2.二元函数22---4=y x y x z )(在点( , )处取得极 值 .3.交换二次积分⎰⎰2-21y ydx y x f dy ),(的次序得.共6页第1页4.微分方程 0=3+'4+''y y y 满足初始条件 2=0=x y,6='0=x y 的特解为.三、解答题(每小题6分,共12分):1.设y z z x ln =确定函数),(y x f z =,求xz∂∂.2.设 v e z u sin =,xy u =,y x v +=,求xz∂∂.四、解答题(7分): 计算⎰∞+0-dx e x .共6页第2页五、解答题(7分):试判断下面级数的敛散性:∑∞1=2⋅3nnnn.六、解答题(7分):级数∑∞1=1-1 1-nnn)( 是否收敛?若收敛,指出是条件收敛还是绝对收敛.共6页第3页七、解答题(7分):求微分方程x y y ='-''的通解.八、解答题(7分):求下面微分方程满足初始条件的特解:0=+1-+1dy xy dx y x,0=0=x y.共6页第4页九、解答题(7分):将函数2--=2x x xx f )( 展成 x 的幂级数,并确定其收敛区间.十、解答题(7分): 计算二重积分⎰⎰Dxy d xe σ,其中},|),({1≤≤01≤≤0=y x y x D .共6页第5页十一、解答题(7分): 计算二重积分⎰⎰Dxdxdy ,其中D 是由直线 x y = 和圆 1=1-+22)(y x所围成且在直线x y = 下方的平面区域.十二、解答题(5分):设可微函数)(x y 满足⎰-+=xx dt t y e x y )()(,求)(x y .共6页第6页。
2005年全国Ⅱ高考试题(文)

2005年普通高等数学招生全国统一考试(全国Ⅱ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 参考公式: 如果事件A 、B 互斥,那么球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率:其中R 表示球的半径()(1)k k n kn n P k C P P -=- 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知α为第三象限角,则2α所在的象限是A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点(2,)A m -和(,4)B m 的直线与直线210x y +-=平行,则m 的值为A .0B .-8C .2D .103.在8(1)(1)x x -+的展开式中5x 的系数是A .-14B .14C .-28D .284.设三棱柱111ABC A B C -的体积为V ,P 、Q 分别是侧棱1AA 、1CC 上的点,且1PA QC =,则四棱锥B APQC -的体积为A .16VB .14VC .13VD .12V5.设137x=,则A .21x -<<-B .32x -<<-C .10x -<<D .01x <<6.若ln 22a =,ln 33b =,ln 55c =,则A .a b c <<B .c b a <<C .c a b <<D .b a c <<7.设02x π≤≤sin cos x x =-,则A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤D .322x ππ≤≤ 8.22sin 2cos 1cos 2cos 2αααα⋅+=A .tan αB .tan 2αC .1D .129.已知双曲线2212y x -=的焦点为1F 、2F ,点M 在双曲线上且120MF MF ⋅= ,则点M 到x 轴的距离为A .43B .53C .3D 10.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若△12F PF 为等腰直角三角形,则椭圆的离心率是A .2B .12C .2D 111.不共面的四个定点到平面α的距离都相等,这样的平面共有A .3个B .4个C .6个D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:1E D B +=,则A B ⨯= A .6EB .72C .5FD .0B第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”大度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人.14.已知向量(,12)OA k = ,(4,5)OB = ,(,10)OC k =-,且A 、B 、C 三点共线,则k =15.曲线32y x x =-在点(1,1)处的切线方程为 .16.已知在△ABC 中,90ACB ∠=,3BC =,4AC =,P 是AB 上的点,则点P 到AC 、BC 的距离乘积的最大值是 .三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数2()2sin sin 2f x x x =+,[0,2]x π∈.求使()f x 为正值的x的集合. 18.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (2)计算这个小时内至少有一台需要照顾的概率.V D A BC19.(本小题满分12分)在四棱锥V ABCD -中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD . (1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的大小.20.(本小题满分12分)在等差数列{}n a 中,公差0d ≠,2a 是1a 与4a 的等比中项,已知数列1a ,3a ,1k a ,2k a ,……,n k a ,……成等比数列,求数列{}n k 的通项n k .21.(本小题满分12分)用长为90cm ,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?22.(本小题满分14分)设()11A x y ,,()22B x y ,两点在抛物线22y x =上,l 是AB 的垂直平分线.(1)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当11x =,23x =-时,求直线l 的方程.数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力二、填空题.本题考查基础知识,基本概念和基本运算技巧 13. 14. 15. 16. 三、解答题 17.2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限解:α第三象限,即3222k k k Z πππαπ+<<+∈,∴3224k k k Z παπππ+<<+∈,可知2α在第二象限或第四象限,选D 2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10解:直线2x+y-1=0的一个方向向量为a =(1,-2),(2,4)AB m m =+- ,由AB a即(m+2)×(-2)-1×(4-m)=0,m=-8,选B球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径3.在8)1)(1(+-x x 的展开式中5x 的系数是 ( )A .-14B .14C .-28D .28解:(x+1)8展开式中x 4,x 5的系数分别为48C ,58C ,∴(x-1)(x+1)8展开式中x 5的系数为 458814C C -=,选B4.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16VB .14VC .13VD .12V解:如图,1111111113A ABCB A BC B AC Q ABC A B C V V V V ----===111B PCQA B CQA B PCA V V V ---=+,∵AF=QC 1,∴APQC 1,APQC 都是平行四边形, ∴111B PCQA B CQA B PCA V V V ---=+=12(11B CQA B PCA V V --+) =1111223ABC A B C V -⋅=11113ABC A B C V -,选C 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1解:211337--<< ,21x -<<-,选A 6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c解:由题意得a=ln,b=ln ,c=ln ∵62353153525105(5)(2)2(2)(3)3=<==<=,∴c<a<b,选C7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤sin cos x x -得|sinx-cosx|=sinx-cosx,又02x π≤<, ∴544x ππ≤≤,选C8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .12解:22sin 2cos 1cos 2cos 2αααα⋅=+222sin 2cos tan 22cos cos 2ααααα⋅=,选B 9.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅= 则点M 到 x 轴的距离为 ( )A .43 B .53C D 解:由120MF MF ⋅= ,得MF 1⊥MF 2,不妨设M(x,y)上在双曲线右支上,且在x 轴上方,则有(ex-a)2+(ex+a)2=4c 2,即(ex)2+a 2=2c 2,∵得x 2=53,y 2=23,由此可知M 点到x选C 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A B C .2 D 1解:由题意可得22b c a=,∵b 2=a 2-c 2e=c a ,得e 2+2e-1=0,∵e>1,解得1,选D 11.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( )A .3个B .4个C .6个D .7解:共有7个,它们是由四个定点组成的四面体的三对异面直线间的公垂线的三个中垂面;四面体的四条高的四个中垂面,选D12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示:E+D=1B ,则A ×B= ( ) A .6E B .72 C .5F D .B0解:∵A=10,B=11,又A ×B=10×11=110=16×6+14,∴在16进制中A ×B=6E,∴选A第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人.解:设执“不喜欢”的学生为x 人,则执“一般”的学生为(x+12)人,由题意得1123x x =+,x=6,∴执“喜欢”的学生有30人,全班共有人数为12+6+6+30=54(人),∴全班学生中“喜欢”摄影的比全班人数的一半还多3人.14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= . 解:(4,7),(2,2)AB k AC k =--=-- ,由题意得(4-k)(-2)-2k ×7=0,解得k=23-15.曲线32x x y -=在点(1,1)处的切线方程为 .解:2123,|1x y x y =''=-=-,∴曲线32x x y -=在点(1,1)处的切线方程为y-1= -(x-1),即y+x-2=0 16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC的距离乘积的最大值是解:P 到BC 的距离为d 1,P 到AC 的距离为d 2,则三角形的面积得3d 1+4d 2=12,∴3d 1⋅4d 2≤2212()6362==,∴d 1d 2的最大值为3,这时3d 1+4d 2=12, 3d 1=4d 2得d 1=2,d 2=32三.解答题:共74分. 17.(本小题满分12分)已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.18.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125,(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;(Ⅱ)计算这个小时内至少有一台需要照顾的概率.19.(本小题满分12分)在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.(Ⅰ)证明AB⊥平面VAD;(Ⅱ)求面VAD与面VDB所成的二面角的大小.20.(本小题满分12分)在等差数列}{n a 中,公差412,0a a a d 与是 的等差中项.已知数列 ,,,,,,2131n k k k a a a a a 成等比数列,求数列}{n k 的通项.n k21.(本小题满分12分)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?……22. (本小题满分14分)设),(),,(2211y x B y x A 两点在抛物线22x y =上,l 是AB 的垂直平分线, (Ⅰ)当且仅当21x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (Ⅱ)当3,121-==x x 时,求直线l 的方程.2005年普通高等学校招生全国统一考试(四川)数学(文)参考答案一、DBBCA ,CCBCD ,DA 二、13、3,14、23-,15、x+y-2=0,16、12 三、解答题:17.解:∵()1cos 2sin 2f x x x =-+……………2分 1s i n (2)4xπ=-………4分()01)04f x x π∴>⇔+->sin(2)4x π⇔->…………………………………………6分 5222444k x k πππππ⇔-+<-<+……………………………8分 34k x k πππ⇔<<+………………………………………………10分 又[0,2].x π∈ ∴37(0,)(,)44x πππ∈⋃………………………12分 18.解:(Ⅰ)记甲、乙、丙三台机器在一小时需要照顾分别为事件A 、B 、C ,……1分则A 、B 、C 相互独立,由题意得: P (AB )=P(A)·P(B)=0.05 P (AC )=P(A)·P(C)=0.1P (BC )=P(B)·P(C)=0.125…………………………………………………………4分 解得:P(A)=0.2;P(B)=0.25;P(C)=0.5所以, 甲、乙、丙每台机器在这个小时内需要照顾的概率分别是0.2、0.25、0.5……6分(Ⅱ)∵A 、B 、C 相互独立,∴AB C 、、相互独立,……………………………………7分∴甲、乙、丙每台机器在这个小时内需都不需要照顾的概率为()()()()0.80.750.5P A B C P A P B P C ⋅⋅==⨯⨯=…………………………10分∴这个小时内至少有一台需要照顾的概率为1()10.30.7p P A B C =-⋅⋅=-=……12分19.证明:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………………………1分建立如图空间直角坐标系,并设正方形边长为1,…………………………2分则A (12,0,0),B (12,1,0),C (-12,1,0),D (-12,0,0),V (0,0,2), ∴1(0,1,0),(1,0,0),(,0,)22AB AD AV ===- ………………………………3分由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥……………………………………4分1(0,1,0)(,0,)022AB AV AB AV ⋅=⋅-=⇒⊥ ……………………………………5分又AB ∩A V=A ∴AB ⊥平面VAD …………………………………………6分(Ⅱ)由(Ⅰ)得(0,1,0)AB =是面VAD 的法向量………………………………7分设(1,,)n y z =是面VDB 的法向量,则110(1,,)(,1,0(1,20(1,,)(1,1,0)03x n VB y z n z n BD y z =-⎧⎧⎧⋅=⋅-=⎪⎪⎪⇒⇒⇒=-⎨⎨⎨=⋅=⎪⎪⎪⎩⋅--=⎩⎩……9分 ∴(0,1,0)(1,cos ,7AB n ⋅-<>==-11分又由题意知,面VAD 与面VDB 所成的二面角,所以其大小为arccos7…………12分 20.解:由题意得:4122a a a =……………1分 即)3()(1121d a a d a +=+…………3分又0,d ≠d a =∴1…………4分 又 ,,,,,,2131n k k k a a a a a 成等比数列,∴该数列的公比为3313===dd a a q ,………6分 所以113+⋅=n k a a n ………8分 又11)1(a k d k a a n n k n =-+=……………………………………10分13+=∴n n k 所以数列}{n k 的通项为13+=n n k ……………………………12分21.解:设容器的高为x ,容器的体积为V ,……………………………………………1分则V=(90-2x )(48-2x )x,(0<V<24)………………………………………………5分 =4x 3-276x 2+4320x ∵V ′=12 x 2-552x+4320………………………………7分 由V ′=12 x 2-552x+4320=0得x 1=10,x 2=36∵x<10 时,V ′>0, 10<x<36时,V ′<0, x>36时,V ′>0,所以,当x=10,V 有极大值V(10)=1960………………………………………10分 又V(0)=0,V(24)=0,………………………………………………………………11分 所以当x=10,V 有最大值V(10)=1960……………………………………………12分22.解:(Ⅰ)∵抛物线22x y =,即41,22=∴=p y x , ∴焦点为1(0,)8F ………………………………………………………1分(1)直线l 的斜率不存在时,显然有021=+x x ………………………………3分 (2)直线l 的斜率存在时,设为k ,截距为b即直线l :y=kx+b 由已知得:12121212221k b k y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩……………5分 2212122212122212222k b k x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩ 22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩……………7分 2212104b x x ⇒+=-+≥14b ⇒≥ 即l 的斜率存在时,不可能经过焦点1(0,)8F ……………………………………8分 所以当且仅当12x x+=0时,直线l 经过抛物线的焦点F …………………………9分(Ⅱ)当121,3x x==-时,直线l 的斜率显然存在,设为l :y=kx+b ………………………………10分 则由(Ⅰ)得:22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⎨⎪+=-⎪⎩12102122k b k x x +⎧⋅+=⎪⎪⇒⎨⎪-=-⎪⎩………………………11分 14414k b ⎧=⎪⎪⇒⎨⎪=⎪⎩…………………………………………13分 所以直线l 的方程为14144y x =+,即4410x y -+=………………14分。
2005年《高数二》答案

2005年高数(二)答案(A 卷)一.填空题:(每空格5分,共40分)1.连续区间是),1()1,0()0,(+∞-∞ ,2.21, 3.(1)0y =, (2)2x = 4.1,0-==b a ,5.(1)y x r 2-, (2)xy23.三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,每小题7分,共70分)1.解 :令)1ln (ln 2+-=x x x y , (3分)则xx x x x x x x x y )1)](1ln(1)12([222'+-+-++--= (7分) 2.解:)43(432'-=-=x x x x y ,驻点为34,021==x x (2分)(法一) 46''-=x y ,04)0(''<-=y , 1)0(=y (极大值), (5分) 04)34(''>=y , 275)34(-=y (极小值). (7分)(5分)当0=x 时,1=y (极大值),当34=x 时,275-=y (极小值) (7分)3.解:(法一)利用莱布尼兹公式x e x x dxfd ]66[233++= (7分) (法二)xe x x xf )2()(2'+=, (3分)xe x x xf )24()(2''++=, x e x x x f)66()(2)3(++= (7分)4.解:)1sin()1(lim 1--+-→x x e e x x =)1cos(1lim 1-+→x e x x =1+=e5.解:⎰+dx e x211==+-+⎰dx e e e x x x 22211 (3分) ++-=)1ln(212x e x C (7分)6. 解:⎰-+12)2(dx e x x x ==+--+⎰dx e x ex x x x 1102)12()2( (3分)=2-⎰+1)12(dx e x x=2-)13(-e +12x e ==e e e -=-+-12233。
2005年全国卷2高考理科数学试题精品

2005年普通高等学校招生全国统一考试(全国卷Ⅱ)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3到10页.考试结束后,将本试卷和答题卡一并交回. 参考公式:如果事件A B 、互斥,那么 球的表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A B 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(第Ⅰ卷 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()|sin cos |f x x x =+的最小正周期是 A.4π B.2πC.πD.2π 2.正方体1111ABCD A B C D -中,P Q R 、、分别是11AB AD B C 、、的中点.那么正方体的过P Q R 、、的截面图形是A.三角形B.四边形C.五边形D.六边形3.函数1(0)y x =≤的反函数是A.1)y x =≥-B.1)y x =≥-C.0)y x =≥D.0)y x =≥ 4.已知函数tan y x ω=在(,)22ππ-内是减函数,则A.01ω<≤B.10ω-≤<C.1ω≥D.1ω≤-5.设a b c d R ∈、、、,若dic bia ++为实数,则A.0bc ad +≠B.0bc ad -≠C.0bc ad -=D.0bc ad +=6.已知双曲线22163x y -=的焦点为12F F 、,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为A.563 B.665 C.56 D.657.锐角三角形的内角A B 、满足1tan tan sin 2A B A-=,则有A.sin 2cos 0A B -=B.sin 2cos 0A B +=C.sin 2sin 0A B -=D.sin 2sin 0A B +=8.已知点(0,0),A B C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=,其中λ等于A.2B.21 C.-3 D.13- 9.已知集合2{|3280}M x x x =--≤,2{|60}N x x x =-->,则M N 为A.{|4237}x x x -≤<-<≤或B.{|4237}x x x -<≤-≤<或C.{|23}x x x ≤->或D. {|23}x x x <-≥或10.点P 在平面上作匀速直线运动,速度向量(4,3)v =-(即点P 的运动方向与v 相同,且每秒移动的距离为||v 个单位).设开始时点P 的坐标为(10,10)-,则5秒后点P 的坐标为A.(-2,4)B.(-30,25)C.(10,-5)D.(5,-10) 11.如果128,,...,a a a 为各项都大于零的等差数列,公差0d ≠,则A.1845a a a a >B.1845a a a a <C.5481a a a a +>+D.1845a a a a =12.将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为A.3623+B.23+43+36234+ 第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上.2.答卷前将密封线内的项目填写清楚.3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.圆心为(1,2)且与直线51270x y --=相切的圆的方程为________. 14.设α为第四象限的角,若sin 313sin 5αα=,则tan 2α=______________. 15.在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有__________个.16.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是______________.(写出所有真命题的编号)三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 设函数|1||1|()2x x f x +--=,求使()f x ≥x 取值范围.18.(本小题满分12分)已知{}n a 是各项均为正数的等差数列,124lg lg lg a a a 、、成等差数列.又21,1,2,3,...nn b n a == ⑴证明:{}n b 为等比数列;⑵如果无穷等比数列{}n b 各项的和13s =,求数列{}n a 的首项1a 和公差d . (注:无穷数列各项的和即当n →+∞时数列前n 项和的极限)19.(本小题满分12分)甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6 .本场比赛采用五局三胜制:即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 20.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD .AD PD =,E F 、分别为CD PB 、的中点. (1)求证:EF PAB ⊥平面; (2)设2AB BC =,求AC 与平面AEF 所成的角的大小.21.(本小题满分14分)P Q M N 、、、四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与PQ 共线,MF 与FN 共线,且0PF MF ⋅=.求四边形PMQN 的面积的最小值和最大值.22.(本小题满分12分)已知0a ≥,函数2()(2)xf x x ax e =-.(1)当x 为何值时,()f x 取得最小值?证明你的结论; (2)设()f x 在[-1,1]上是单调函数,求a 的取值范围.参考答案1-6: CDBBCC 7-12:ACACBC(2)分析:本题主要考查学生对截面图形的空间想象,以及用所学知识进行作图的能力,通过画图,可以得到这个截面与正方体的六个面都相交,所以截面为六边形,故选D.(12) 解析一:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC -的各对应面的距离都为1如图一所示显然1HO =设,N T 分别为23,AB O O 的中点,在棱长为2的正四面体1234O O O O -中,1O T HT ==∴ 1O H =,且11sin 3TO H ∠=. 作1O M PN ⊥,则11O M =, 由于11O PM TO H ∠=∠, ∴ 11111sin sin O M O MPO O PM TO H===∠∠∴ 11314PO PO O O HO =++=+=+故选C解析二:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC -的各对应面的距离都为1 如图二所示, 正四面体1234O O O O -与P ABC -有共同的外接球球心O 的相似正四面体,其相似比为:1263126143OH k OQ ==+,所以1126132632643()434312643OO OP k +===+ 所以32612626()3(43433PQ OP OQ =+=+++=解析三:由题意,四个半径为1的小球的球心1234,,,O O O O ,恰好构成一个棱长为2的正四面体,并且各面与正四面体的容器P ABC -的各对应面的距离都为1如图二所示,正四面体1234O O O O -与P ABC -有共同的外接球球心O 的相似正四面体,从而有113O P OO HQ OH==, 又1HQ =, 所以1O P =由于13O H =,所以111333PQ OP OQ O H HQ O P =+=++=++=+13.22(1)(2)4x y -+-=;14. 34-;15. 192;16. ①,④ (13)分析:本题就是考查点到直线的距离公式,所求圆的半径就是圆心(1,2)到直线5x-12y -7=0的距离:2r ==,再根据后面要学习的圆的标准方程,就容易得到圆的方程:222(1)(2)2x y -+-=(16)分析:②显然不对,比如三条侧棱中仅有一条不与底面边长相等的情况,侧面都是等腰三角形的三棱锥但不是正三棱锥. ③底面是等边三角形,侧面的面积都相等,说明顶点到底面三边的距离(斜高)相等,根据射影长的关系,可以得到顶点在底面的射影(垂足)到底面三边所在直线的距离也相等。
高数B(二)期末卷(2011)--A卷

高数B(二)期末卷(2011)--A卷上海海洋大学试卷姓名: 学号: 专业班名: 任课教师:____________一 .用图解法解下列线性规划问题(要求:画图时,必要的点要标清,否则不给分):1212121212min 2..0,2,33,,0.x x s t x x x x x x x x +-≥+≤+≥≥二. 试通过求基本可行解来确定下列线性规划问题的最优解.12123124min 25..216,212,0,1,2,,4.j x x s t x x x x x x x j +++=++=≥=L三. 用单纯形法解下列线性规划问题:12312312123min 3..22,24,246,0,1,2,3.j x x x s t x x x x x x x x x j -++-+≤-+≤-++≤≥=四. 分别用两步法、大M 法求解下列线性规划问题:1231231212min3..28,2,210,0,1,2,3.j x x x s t x x x x x x x x j -+-+=+≥+≤≥=五. 写出下列线性规划的对偶规划:12312312313(1)min 435..3215,273,1,0,1,2,3.j x x x s t x x x x x x x x x j -+++≤-+-≥+=≥=1234123412341234124(2)min 457..21,2633,4325,,,0.x x x x s t x x x x x x x x x x x x x x x ---+++-≥-++≤-+++=-≥六. 给定下列线性规划问题:1231323min 4618..33,25,0,1,2,3.j x x x s t x x x x x j +++≥+≥≥=(1)用对偶单纯形法求解;(2)若右端向量35b ⎛⎫= ⎪⎝⎭改为24b ⎛⎫'= ⎪⎝⎭,原来的最优基是否还为最优基?利用原来的最优表求新问题的最优解.七. 利用最小元素法求下面运输问题的一个基本可行解(直接填在表内即可): A .必要而非充分条件 B .充分而非必要条件 C.充分必要条件D .既非充分又非必要条件 2.柱面 20x z +=的母线平行于( )A .y 轴B .x 轴C .z 轴D .xoz 面3. 方程y x ''=经过点(0,1)且在此点与直线112y x =+相切的积分曲线为( )A .3116y x x =++ B .31216y x c x c =++C .311162y x x =++ D .212y c xc x=+4.下列命题正确的是 ( ) A .若lim 0nn u→∞=,则级数1n n u ∞=∑收敛 B .若lim 0nn u→∞≠,则级数1n n u ∞=∑发散C .若级数1n n u ∞=∑发散,则lim 0nn u→∞≠ D .若级数1n n u ∞=∑发散,则必有lim nn u→∞=∞5.已知微分方程2xy y y e '''+-=的一个特解为*xy xe =,则它的通解是( )A .212xc x c xxe ++ B .212xx xc ec e xe -++C .212xc x c xe ++ D .12x x xc ec e xe -++二、填空题(5153'=⨯'): 1.过点(2,4,0)且与直线210320x z y z +-=⎧⎨--=⎩ 垂直的平面方程为____________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设仓库的长、宽、高分别为 米。
则仓库容积
且
即
令 4分
由
得 8分
由于实际问题的最大值必定存在,因此当仓库的长、宽、高都取相同值,即10米时,仓库的容积最大。
10分
10(10分)试求幂级数 的和函数并计算
级数 的和。
幂级数的收敛域是 ,
所以当 时,有
故
6(7分)计算二重积分
其中D:0≤y≤sinx,0≤x≤π.
7(7分)计算二重积分
其中D:x2+y2≤4,x≥0,y≥0.
8(7分)求微分方程 的通解。
令: ,得 (2分)
即
(6分)
通解为: (10分)
9(10分)
修建一座形状为长方体的仓库,已知仓库顶每平方米造价为300元,墙壁每平方米造价为200元,地面每平方米造价为100元,其它的固定费为2万元,现投资14万元,问如何设计方能使仓库的容积最大?
9(10分)
修建一座形状为长方体的仓库,已知仓库顶每平方米造价为300元,墙壁每平方米造价为200元,地面每平方米造价为100元,其它的固定费为2万元,现投资14万元,问如何设计方能使仓库的容积最大?
10(10分)试求幂级数 的和函数,并计算级数 的和。
一、填空题(每小题3分)
1答
或
2答1
3答
4答 通解为:
三、请计算下列各题
1(5分)求极限 。
2(5分)函数 由方程 所确定,求 。
3(6分)设 ,函数 有一阶连续偏导数,求 。
5(7分) 已知 ,求 。
6(7分)计算二重积分
其中D:0≤y≤sinx,0≤x≤π.
7(7分)计算二重积分
其中D:x2+y2≤4,x≥0,y≥0.
8(7分)求微分方程 的通解。
5答
二、单项选择题(每小题3分)
1B;2D;3B;4C;5C
三、请计算下Βιβλιοθήκη 各题1(5分)求极限 。解: = 4
2(5分)函数 由方程 所确定,求 。
令
3(6分)设 ,函数 有一阶连续偏导数,求 。
(10分)
4(6分)
5(7分)已知 ,求 。
解:两边关于 求导得
即
(8分)
由 ,求得
故原方程的解为: (10分)