高考数学大一轮复习第五章数列第三节等比数列教师用书理

合集下载

高考一轮第五章 第三节 等比数列

高考一轮第五章  第三节  等比数列

返回
返回
一、等比数列的相关概念
相关名词
等比数列{an}的有关概念及公式
如果一个数列从第二项 起,每一项与它的前一项 的比都等于 同一个常数,那么这个数列就叫做等
定义
比数列,这个常数叫做等比数列的公比. n-1 通项公式 an= a1q
返回
相关 名词 前n项 和公 式
等比数列{an}的有关概念及公式

=22k 1, 故对任意 k∈N+,a2k-1=22k 1. 由①得 22k-1+2a2k=-22k-1+1, 1 所以 a2k= -22k-1,k∈N+. 2


返回
k 因此,S2k=(a1+a2)+(a3+a4)+…+(a2k-1+a2k)= . 2 k-1 - 于是,S2k-1=S2k-a2k= +22k 1. 2 k-1 k 2k-1 +2 S2k-1 S2k k-1+22k 2 2 故 + = + = - - 1 22k a2k-1 a2k 22k 1 -22k-1 2 k 1 k =1- k- k k . 4 4 4 -1 22k-1 所以,对任意n∈N+,
2n-1
cn+1 .于是 c =4. n
所以{cn}是等比数列.
返回
(3)证明:a1=2,由(2)知,当 k∈N+且 k≥2 时, a2k-1=a1+(a3-a1)+(a5-a3)+(a7-a5)+…+(a2k-1- 21-4k 1 a2k-3)=2+3(2+23+25+…+2题来看,等比数列的定义、性质、
通项公式及前n项和公式是高考的热点,题型既有选择
题、填空题又有解答题,难度中等偏高.客观题突出“ 小而巧”,考查学生对基础知识的掌握程度,主观题考 查较为全面,在考查基本运算、基本概念的基础上,又 注重考查函数与方程、等价转化、分类讨论等思想方法.

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

15,且 a5=3a3+4a1,则 a3=( )
A.16
B.8
C.4
D.2
[解析]
由题意知aa11>+0a,1q+q>a10q,2+a1q3=15, a1q4=3a1q2+4a1,
解得aq1==21,,∴a3=a1q2=4.故选 C.
[答案] C
(2)(2019·高考全国卷Ⅰ)记 Sn 为等比数列{an}的前 n 项和.若 a1=13,a24=a6,则 S5 =________.
[解析] 由 a24=a6 得(a1q3)2=a1q5,
整理得 q=a11=3.∴S5=13(11--335)=1231.
[答案]
121 3
(3)(2018·高考全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. ①求{an}的通项公式; ②记 Sn 为{an}的前 n 项和.若 Sm=63,求 m. [解析] ①设{an}的公比为 q,由题设得 an=qn-1. 由已知得 q4=4q2,解得 q=0(舍去),q=-2 或 q=2. 故 an=(-2)n-1 或 an=2n-1.
[解析] (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8, 即 an+1-bn+1=an-bn+2. 又因为 a1-b1=1. 所以{an-bn}是首项为 1,公差为 2 的等差数列.
A.4
B.8
C.16
D.32
答案:C
2.(基础点:等比数列的前 n 项和)设{an}是公比为正数的等比数列,若 a1=1,a5

第五章 第三节 等比数列及其前n项和

第五章 第三节 等比数列及其前n项和
由(S4-S2)2=S2·(S6-S4)得 S6=21a,同理得 S8=85a,所以SS84= 855aa=17.
答案:17
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
大一轮复习 数学(理)
考点二 等比数列的判定与证明[探究型]——应用逻辑推理 [例 1] (2018·珠海模拟)已知数列{an}和{bn}满足:a1=λ,an+1 =23an+n-4,bn=(-1)n(an-3n+21),其中 λ 为实数,n 为正整数. (1)对任意实数 λ,证明数列{an}不是等比数列; (2)试判断数列{bn}是否为等比数列,并证明你的结论. 解:(1)假设存在一个实数 λ,使{an}成等比数列,则有 a22=a1a3, 即23λ-32=λ49λ-4,故49λ2-4λ+9=49λ2-4λ,即 9=0,这与事实 相矛盾.所以对任意实数 λ,数列{an}都不是等比数列.
大一轮复习 数学(理)
③若数列{an},{bn}(项数相同)是等比数列,则{λan},{|an|}, a1n,{a2n},{an·bn},abnn(λ≠0)仍然是等比数列;
④在等比数列{an}中,等距离取出若干项也构成一个等比数 列,即 an,an+k,an+2k,an+3k,…为等比数列,公比为 qk.
大一轮复习 数学(理)
2.分类讨论的思想:等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时, {an}的前 n 项和 Sn=a111--qqn=a11--aqnq.
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
大一轮复习 数学(理)

高考数学一轮复习第五章数列3等比数列课件理高三全册数学课件

高考数学一轮复习第五章数列3等比数列课件理高三全册数学课件

2021/12/11
第二十八页,共四十一页。
(2)由(1)知 an=2n-1,所以 n(an+1)=n×2n, Tn=2+2×22+3×23+…+n×2n①, 2Tn=22+2×23+3×24+…+n×2n+1②, ①-②得:-Tn=2+22+23+…+2n-n×2n+1=211--22n- n×2n+1=2n+1-2-n×2n+1=(1-n)2n+1-2.所以 Tn=(n-1)2n+1 +2.
(1)满足 an+1=qan(n∈N*,q 为常数)的数列{an}为等比数列.( × ) (2)G 为 a,b 的等比中项⇔G2=ab.( × )
(3)如果数列{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比
数列.( × ) (4)如果数列{an}为等比数列,则数列{lnan}是等差数列.( × )
2021/12/11
第十八页,共四十一页。
等比数列基本量的运算是等比数列中的一类基本问题,等比数列 中有五个量 a1,n,q,an,Sn,一般可以“知三求二”,通过列方程 组便可迎刃而解.
2021/12/11
第十九页,共四十一页。
(1)设{an}是由正数组成的等比数列,Sn 为其前 n 项和.已知 a2a4
等于12 2.若第一个单音的频率为 f,则第八个单音的频率为( D )
3 A. 2f
3 B.
22f
12 C.
25f
12 D.
27f
2021/12/11
第十一页,共四十一页。
解析:从第二个单音起,每一个单音的频率与它的前一个单 音的频率的比都等于12 2,第一个单音的频率为 f,由等比数列 的概念可知,这十三个单音的频率构成一个首项为 f,公比为12 2 的等比数列,记为{an},则第八个单音频率为 a8=f(12 2)8-1= 12 27f,故选 D.

2020版高考数学一轮复习 第5章 数列 第3讲 等比数列及其前n项和讲义 理(含解析)

2020版高考数学一轮复习 第5章 数列 第3讲 等比数列及其前n项和讲义 理(含解析)
题型 错误! 等比数列的判断与证明
(2018·全国卷Ⅰ)已知数列{an}满足 a1=1,nan+1=2(n+1)an,设 bn= ann.
(1)求 b1,b2,b3; (2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式. 解 (1)由条件可得 an+1=错误!an。 将 n=1 代入,得 a2=4a1,而 a1=1,所以 a2=4。 将 n=2 代入,得 a3=3a2,所以 a3=12. 从而 b1=1,b2=2,b3=4。 (2){bn}是首项为 1,公比为 2 的等比数列.由题设条件可得na+n+11 = 错误!,即 bn+1=2bn,又 b1=1,所以{bn}是首项为 1,公比为 2 的等比数 列. (3)由(2)可得错误!=2n-1,所以 an=n·2n-1. 条件探究 1 将举例说明条件改为“a1=1,a2,n-(2an+1-1)an-2an+1 =0,且 an>0",求{an}的通项公式.
答案 6
解析 因为 a1=2,an+1=2an,所以 an≠0,故aan+n 1=2.
所以数列{an}是公比为 2 的等比数列,因为 Sn=126,所以错误!=126, 所以 2n=64,故 n=6.
题型 错误! 等比数列基本量的运算
1.已知等比数列{an}满足 a1+a2=6,a4+a5=48,则数列{an}前 8 项的 和 S8=( )
第 3 讲 等比数列及其前 n 项和
[考纲解读] 1。理解等比数列的概念及等比数列与指数函数的关系. 2。掌握等比数列的通项公式与前 n 项和公式,并熟练掌握其推导方法,能 在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决 相应的问题.(重点) 3。熟练掌握等比数列的基本运算和相关性质.(难点)

2019届高三数学(理)一轮复习教师用书:第五章数列

2019届高三数学(理)一轮复习教师用书:第五章数列

第五章 数 列第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.5.数列的分类1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (2)1,1,1,1,…,不能构成一个数列.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)√ (2)× (3)× (4)√2.已知数列{a n }的通项公式为a n =9+12n ,则在下列各数中,不是{a n }的项的是( ) A .21 B .33 C .152D .153解析:选C 由9+12n =152,得n =14312∉N *.3.在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 4=( ) A.32 B.53 C.74D.85 解析:选B 由题意知,a 1=1,a 2=1+1a 1=2,a 3=1+1a 2=32,a 4=1+1a 3=53.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7=( ) A .53 B .54 C .55D .109解析:选C 由题意知,a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.数列1,23,35,47,59,…的一个通项公式a n =________.解析:由已知得,数列可写成11,23,35,…,故通项公式可以为a n =n 2n -1.答案:n2n -16.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________________. 解析:当n =1时,a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.又a 1=-1不适合上式,故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2考点一 由a n 与S n 的关系求通项a n (基础送分型考点——自主练透)[考什么·怎么考]n n 1.已知S n =3n +2n +1,则a n =____________. 解析:因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.答案:⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥22.(2017·全国卷Ⅲ改编)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________.解析:因为a 1+3a 2+…+(2n -1)a n =2n ,故当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n=2,所以a n=22n-1(n≥2).又由题设可得a1=2,满足上式,从而{a n}的通项公式为a n=22n-1(n∈N*).答案:22n-1(n∈N*)[题型技法]已知Sn求a n的3步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)注意检验n=1时的表达式是否可以与n≥2的表达式合并.考法(二)由S n与a n的关系,求a n,S n3.设数列{a n}的前n项和为S n,且S n=2(a n-1)(n∈N*),则a n=()A.2n B.2n-1C.2n D.2n-1解析:选C当n=1时,a1=S1=2(a1-1),可得a1=2,当n≥2时,a n=S n-S n-1=2a n-2a n-1,∴a n=2a n-1,∴数列{a n}为首项为2,公比为2的等比数列,所以a n=2n.4.(2015·全国卷Ⅱ)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=________.解析:∵a n+1=S n+1-S n,a n+1=S n S n+1,∴S n+1-S n=S n S n+1.∵S n≠0,∴1S n-1S n+1=1,即1S n+1-1S n=-1.又1S1=-1,∴⎩⎨⎧⎭⎬⎫1S n是首项为-1,公差为-1的等差数列.∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.答案:-1n[题型技法]Sn与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.考点二 由递推关系式求数列的通项公式 (基础送分型考点——自主练透)[考什么·怎么考]1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),则数列{a n }的通项公式为__________. 解析:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立.∴a n =1n (n ∈N *).答案:a n =1n(n ∈N *)[方法点拨] 叠乘法求通项公式的4步骤方法(二) 叠加法求通项公式2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为________________.解析:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足上式,∴a n =n 2+n2(n ∈N *).答案:a n =n 2+n2(n ∈N *)[方法点拨] 叠加法求通项公式的4步骤方法(三) 构造法求通项公式3.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________________. 解析:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1(n ∈N *).答案:a n =2·3n -1-1(n ∈N *)[方法点拨] 构造法求通项公式的3步骤[怎样快解·准解]1.正确选用方法求数列的通项公式 (1)对于递推关系式可转化为a n +1a n=f (n )的数列,并且容易求数列{f (n )}前n 项的积时,采用叠乘法求数列{a n }的通项公式.(2)对于递推关系式可转化为a n +1=a n +f (n )的数列,通常采用叠加法(逐差相加法)求其通项公式.(3)对于递推关系式形如a n +1=pa n +q (p ≠0,1,q ≠0)的数列,采用构造法求数列的通项. 2.避免2种失误(1)利用叠乘法,易出现两个方面的问题:一是在连乘的式子中只写到a 2a 1,漏掉a 1而导致错误;二是根据连乘求出a n 之后,不注意检验a 1是否成立.(2)利用构造法求解时应注意数列的首项的正确求解以及准确确定叠加、叠乘后最后一个式子的形式.考点三 数列的性质及应用 (重点保分型考点——师生共研)1.已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 018=( )A .-1 B.12 C .1D .2解析:选D 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 2.已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项.解析:因为a n =n +13n -16,所以数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163.又n ∈N *,所以当n =5时,a n 的值最小.答案:5[解题师说]1.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 2.判断数列单调性的2种方法(1)作差比较法:比较a n +1-a n 与0的大小.(2)作商比较法:比较a n +1a n 与1的大小,注意a n 的符号.3.求数列最大项或最小项的方法(1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.[冲关演练]1.已知数列{a n}满足a1=1,a n+1=a2n-2a n+1(n∈N*),则a2 018=()A.1 B.0C.2 018 D.-2 018解析:选B∵a1=1,a n+1=a2n-2a n+1=(a n-1)2,∴a2=(a1-1)2=0,a3=(a2-1)2=1,a4=(a3-1)2=0,…,可知数列{a n}是以2为周期的数列,∴a2 018=a2=0,选B.2.等差数列{a n}的公差d<0,且a21=a211,则数列{a n}的前n项和S n取得最大值时的项数n的值为()A.5 B.6C.5或6 D.6或7解析:选C由a21=a211,可得(a1+a11)(a1-a11)=0,因为d<0,所以a1-a11≠0,所以a1+a11=0,又2a6=a1+a11,所以a6=0.因为d<0,所以{a n}是递减数列,所以a1>a2>…>a5>a6=0>a7>a8>…,显然前5项和或前6项和最大,故选C.(一)普通高中适用作业A级——基础小题练熟练快1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是()A.16B.24C.26 D.28解析:选C因为a1=1=1,a2=2=4,a3=7,a4=10,a5=13,…,所以a n =3n-2.令a n=3n-2=219=76,解得n=26.2.数列{a n}的前n项和S n=2n2-3n(n∈N*),若p-q=5,则a p-a q=()A.10 B.15C.-5 D.20解析:选D当n≥2时,a n=S n-S n-1=2n2-3n-[2(n-1)2-3(n-1)]=4n-5,当n=1时,a1=S1=-1,符合上式,所以a n=4n-5,所以a p-a q=4(p-q)=20.3.(2017·河南许昌二模)已知数列{a n}满足a1=1,a n+2-a n=6,则a11的值为() A.31 B.32C.61 D.62解析:选A∵数列{a n}满足a1=1,a n+2-a n=6,∴a3=6+1=7,a5=6+7=13,a7=6+13=19,a9=6+19=25,a11=6+25=31.4.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.5.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 6.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 7.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 解析:当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *9.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2,n ∈N *),且S 2=3,则a 1+a 3的值为________.解析:∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1. 答案:-110.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:28B 级——中档题目练通抓牢1.若a 1=12,a n =4a n -1+1(n ≥2),则a n >100时,n 的最小值为( )A .3B .4C .5D .6解析:选C 由a 1=12,a n =4a n -1+1(n ≥2)得,a 2=4a 1+1=4×12+1=3,a 3=4a 2+1=4×3+1=13,a 4=4a 3+1=4×13+1=53,a 5=4a 4+1=4×53+1=213>100.2.(2018·咸阳模拟)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2(n ∈N *),则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n2D .a n =n 22解析:选B ∵a 1+a 2+…+a n =n (n +1)2, ∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2), 两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2), ∴a n =n 2(n ≥2).又当n =1时,a 1=1×22=1,a 1=1,适合上式,∴a n =n 2,n ∈N *.故选B.3.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.4.在数列{a n }中,a n >0,且前n 项和S n 满足4S n =(a n +1)2(n ∈N *),则数列{a n }的通项公式为________.解析:当n =1时,4S 1=(a 1+1)2,解得a 1=1; 当n ≥2时,由4S n =(a n +1)2=a 2n +2a n +1, 得4S n -1=a 2n -1+2a n -1+1,两式相减得4S n -4S n -1=a 2n -a 2n -1+2a n -2a n -1=4a n ,整理得(a n +a n -1)(a n -a n -1-2)=0,因为a n >0,所以a n -a n -1-2=0,即a n -a n -1=2, 又a 1=1,故数列{a n }是首项为1,公差为2的等差数列, 所以a n =1+2(n -1)=2n -1. 答案:a n =2n -15.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:976.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).7.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3. C 级——重难题目自主选做1.已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎫910n (n ∈N *),则数列{a n }的最大项是( ) A .a 6或a 7 B .a 7或a 8 C .a 8或a 9D .a 7解析:选B 因为a n +1-a n =(n +3)⎝⎛⎭⎫910n +1-(n +2)⎝⎛⎭⎫910n =⎝⎛⎭⎫910n ·7-n 10,当n <7时,a n+1-a n >0,即a n +1>a n ;当n =7时,a n +1-a n =0,即a n +1=a n ;当n >7时,a n +1-a n <0,即a n +1<a n ,则a 1<a 2<…<a 7=a 8>a 9>a 10>…,所以此数列的最大项是第7项或第8项,即a 7或a 8.故选B.2.(2018·成都诊断)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1. 答案:2nn +1(二)重点高中适用作业A 级——保分题目巧做快做1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是( ) A .16 B .24 C .26D .28解析:选C 因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n=3n -2.令a n =3n -2=219=76,解得n =26.2.(2018·郑州模拟)已知数列{a n }满足a 1=1,a n +2-a n =6,则a 11的值为( ) A .31 B .32 C .61D .62解析:选A ∵数列{a n }满足a 1=1,a n +2-a n =6, ∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19, a 9=6+19=25,a 11=6+25=31.3.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.4.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 5.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223,∵k ∈N *,∴k =7. ∴满足条件的n 的值为7.6.(2018·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析:∵S n =a 1(4n -1)3,a 4=32,∴S 4-S 3=255a 13-63a 13=32,∴a 1=12. 答案:127.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *8.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解:因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k时,S n 取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n --12(n -1)2+4(n -1)=92-n .当n =1时,92-1=72=a 1,所以a n =92-n .10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞). B 级——拔高题目稳做准做1.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.2.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a nn 的最小值为( ) A .21 B .10 C.212D.172解析:选C 由已知条件可知,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33满足此式. 所以a n n =n +33n -1. 令f (n )=a n n =n +33n -1,则f (n )在[1,5]上为减函数,在[6,+∞)上为增函数.又f (5)=535,f (6)=212,则f (5)>f (6), 故f (n )=a n n 的最小值为212.3.(2018·成都质检)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1. 答案:2nn +14.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:975.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0,所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3.6.已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,在数列{b n }中,b n =1+a na n.(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 解:(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1. (2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)×1=n -72,∴b n =1+a n a n =1+1a n=1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数, ∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质.①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√2.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.4.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 5.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:56.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算 (基础送分型考点——自主练透)[考什么·怎么考]n 527A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72[怎样快解·准解]1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.考点二 等差数列的判定与证明 (重点保分型考点——师生共研)(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .[解题师说]等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n-a n-1=1(n≥3)的数列{a n}而言并不能判定其为等差数列,因为不能确定起始项a2-a1是否等于1.[冲关演练]1.(2018·陕西质检)已知数列{a n}的前n项和S n=an2+bn(a,b∈R)且a2=3,a6=11,则S7等于()A.13B.49C.35 D.63解析:选B由S n=an2+bn(a,b∈R)可知数列{a n}是等差数列,所以S7=7(a1+a7)2=7(a2+a6)2=49.2.已知数列{a n}中,a1=2,a n=2-1a n-1(n≥2,n∈N*),设b n=1a n-1(n∈N*).求证:数列{b n}是等差数列.证明:∵a n=2-1a n-1(n≥2),∴a n+1=2-1a n.∴b n+1-b n=1a n+1-1-1a n-1=12-1a n-1-1a n-1=a n-1a n-1=1,∴{b n}是首项为b1=12-1=1,公差为1的等差数列.考点三等差数列的性质及前n项和的最值(重点保分型考点——师生共研)1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.(2018·石家庄一模)已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为❶❷() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.[解题师说]1.应用等差数列的性质解题的2个注意点(1)如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m+n+a m-n的值.(2)要注意等差数列通项公式及前n项和公式的灵活应用,如a n=a m+(n-m)d,d=a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.[冲关演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C 因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18(一)普通高中适用作业A 级——基础小题练熟练快1.(2018·兰州诊断考试)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.(2018·安徽两校阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.(2018·西安质检)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.(2018·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.(2018·云南11校跨区调研)在数列{a n }中,a 1=3,a n +1=3a n a n +3,则a 4=( )A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.(2018·东北四市高考模拟)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A .9B .15C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________. 解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:10B 级——中档题目练通抓牢1.(2018·湖南五市十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 2.(2018·广东潮州二模)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0,解得n =9(负值舍去),故选B.3.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.4.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值, 可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 5.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m-1=5,即2a 1+2m -1=5, 所以a 1=3-m . 由S m =(3-m )m +m (m -1)2×1=0, 解得m =5. 答案:56.(2018·广西三市第一次联考)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)得,b n =log 4a n +1=n +12,。

高考数学(理)一轮复习教师用书:第五章 数列 Word版含解析

高考数学(理)一轮复习教师用书:第五章 数列 Word版含解析

第1课时 数列的概念与简单表示法1.数列的有关概念 (1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项. (2)数列的分类数列有三种表示法,它们分别是列表法、图象法和解析式法. 2.数列的通项公式 (1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)a n 与{a n }是不同的概念.(√)(2)所有的数列都有通项公式,且通项公式在形式上一定是唯一的.(×) (3)数列是一种特殊的函数.(√)(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.(√) (5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .(√) (6)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.(√)(7)数列:1,0,1,0,1,0,…,通项公式只能是a n =1+(-1)n +12.(×)(8)数列的前n 项和S n =3n 2-2n +1,则a n =6n -5.(×) (9)正奇数的数列的通项公式为a n =2n +1.(×)(10)数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n n -99,只有最大项,无最小项.(×)考点一 由数列的前几项求通项公式例1] 根据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…; (4)32,1,710,917,…; (5)0,1,0,1,…; (6)9,99,999,999 9,….解:(1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…, ∴a n =89⎝ ⎛⎭⎪⎫1-110n .(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n -32n .(4)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{}n 2,可得分母的通项公式为c n =n 2+1,因此可得它的一个通项公式为a n=2n +1n 2+1.(5)a n =⎩⎪⎨⎪⎧0 (n 为奇数),1 (n 为偶数).或a n =1+(-1)n 2或a n =1+cos n π2.(6)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.方法引航] 1.据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的特征; (2)相邻项的变化特征; (3)拆项后的特征; (4)各项符号特征.2.观察、分析要有目的,观察出项与项数之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决. 3.判断通项公式是否适合数列,利用代值检验.写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn .也可写为a n =⎩⎪⎨⎪⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…, 所以a n =13(10n -1).考点二 a n 与S n 的关系及应用例2] (1)已知数列{a n }的前n 项和S n =n 2+1,则a n =________. 解析:当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎨⎧2,n =12n -1,n ≥2(2)已知数列{a n }的首项a 1=2,其前n 项和为S n .若S n +1=2S n +1,则a n =________. 解析:由已知S n +1=2S n +1得S n =2S n -1+1(n ≥2),两式相减得a n +1=2a n ,又S 2=a 1+a 2=2a 1+1,得a 2=3,所以数列{a n }从第二项开始为等比数列,因此其通项公式为a n =⎩⎪⎨⎪⎧2, n =1,3·2n -2,n ≥2.答案:⎩⎨⎧2, n =13·2n -2,n ≥2(3)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n=32,而S 1=a 1=1,所以S n =⎝ ⎛⎭⎪⎫32n -1,故选B.答案:B方法引航] 已知S n 求a n 时应注意的问题(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论;特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. (3)由S n -S n -1=a n ,推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),1.将本例(1)的条件S n 改为S n =2n 2-3n ,求a n . 解:a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. 2.将本例(2)的条件改为S n =2a n +1,求a n . 解:由S n =2a n +1得 S n -1=2a n -1+1.(n ≥2)∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1 ∴a n =2a n -1,(n ≥2)由题意得,a 1=2a 1+1,∴a 1=-1 ∴{a n }是以a 1=-1,q =2的等比数列. ∴a n =-1×2n -1=-2n -1.3.设S n 是正项数列{a n }的前n 项和,且a n 和S n 满足:4S n =(a n +1)2(n =1,2,3,…),则S n =________.解析:由题意可知,S n =⎝ ⎛⎭⎪⎫a n 2+122,当n =1时,a 1=1.a n =S n -S n -1=⎝ ⎛⎭⎪⎫a n 2+122-⎝⎛⎭⎪⎫a n -12+122=⎝ ⎛⎭⎪⎫a n 2+a n -12+1·⎝ ⎛⎭⎪⎫a n 2-a n -12 =⎝⎛⎭⎪⎫a 2n -a 2n -14+⎝ ⎛⎭⎪⎫a n 2-a n -12 整理得,a n +a n -12=a 2n -a 2n -14⇒a n -a n -1=2.所以a n =2n -1.解得S n =(1+2n -1)n 2=n 2.答案:n 2考点三 数列的递推公式及应用例3] (1)已知数列{a n }满足a 1=0,a 2=1,a n +2=3a n +1-2a n ,则a 5=________. 解析:由已知可得,这个数列的前五项依次为: a 1=0,a 2=1,a 3=3,a 4=7,a 5=15. 答案:15(2)已知数列{a n }满足a n +1=a n +3n +2,且a 1=2,则a n =________. 解析:∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2(n ≥2).当n =1时,a 1=2也符合上式, ∴a n =32n 2+n 2. 答案:32n 2+n 2(3)在数列{a n }中,a 1=1,前n 项和S n =n +23a n ,则{a n }的通项公式为________. 解析:由题设知,a 1=1.当n >1时,a n =S n -S n -1=n +23a n -n +13a n -1. ∴a na n -1=n +1n -1. ∴a na n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘,得到a n a 1=n (n +1)2,又∵a 1=1,∴a n =n (n +1)2. 答案:n (n +1)2(4)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________. 解析:∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1. 答案:2·3n -1-1方法引航] 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.1.如果数列{a n }满足a 1=2,a n +1=a n +2n ,则数列{a n }的通项公式a n =________. 解析:∵a n +1=a n +2n ,∴a n +1-a n =2n . ∴a 2-a 1=2×1; a 3-a 2=2×2; …a n -a n -1=2×(n -1)(n ≥2). 以上各式相加,得:a n -a 1=21+2+3+…+(n -1)]=n 2-n .∴a n =n 2-n +a 1=n 2-n +2(n ≥2),a 1=2也适合. ∴a n =n 2-n +2. 答案:n 2-n +22.已知数列{a n }满足a 1=1,a n =n -1n a n -1(n ≥2),则a n =________. 解析:(1)∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n . 答案:1n3.(2017·河北保定高三调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( )A .2n -1B .2n -1+1C .2n -1D .2n -2解析:选A.由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.易错警示] 数列与函数混淆致误典例] 已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________. 正解]∵a n +1-a n =2n ,∴a n -a n -1=2(n -1), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(2n -2)+(2n -4)+…+2+33=n 2-n +33(n ≥2), 又a 1=33适合上式,∴a n =n 2-n +33,∴a n n =n +33n -1.令f (x )=x +33x -1(x >0),则f ′(x )=1-33x 2,令f ′(x )=0得x =33.∴当0<x <33时,f ′(x )<0, 当x >33时,f ′(x )>0,即f (x )在区间(0,33)上递减;在区间(33,+∞)上递增. 又5<33<6,且f (5)=5+335-1=535,f (6)=6+336-1=212, ∴f (5)>f (6),∴当n =6时,a n n 有最小值212. 答案]212易误]a n n =n +33n -1≥233-1为最小值时,即把n 和x 认为等同的,而此时n =33∈N *是不可以的.警示]a n =f (n )是n 的函数,其定义域为N *,而不是R .高考真题体验]1.(2016·高考浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:法一:∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121. 法二:由a n +1=2S n +1,得a 2=2S 1+1,即S 2-a 1=2a 1+1,又S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,则S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列,∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.答案:1 1212.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,…,a n -a n -1=n -1+1(n ≥2),则有a n -a 1=1+2+3+…+n -1+(n -1)(n ≥2),因为a 1=1,所以a n =1+2+3+…+n (n ≥2),即a n =n 2+n 2(n ≥2),又当n =1时,a 1=1也适合上式,故a n =n 2+n 2(n ∈N *),所以1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1,从而1a 1+1a 2+1a 3+…+1a 10=2×⎝ ⎛⎭⎪⎫1-12+2×⎝ ⎛⎭⎪⎫12-13+2×⎝ ⎛⎭⎪⎫13-14+…+2×⎝ ⎛⎭⎪⎫110-111=2×⎝ ⎛⎭⎪⎫1-111=2011. 答案:20113.(2013·高考课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:由S n =23a n +13得:当n ≥2时, S n -1=23a n -1+13,∴当n ≥2时,a n =-2a n -1, 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1. 答案:(-2)n -14.(2015·高考课标卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:由已知得a n +1=S n +1-S n =S n S n +1,两边同时除以S n S n +1得1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,所以⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列,所以1S n =-1+(n -1)×(-1)=-n ,即S n =-1n . 答案:-1n课时规范训练 A 组 基础演练1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cosn π2 C .cos n +12π D .cos n +22π解析:选D.令n =1,2,3,…,逐一验证四个选项,易得D 正确. 2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64解析:选A.由a 8=S 8-S 7=64-49=15,故选A. 3.在数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( )A.53B.43 C .1 D.23解析:选A.由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a3+1=23+1=53.4.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12 D .-15解析:选A.由题意知,a 1+a 2+…+a 10 =-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+(-1)9×(3×9-2)+(-1)10×(3×10-2)] =3×5=15.5.设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T n ,则T 2 019的值为( ) A .-12B .-1 C.12D .2解析:选B.由a 1=2,a 2=12,a 3=-1,a 4=2,a 5=12可知,数列{a n }是周期为3的数列,且a 1·a 2·a 3=-1,从而T 2 019=(-1)673=-1.6.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5等于( )A.56B.65 C.130D .30解析:选D.当n ≥2时,a n =S n -S n -1=nn +1-n -1n =1n (n +1),所以1a 5=5×6=30.7.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于( ) A .1 B .9 C .10 D .55解析:选A.∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1.8.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( ) A .3×44B .3×44+1 C .45D .45+1解析:选A.当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1(n =1),3×4n -2(n ≥2).∴当n =6时,a 6=3×46-2=3×44.9.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1 B.⎝⎛⎭⎪⎫n +1n n -1C .n 2D .n解析:选D.法一:由已知整理得(n +1)a n =na n +1,∴a n +1n +1=a nn ,∴数列⎩⎨⎧⎭⎬⎫a n n 是常数列,且a n n =a 11=1,∴a n =n . 法二(累乘法):当n ≥2时,a na n -1=n n -1.a n -1a n -2=n -1n -2,…,a 3a 2=32,a 2a 1=21,两边分别相乘得a na 1=n .又∵a 1=1,∴a n =n .10.已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( ) A .{1,2} B .{1,2,3,4} C .{1,2,3} D .{1,2,4}解析:选B.因为S n =2a n -1,所以当n ≥2时, S n -1=2a n -1-1,两式相减得a n =2a n -2a n -1, 整理得a n =2a n -1,所以{a n }是公比为2的等比数列, 又因为a 1=2a 1-1,解得a 1=1, 故{a n }的通项公式为a n =2n -1.而a nn ≤2,即2n -1≤2n ,故所有满足的正整数n =1,2,3,4.B 组 能力突破1.将石子摆成如图所示的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 018项与5的差,即a 2 018-5=( )A .2 018×1 012B .2 024×2 017C .1 009×2 018D .1 012×2 017 解析:选D.∵a n -a n -1=n +2(n ≥2),a 1=5.∴a 2 018=(a 2 018-a 2 017)+(a 2 017-a 2 016)+…+(a 2-a 1)+a 1=2 020+2 019+…+4+5=(2 020+4)×2 0172+5=1 012×2 017+5.∴a 2 018-5=1 012×2 017.2.设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( ) A.13n -1B.2n (n +1)C.6(n +1)(n +2)D.5-2n 3 解析:选B.由题意知,S n +na n =2,当n ≥2时,S n -1+(n -1)a n -1=2,∴(n +1)a n =(n -1)a n -1从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n=2n (n +1),当n =1时上式成立,所以a n =2n (n +1),故选B.3.已知数列{n 2n 2+1},则0.98是它的第________项.解析:n 2n 2+1=0.98=4950,∴n =7.答案:74.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________. 解析:当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=S 1=-1,所以a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎨⎧-1,n =1,2n -1,n ≥25.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解析:由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2, ∴a n =⎝⎛⎭⎪⎫n n -12(n ≥2),∴a 3+a 5=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫542=6116. 答案:61166.已知数列{a 2n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________.解析:∵a 1=1,∴a 2=(a 1-1)2=0, a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的周期数列,∴a 2 018=a 2=0. 答案:0第2课时 等差数列及其前n 项和1.等差数列的定义(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *). (2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2. 2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . (2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n (n -1)2d 或S n =n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n},{b n}是等差数列,公差为d,则{pa n+qb n}也是等差数列.(5)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(6)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(7)S2n-1=(2n-1)a n.(8)若n为偶数,则S偶-S奇=nd 2;若n为奇数,则S奇-S偶=a中(中间项).4.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.(√)(3)等差数列{a n}的单调性是由公差d决定的.(√)(4)等差数列的前n项和公式是常数项为0的二次函数.(×)(5)已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列.(√)(6)在等差数列{a n}中,若a m+a n=a p+a q,则一定有m+n=p+q.(×)(7)数列{a n},{b n}都是等差数列,则数列{a n+b n}也一定是等差数列.(√)(8)等差数列{a n}的首项为a1,公差为d,取出数列中的所有奇数项,组成一个新的数列,一定还是等差数列.(√)(9)数列{a n}满足a n+1-a n=n,则数列{a n}是等差数列.(×)(10)等差数列{a n}中,a n-1-a n也是常数,也可以作为公差.(×)考点一等差数列基本量的计算例1](1)等差数列{a n}n13a6等于() A.8B.10C.12 D.14解析:由题意知a 1=2,由S 3=3a 1+3×22×d =12, 解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C. 答案:C(2)在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7 D .3解析:设数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =8,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=-2,d =3,所以a 5=-2+4×3=10. 答案:B(3)中位数为1 010的一组数构成等差数列,其末项为2 017,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0172=1 010,故a 1=3.答案:3(4)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. ①求d 及S n ;②求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:①由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1, S n =n 2(n ∈N *).②由①得a m +a m +1+a m +2+…+a m +k=(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1, 故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.方法引航](1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想.1.(2017·河北石家庄质检)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( ) A .8 B .9 C .10 D .11解析:选C.由S n -S n -3=51得,a n -2+a n -1+a n =51, 所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10.2.数列{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=________. 解析:由题意知10a 1+10×92d =11a 1+11×102d .又∵d =-2,∴10a 1-90=11a 1-110, ∴a 1=20. 答案:203.已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是__________. 解析:设数列{}a n 为该等差数列, 依题意得a 1+a n =124+1564=70.∵S n =210,S n =n (a 1+a n )2,∴210=70n2,∴n =6. 答案:64.(2017·江苏无锡一模)已知数列{a n }中,a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),所以数列{a n }从第二项起构成等差数列,则S 15=1+2+4+6+8+…+28=211. 答案:211考点二 等差数列的判定或证明例2] (1)(2017·河南内黄月考)已知函数y =f (x )对任意的实数x 都有1f (x +2)=1f (x +1)+1,且f (1)=1,则f (2 018)=( ) A.12 017B.12 018 C .2 016 D .2 017解析:由已知可得1f (x +2)-1f (x +1)=1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )为等差数列,又1f (1)=1,d =1,则1f (x )=x ,即1f (2 018)=2 018,故f (2 018)=12 018. 答案:B(2)已知S n 为等差数列{a n }的前n 项和,b n =S nn (n ∈N *).求证:数列{b n }是等差数列. 证明:设等差数列{a n }的公差为d , 则S n =na 1+12n (n -1)d , ∴b n =S n n =a 1+12(n -1)d .法一:b n +1-b n =a 1+12nd -a 1-12(n -1)d =d2(常数), ∴数列{b n }是等差数列.法二:b n +1=a 1+12nd ,b n +2=a 1+12(n +1)d , ∴b n +2+b n =a 1+12(n +1)d +a 1+12(n -1)d=2a 1+nd =2b n +1. ∴数列{b n }是等差数列.[方法引航] 判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数;(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1;(3)通项公式法:数列的通项公式a n 是n 的一次函数;(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n解析:选A.由题意可知1a n +1是1a n 与1a n +2的等差中项, ∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,公差d =1a 2-1a 1=2-1=1的等差数列. ∴1a n=1+(n -1)×1=n ,∴a n =1n 选A. 2.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .解:(1)证明:当n ≥2时, a n =S n -S n -1=-2S n S n -1,① ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *), 由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=2,公差为2的等差数列.(2)由(1)知1S n=2+2(n -1)=2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=S 1=12不适合上式, ∴a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.考点三 等差数列的性质及应用例3] (1)(2016·n 27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:∵{a n }是等差数列,设其公差为d , S 9=9(a 1+a 9)2=9a 5=27,∴a 5=3,又∵a 10=8,∴d =a 10-a 55=8-35=1∴a 100=a 5+(n -5)×d =3+(100-5)×1=98. 答案:C(2)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.解析:利用等差数列的性质可得a 3+a 7=a 4+a 6=2a 5,从而a 3+a 4+a 5+a 6+a 7=5a 5=25,故a 5=5,所以a 2+a 8=2a 5=10. 答案:10(3)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15B .S 16C .S 15或S 16D .S 17 解析:∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225. ∴当n =15时,S n 取得最大值. 答案:A方法引航] 1.根据题意分析选用等差数列的性质,若涉及通项a n ,则选用通项的有关性质,若涉及前n 项和S n ,则选用S n 的性质 2.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.1.设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 解析:∵(a 1+a 5)+(b 1+b 5)=2(a 3+b 3)=42, ∴a 5+b 5=42-7=35. 答案:352.在本例(3)中,若将已知条件改为a 1>0,S 5=S 12,如何求解S n 的最大值? 解:法一:设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.所以S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二:设等差数列{a n }的公差为d ,同法一得 d =-18a 1<0.设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n =a 1+(n -1)·⎝ ⎛⎭⎪⎫-18a 1≥0,a n +1=a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值.法三:设等差数列{a n }的公差为d ,同法一得d =-18a 1<0, 由于S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d 2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示), 由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.3.在本例(3)中,若将条件a 1=29,S 10=S 20改为a 3=12,S 12>0,S 13<0,如何求解?解:因为a 3=a 1+2d =12,所以a 1=12-2d , 所以⎩⎪⎨⎪⎧S 12=12a 1+66d >0,S 13=13a 1+78d <0,即⎩⎪⎨⎪⎧144+42d >0,156+52d <0, 解得-247<d <-3.故公差d 的取值范围为⎝ ⎛⎭⎪⎫-247,-3.法一:由d <0可知{a n }为递减数列,因此,在1≤n ≤12中,必存在一个自然数n ,使得a n ≥0,a n +1<0, 此时对应的S n 就是S 1,S 2,…,S 12中的最大值. 由于⎩⎪⎨⎪⎧S 12=6(a 6+a 7)>0,S 13=13a 7<0,于是a 7<0,从而a 6>0,因此S 6最大.法二:由d <0可知{a n }是递减数列, 令⎩⎪⎨⎪⎧a n =a 3+(n -3)d ≥0,a n +1=a 3+(n -2)d <0, 可得⎩⎪⎨⎪⎧n ≤3-12d ,n >2-12d .由-247<d <-3,可得⎩⎨⎧n ≤3-12d <3+123=7,n >2-12d >2+12247=5.5,所以5.5<n <7,故n =6,即S 6最大.方法探究]等差数列的设定方法及分段求和典例] 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解] (1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d . 由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎨⎧4, n =1,32n 2-112n +10,n ≥2.回顾反思] 若三个数成等差数列可设为a ,a +d ,a +2d 或a -d ,a ,a +d ,若四个数成等差数列可设为a ,a +d ,a +2d ,a +3d 或a -3d ,a -d ,a +d ,a +3d .高考真题体验]1.(2015·高考课标全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和.若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:选A.∵a 1+a 5=2a 3,a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5×(a 1+a 5)2=5a 3=5.2.(2013·高考课标卷Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4 C .5 D .6解析:选C.∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.3.(2014·高考大纲全国卷)数列{}a n 满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{}b n 是等差数列; (2)求{}a n 的通项公式.解:(1)证明:由a n +2=2a n +1-a n +2得 a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{}b n 是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是k =1n (a k +1-a k )=k =1n (2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{}a n 的通项公式为a n =n 2-2n +2.4.(2016·高考全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =lg a n ],其中x ]表示不超过x 的最大整数,如0.9]=0,lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和. 解:(1)设{a n }的公差为d , 据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=lg 1]=0,b 11=lg 11]=1,b 101=lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0, 1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.课时规范训练 A 组 基础演练1.在等差数列{}a n 中,a 2=3,a 3+a 4=9,则a 1a 6的值为( ) A .14 B .18 C .21 D .27解析:选A.依题意得⎩⎪⎨⎪⎧a 1+d =3,2a 1+5d =9,由此解得d =1,a 1=2,a 6=a 1+5d =7,a 1a 6=14.2.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 100<0 C .a 3+a 99=0 D .a 51=51解析:选C.由题意,得a 1+a 2+a 3+…+a 101=a 1+a 1012×101=0. 所以a 1+a 101=a 2+a 100=a 3+a 99=0.3.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4解析:选B.法一:设等差数列{a n }的公差为d , 由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.∴d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10, ∴a 3=5.又a 4=7,∴公差d =7-5=2.4.记S n 为等差数列{a n }前n 项和,若S 33-S 22=1,则其公差d =( ) A.12B .2 C .3 D .4解析:选B.由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝ ⎛⎭⎪⎫a 1+d 2=1,∴d =2.5.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30 B .45 C .90 D .186解析:选C.因为⎩⎪⎨⎪⎧a 2=a 1+d =6a 5=a 1+4d =15,所以a 1=3,d =3, b n =a 2n =a 1+(2n -1)d =6n ,S 5=5(b 1+b 5)2=5(6+6×5)2=90,因此选C 项.6.已知等差数列{a n }的前n 项和为S n ,且a 3+a 8=13,S 7=35,则a 7=________. 解析:设数列{a n }的公差为d ,则由已知得(a 1+2d )+(a 1+7d )=13 ①,S 7=7(a 1+a 1+6d )2=35 ②.联立①②,解方程组得a 1=2,d =1,∴a 7=a 1+6d =8. 答案:87.若2,a ,b ,c,9成等差数列,则c -a =________. 解析:由题意得该等差数列的公差d =9-25-1=74,所以c -a =2d =72.答案:728.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解析:根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0. 又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大. 答案:89.已知等差数列{a n }中,a 2=8,前10项和S 10=185.求数列{a n }的通项公式a n . 解:设数列{a n }的公差为d , 因为a 2=8,S 10=185,所以⎩⎨⎧a 1+d =810a 1+10×92d =185,解得⎩⎪⎨⎪⎧a 1=5d =3,所以a n =5+(n -1)×3=3n +2, 即a n =3n +2.10.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1, 也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1. 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为首项为3,公差为1的等差数列.(2)由(1)知a 1=3,d =1, 所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2,即a n =n +2.B 组 能力突破1.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( ) A .24 B .48 C .60 D .84解析:选C.由a 1>0,a 10·a 11<0可知 d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60,故选C.2.已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -2=k (x -5)上,则数列{a n }的前9项和S 9等于( ) A .18 B .20 C .22 D .24解析:选A.∵点(n ,a n )在直线y -2=k (x -5)上,∴a n -2=k (n -5),∴a n =kn -5k +2,∴a n +1-a n =k (n +1)-5k +2]-(kn -5k +2)=k ,∴{a n }是等差数列.当n =5时,a 5=2,∴S 9=9(a 1+a 9)2=9×2a 52=18.3.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7 D .8解析:选D.法一:S n =na 1+n (n -1)2d =n +n (n -1)=n 2,则S n +2=(n +2)2,由S n +2-S n =36,得(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8,所以选D.4.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列, 所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,所以a 6b 6=1941.答案:19415.在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.解:(1)由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0, 解得d =-1或d =4.所以a n =-n +11(n ∈N *)或a n =4n +6(n ∈N *). (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11,所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =a 1+a 2+…+a n =-12n 2+212n ; 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+…+a 11-(a 12+a 13+…+a n ) =2(a 1+a 2+…+a 11)-(a 1+a 2+…+a 11+a 12+a 13+…+a n )=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.第3课时 等比数列及其前n 项和1.等比数列的有关概念 (1)等比数列的有关概念一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数.这个数列叫等比数列,这个常数叫公比.用q 表示. (2)等比中项如果三个数a ,G ,b 成等比数列,则G 叫做a 和b 的等比中项,那么G a =bG ,即G 2=ab .2.等比数列的有关公式 (1)等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,q ≠0,则它的通项公式a n =a 1·q n -1. (2)等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n bn 仍是等比数列.(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)常数列一定是等比数列.(×) (2)等比数列中不存在数值为0的项.(√)(3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (4)G 为a ,b 的等比中项⇔G 2=ab .(×)(5)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n .(×)(6)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n)1-a.(×)(7)q >1时,等比数列{a n }是递增数列.(×)(8)在等比数列{a n }中,若a m ·a n =a p ·a q ,则m +n =p +q .(×) (9)若一个数列满足a n +1=q 2a n ,则{a n }为等比数列.(×)(10)若数列a ,a (1-a ),a (1-a )2,…是等比数列,则a ≠0且a ≠1 .(√)考点一 等比数列基本量的计算例1] (1)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84解析:设{a n }的公比为q ,由a 1=3,a 1+a 3+a 5=21得 3+3q 2+3q 4=21,即q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42. 答案:B(2)(2016·高考全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:由题意知,a 2+a 4=(a 1+a 3)q , 即5=10q ,解得q =12,将q =12代入a 1+a 3=10,解得a 1=8. ∴a 1a 2…a n =a n 1·q n (n -1)2=8n×⎝ ⎛⎭⎪⎫12n (n -1)2=2-n 22+7n 2.∵-n 22+7n 2=-12⎝ ⎛⎭⎪⎫n -722+498≤6,且n ∈N *. 当n =3或4时有最大值.∴a 1a 2…a n =2-n 22+7n2≤26=64,即最大值为64. 答案:64(3)(2017·河南开封模拟)正项等比数列{a n }中,a 2=4,a 4=16,则数列{a n }的前9项和等于________.解析:∵{a n }为正项等比数列,∴q 2=a 4a 2=164=4,∴q =2,S 9=a 1(1-q 9)1-q =2(1-29)1-2=210-2=1 022. 答案:1 022(4)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________. 解析:设等比数列{a n }的公比为q (q ≠0),则⎩⎪⎨⎪⎧a 1q 3-a 1q =6a 1q 4-a 1=15,两式相除,得q 1+q 2=25, 即2q 2-5q +2=0,解得q =2或q =12. 若q =2,则有a 124-a 1=15,∴a 1=1,a 3=4 若q =12,a 116-a 1=15,∴a 1=-16,a 3=-4. 答案:4或-4方法引航](1)方程思想.等比数列的通项公式和前n 项和公式联系着五个基本量,“知三求二”是一类最基本的运算,通过列方程(组)求出关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想.等比数列的前n 项和公式涉及对公比q 的分类讨论,即分q =1和q ≠1两种情况,此处是常考易错点,一定要引起重视.(3)整体思想.应用等比数列前n 项和时,常把q n ,当成整体求解.1.(2017·吉林长春调研)等比数列{}a n 中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:选C.设数列{}a n 的公比为q ,因为a 3=9,所以a 1=9q 2,a 2=9q ,则S 3=9q 2+9q +9=27,即2q 2-q -1=0,解得q =1或q =-12,故选C.2.(2017·河南郑州质检)已知等比数列{}a n 的前n 项和为S n ,若a 25=2a 3a 6, S 5=-62,则a 1的值是__________.解析:设{}a n 的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 1(1-25)1-2=-62,a 1=-2. 答案:-23.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎨⎧a 1=8,q =12.又{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴S n =1-2n 1-2=2n -1.答案:2n -1。

高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和

高中数学高考高三理科一轮复习资料第5章 5.3 等比数列及其前n项和

因为 q<1,解得 q=-1 或 q=-2. 当 q=-1 时,代入①得 a1=2, - 通项公式 an=2×(-1)n 1; 1 当 q=-2 时,代入①得 a1=2, 1 通项公式 an=2×(-2)n-1.
点评:等比数列基本量的运算是等比数列中的一类基本问 题,解决这类问题的关键在于熟练掌握等比数列的有关公式, 并能灵活运用.尤其需要注意的是,在使用等比数列的前 n 项 和公式时,应根据公比的取值情况进行分类讨论,此外在运算 过程中,还应善于运用整体代换思想简化运算过程.
高中数学
5.3 等比数列及其前n项和
考纲点击 1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并能用 有关知识解决相应的问题. 4.了解等比数列与指数函数的关系
说基础
课前预习读教材
考点梳理 1.等比数列的定义 如果一个数列从第二项起,①____________等于同一个常 数,这个数列叫做等比数列,这个常数叫做等比数列的 ② ______.公比通常用字母 q 表示(q≠0). 2.通项公式与前 n 项和公式. (1)通项公式:③__________,a1 为首项,q 为公比. (2)前 n 项和公式: 当 q=1 时, ④__________; 当 q≠1 时, ⑤______________.
解析:由等比数列的性质知:a1· a19=16=a8· a12=a2 10,∴ a10=4,则 a8· a10· a12=a3 10=64,故选 B. 答案:B
1n 3. 若等比数列{an}的前 n 项和为 Sn=3( ) +m(n∈N*), 则 2 实数 m 的取值为( ) 3 A.- B.-1 2 C.-3 D.一切实数n-1 Nhomakorabea1 -2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 等比数列☆☆☆2017考纲考题考情☆☆☆1.等比数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数。

②符号语言:a n +1a n=q (n ∈N *,q 为非零常数)。

(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项。

即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab 。

2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1。

(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1 1-q n 1-q=a 1-a n q1-q ,q ≠1。

3.等比数列的性质(1)通项公式的推广:a n =a m ·qn -m(m ,n ∈N *)。

(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q ,则a m ·a n =a p ·a q 。

特别地,若m +n =2p ,则a m ·a n =a 2p 。

(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m-S 2m )(m ∈N *,公比q ≠-1)。

(4)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列。

(5)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k。

微点提醒1.等比数列的概念的理解(1)等比数列中各项及公比都不能为零。

(2)由a n +1=qa n (q ≠0),并不能断言{a n }为等比数列,还要验证a 1≠0。

(3)等比数列中奇数项的符号相同,偶数项的符号相同。

2.等比数列{a n }的单调性 (1)满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1时,{a n }是递增数列。

(2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列。

(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列。

(4)当q <0时,{a n }为摆动数列。

小|题|快|练一 、走进教材1.(必修5P 68B 组T 1(1)改编)等比数列{a n }各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 35【解析】 ∵a 4a 7=a 5a 6,∴a 5a 6=9,又log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=log 395=10。

故选B 。

【答案】 B2.(必修5P 62B 组T 2改编)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________。

【解析】 S 3,S 6-S 3,S 9-S 6成等比数列,则(S 6-S 3)2=S 3·(S 9-S 6),由S 6S 3=12知S 6=12S 3,则14S 23=S 3·(S 9-S 6),所以S 9=34S 3,所以S 9S 3=34。

【答案】 34二、双基查验1.等比数列{a n }中,a 4=4,则a 2·a 6等于( ) A .4 B .8 C .16D .32【解析】 a 2·a 6=a 24=16。

故选C 。

【答案】 C2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243【解析】 q =a 2+a 3a 1+a 2=2, 故a 1+a 1q =3⇒a 1=1,a 7=1×27-1=64。

故选A 。

【答案】 A3.(2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入。

若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30) A .2018年 B .2019年 C .2020年D .2021年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2015年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130× 1.12n -1。

由130×1.12n -1>200,两边同时取对数,得n -1>lg2-lg1.3lg1.12,又lg2-lg1.3lg1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2019年投入的研发资金开始超过200万元。

故选B 。

【答案】 B4.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________。

【解析】 ∵S 3+3S 2=0, ∴a 1+a 2+a 3+3(a 1+a 2)=0, ∴a 1(4+4q +q 2)=0。

∵a 1≠0,∴q =-2。

【答案】 -25.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________。

【解析】 解法一:各项均为正数的等比数列{a n }中a 10a 11=a 9a 12=…=a 1a 20, 则a 1a 20=e 5,ln a 1+ln a 2+…+ln a 20=ln(a 1a 20)10=lne 50=50。

解法二:各项均为正数的等比数列{a n }中a 10a 11=a 9a 12=…=a 1a 20, 则a 1a 20=e 5,设ln a 1+ln a 2+…+ln a 20=S , 则ln a 20+ln a 19+…+ln a 1=S , 2S =20ln(a 1a 20)=100,S =50。

【答案】 50n (1)已知a 3+a 6=36,a 4+a 7=18,a n =12,求n ;(2)已知a 2·a 8=36,a 3+a 7=15,求公比q ; (3)已知q =-2,S 8=15(1-2),求a 1。

【解析】 (1)解法一:∵⎩⎪⎨⎪⎧a 4+a 7=a 3·q +a 6·q =q a 3+a 6 =18,a 3+a 6=36,∴q =12。

又∵a 3+a 6=a 3(1+q 3)=36,∴a 3=32。

∵a n =a 3·qn -3=32·⎝ ⎛⎭⎪⎫12n -3=28-n =12=2-1,∴8-n =-1,即n =9。

解法二:∵a 4+a 7=a 1·q 3(1+q 3)=18且a 3+a 6=a 1·q 2·(1+q 3)=36, ∴q =12,a 1=128。

又∵a n =a 1·qn -1=27·⎝ ⎛⎭⎪⎫12n -1=28-n =12=2-1,∴8-n =-1,即n =9。

(2)∵a 2·a 8=a 3·a 7=36且a 3+a 7=15, ∴a 3=3,a 7=12或a 3=12,a 7=3。

∵q 4=4或q 4=14,∴q =±2或q =±22。

(3)∵S 8=a 1[1- -2 8]1+2=a 1 -151+2=15(1-2),∴a 1=-(1-2)·(1+2)=1。

【答案】 (1)9 (2)±2或±22(3)1 反思归纳 等比数列基本量的运算是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式,并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应根据公比的取值情况进行分类讨论,此外在运算过程中,还应善于运用整体代换思想简化运算。

【变式训练】 (1)(2016·武汉调研)若等比数列{a n }的各项均为正数,a 1+2a 2=3,a 23=4a 2a 6,则a 4=( )A.38 B.245 C.316D.916(2)(2016·海口调研)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( ) A.12 B.1716C .2D .17【解析】 (1)由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =3, a 1q 2 2=4a 1q · a 1q 5,q >0,解得⎩⎪⎨⎪⎧a 1=32,q =12,所以a 4=a 1q 3=32×⎝ ⎛⎭⎪⎫123=316。

故选C 。

(2)∵a 2-8a 5=0,∴a 5a 2=q 3=18,∴q =12。

∴S 8S 4=a 5+a 6+a 7+a 8a 1+a 2+a 3+a 4+1=⎝ ⎛⎭⎪⎫124 a 1+a 2+a 3+a 4 a 1+a 2+a 3+a 4+1=1716。

故选B 。

【答案】 (1)C (2)Bn A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列(2)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列。

【解析】 (1)由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列,故选D 。

(2)证明:∵a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , ∴b n +1b n =a n +2-2a n +1a n +1-2a n = 4a n +1-4a n -2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2。

∵S 2=a 1+a 2=4a 1+2,∴a 2=5。

∴b 1=a 2-2a 1=3。

∴数列{b n }是首项为3,公比为2的等比数列。

【答案】 (1)D (2)见解析【母题变式】 1.在本典例(2)的条件下,求{a n }的通项公式。

相关文档
最新文档