含参数“二次型”不等式恒成立问题的解法
含参数不等式的“恒成立”问题解题方法荟萃

含参数不等式的“恒成立”问题解题方法荟萃含参数不等式的“恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想:即一般的,若函数()x f 在定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥⇔min ;()M x f ≤恒成立()M x f ≤⇔max .因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论. 【方法荟萃】 一、分离变量法对于一些含参数的不等式恒成立问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行剥离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
【例1】不等式-2cos 2x +4sinx-k 2+k<0对一切实数x 恒成立,求参数k 的取值范围。
分析与解:所给不等式可化为:(2 sinx+1)2< k 2-k+3<==>(2 sinx+1)2max < k 2-k+3 而(2 sinx+1)2max =9∴k 2-k+3=9,解之得:k > 3或k < -2故k 的取值范围是(-∞,-2)∪(3,+∞)。
【例2】设()()()⎥⎦⎤⎢⎣⎡+-+++=n a n n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。
分析与解:因为分母n 是正数,要使得()x f 当(]1,∞-∈x 有意义,分子()()an n xxx+-+++121 就必须也是正数。
并容易看出,可以将a 分离出来。
当(]1,∞-∈x 时,()x f 有意义,故有()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛->⇔>+-+++xx x xxxn n n a a n n 11210121令()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=xx x n n n x 1121 ϑ,只要对()x ϑ在(]1,∞-上的最大值,此不等式成立即可。
高考数学不等式恒成立问题中的参数求解技巧

高考数学不等式恒成立问题中的参数求解技巧第一篇:高考数学不等式恒成立问题中的参数求解技巧不等式恒成立问题中的参数求解技巧在不等式中,有一类问题是求参数在什么范围内不等式恒成立。
恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点。
其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解。
本文通过实例,从不同角度用常规方法归纳,供大家参考。
一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。
2例1对于x∈R,不等式x-2x+3-m≥0恒成立,求实数m的取值范围。
2解:不妨设f(x)=x-2x+3-m,其函数图象是开口向上的抛物线,为了使f(x)≥0(x∈R),只需22]。
∆≤0,即(-2)-4(3-m)≤0,解得m≤2⇒m∈(-∞,2变形:若对于x∈R,不等式mx+2mx+3>0恒成立,求实数m的取值范围。
2f(x)=mx+2mx+3。
①当m=0时,3>0,显然成立。
②当m>0时,此题需要对m的取值进行讨论,设3)。
则△<0⇒0<m<3。
③当m<0时,显然不等式不恒成立。
由①②③知m∈[0,的符号确定其抛物线的开口方向,再根据图象与x轴的交点问题,由判别式进行解决。
22f(x)=ax+bx+c,由aax+bx+c>0关键点拨:对于有关二次不等式(或<0)的问题,可设函数2f(x)=x-2kx+2,在x≥-1时恒有f(x)≥k,求实数k的取值范围。
例2已知函数解:令F(x)=f(x)-k=x-2kx+2-k,则F(x)≥0对一切x≥-1恒成立,而F(x)是开口向上的抛物线。
含参数不等式恒成立问题的解题策略

解决“含参数不等式的恒成立”问题的基本方法“含参数不等式的恒成立”的问题,是近几年高考的热点,它往往以函数、数列、三角函数、解析几何为载体具有一定的综合性,解决这类问题,主要是运用等价转化的数学思想:即一般地,若函数()x f 的定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()Mx f ≥⇔min (()M x f ≥有解⇔M max )(x f ≤);()M x f ≤恒成立()M x f ≤⇔m a x(()M x f ≤有解⇔M x f ≤m i n )().因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论.例一 定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫ ⎝⎛∈2,0πθ时,有()()022s in 2c o s 2>--++m f m f θθ恒成立,求实数m 的取值范围. 分析: 利用函数的单调性和奇偶性去掉映射符号f ,将“抽象函数”问题转化为常见的含参的二次函数在区间(0,1)上恒为正的问题.而对于()≥x f 0在给定区间[a ,b]上恒成立问题可以转化成为()x f 在[a ,b]上的最小值问题,若()x f 中含有参数,则要求对参数进行讨论。
【解析】由()()022sin 2cos 2>--++m f m f θθ得到:()()22sin 2cos 2--->+m f m f θθ 因为()x f 为奇函数,故有()()22sin 2cos 2+>+m f m f θθ恒成立,又因为()x f 为R 减函数,从而有22sin 2cos 2+<+m m θθ对⎪⎭⎫ ⎝⎛∈2,0πθ设t =θsin ,则01222>++-m mt t 对于()1,0∈t 恒成立,在设函数()1222++-=m mt t t g ,对称轴为m t =. ①当0<=m t 时,()0120≥+=m g ,即21-≥m ,又0<m ∴021<≤-m (如图1) ②当[]1,0∈=m t ,即10≤≤m 时, ()012442<+-=∆m m m 2∴2121+<<-m ,又[]1,0∈m ,∴10≤≤m (如图2)③当1>=m t 时,()0212211>=++-=m m g 恒成立.∴1>m (故由①②③可知:21-≥m . 例二 定义在R 上的单调函数f(x)满足f(3)=log 23且对任意x ,y ∈R 都有f(x+y)=f(x)+f(y).(1)求证f(x)为奇函数;(2)若()()02933<--+⋅x x x f k f 对任意x ∈R 恒成立,求实数k 分析: 问题(1)欲证f(x)为奇函数即要证对任意x 都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x 可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.问题(2)的上述解法是根据函数的性质.f(x)是奇函数且在x ∈R 上是增函数,把问题转化成二次函数f(t)=t 2-(1+k)t+2>0对于任意t >0恒成立.对二次函数f(t)进行研究求解.【解析】(1)证明:f(x+y)=f(x)+f(y)(x ,y ∈R), ①令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.令y=-x ,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有0=f(x)+f(-x).即f(-x)=-f(x)对任意x ∈R 成立,所以f(x)是奇函数.(2)解:f(3)=log 23>0,即f(3)>f(0),又f(x)在R 上是单调函数,所以f(x)在R 上是增函数,又由(1)f(x)是奇函数.()()()2932933++-=---<⋅x x x x x f f k f , 2933++-<⋅x x x k 即()023132>+⋅+-x x k 对于任意R x ∈恒成立.令t=3x >0,、问题等价于()0212>++-t k t 对于任意0>t 恒成立.令()()212++-=t k t t f ,其对称轴为直线21k x +=当021<+k ,即1-<k 时, ()020>=f 恒成立,符合题意,故1-<k ; 当021≥+k 时,对于任意0>t ,()0>t f 恒成立()⎪⎩⎪⎨⎧<⨯-+=∆≥+⇔02410212k k , 解得2211+-<≤-k综上所述,当221+-<k 时,()()02933<--+⋅x x x f k f 对于任意R x ∈恒成立.本题还可以应用分离系数法,这种解法更简捷.t =m分离系数,由2933++-<⋅x x x k 得1323-+<x x k . 由于R x ∈,所以03>x ,故1221323-≥-+=x x u ,即u 的最小值为122-. 要使对于R x ∈不等式1323-+<x x k 恒成立,只要122-<k 说明: 上述解法是将k 分离出来,然后用平均值定理求解,简捷、新颖.例三 已知向量=(2x ,x+1),= (1-x ,t)。
含参一元二次不等式的解法与恒成立问题

含参一元二次不等式的解法与恒成立问题
一元二次不等式是几何、代数以及统计学等领域中使用最广泛的不等式之一,其解法和恒成立问题也是学习和研究的重要内容。
首先,要理解含参一元二次不等式的解法,我们需要对一元二次方程有所了解。
一元二次不等式也可以表示为一元二次方程形式,也可以将一元二次方程化为一元二次不等式形式。
一元二次方程有一般形式ax^2 + bx + c = 0,其中a,b,c均为实数,且a≠0,这个方程有两个实根,如果a,b,c满足一定条件,那么解得的方程式可以写作
x^2+px+q≥0,其中p为常数,q为常数。
在求解含参一元二次不等式的时候,要先化成一元二次方程的形式,然后根据首项系数是正还是负,分两种情况讨论,如果ax^2为正,那么此一元二次不等式在实数集上有解,只要保证满足一定条件即可;若ax^2为负,则含参一元二次不等式可以分离,而只要满足条件就必定存在解。
当求解不等式的恒成立问题时,一般的思路是先将不等式的非负部分和负部分分开,求解其左右两边的值,例如:若有ax^2+bx+c≥0,可先将其分解为ax^2+c≥0和bx≥0,然后求解其左右两边的值,根据不等式的性质,求解其两个值,确定其恒成立条件。
总之,一元二次不等式的解法及其恒成立问题是学习和研究中重要的内容,也是大家常用的不等式之一。
要正确求解,首先要正确分离不等式,然后根据不等式的性质确定相应的恒成立条件。
含参数的二次不等式恒成立问题(参变分离)解析

导数的分类讨论问题(含参数的二次不等式恒成立问题)例1.定义在R上的连续()f x 为奇函数,且在[0,]+∞上时增函数,问是否存在这样的实数,使得(cos 23)(42cos )(0)f f m m f θθ-+->对所有的实数R θ∈都成立?若存在,求出m 的取值范围;若不存在,说明理由。
解析:奇函数(0)0f =(cos 23)(42cos )0f f m m θθ∴-+->(cos 23)(42cos )(2cos 4)f f m m f m m θθθ∴->--=-又奇函数是增函数所以cos232cos 4m m θθ->-整理得2cos 2cos 2m m θθ->-法一:(以m 为变量,参变分离,建议采用)2cos 2(cos 2)m θθ->-因为cos 20θ-<所以变形得22cos 2cos m θθ->-24cos 22cos θθ--=-2(2cos )2cos θθ=+--24[(2cos )]2cos θθ=--+-(≤4-cos 2θ=4m >-法二:(以cos θ为变量,分类讨论)2coscos 220m m θθ-+->恒成立,令2()22f x x mx m =-+-其中cos [1,1]x θ=∈-,由图像对称轴2m x =,且(1)310(1)10f m f m -=->⎧⎨=->⎩即1m >,即122m >(要先代入-1和1求,否则分类讨论会麻烦)①211()0880222m mf m m >>>⇒-+<⇒当时,44m -<<+12m <<,因为142<-<,所以42m -<<②当2m≥1时,(1)10f m m =->⇒≥2综上,4m >-例2.已知函数()y f x =在定义域[,1]-∞上是减函数,问:是否存在实数k ,使得不等式(sin )f k x -≥22(sin )f k x -对于一切实数x 恒成立?解析:sin k x -≤22sin k x -≤1,整理得2222sin sin sin 1k x k xk x ⎧-≤-⎪⎨-≤⎪⎩恒成立 法一:(参变分离,推荐)即2222sin sin 1sin k k x x k x⎧-≥-⎪⎨≤+⎪⎩恒成立,其中对于一切实数x 都有14-≤2sin sin x x -≤2,1≤21sin x +≤1k =-2,所以222211k k k k k ⎧-≥⇒≥≤-⎪⎨≤⎪⎩或即1k =-法二:(以sin x 为变量,分类讨论)22sin sin ()0x x k k ---≤,令22()()f x t t k k =---∴只需(1)0f -≤,即22k k -≥即21k k ≥≤-或,又21k ≤∴1k =-法三:(分类讨论不好不推荐)即(sin )(sin 1)011k x k x k -+-≥⎧⎨-≤≤⎩①,由①1sin [1,1]k x =∈-,21sin [0,2]k x =-∈所以21k k ≥≤-或,所以1k =-例3.是否存在m 使得不等式221(1)x m x ->-对满足||x ≤2的一切实数x 都成立?解析:法一:(m 为参数分类讨论,推荐)2210mx x m -+-<(0m =时显然不成立),对称轴1x m=且(2)350(2)330f m f m -=+<⎧⎨=-<⎩即53m <-即13(,0)5m ∈-(先代入特殊值※)显然1[2,2]x m =∈-,抛物线开口向下,所以只需最大值1()0f m <即可,即11m m +>,显然,10m m+<所以m 无解 法二:(参变分离,分类讨论,非常麻烦强烈不推荐;特殊值法,简单易行强烈推荐,但仅限此题,局限性强) 当1x =时,对于任意m 都有210x ->,令1[2,2]x =-∈-,左边=3-,右边=0显然不成立,所以m 无解例4.m 在什么范围内,函数22(sin )21y m m m θ=--+--(0≤θ≤)2π的最大值为负值。
不等式恒成立问题的大全

不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
本文就结合实例谈谈这类问题的一般求解策略。
一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,数a 的取值围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值围为),31()1,(+∞--∞ 。
若二次不等式中x 的取值围有限制,则可利用根的分布解决问题。
例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,数m 的取值围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值围为)1,3[-。
二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值围; (2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值围. (3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值围.【分析及解】 (1) 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .(2)由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x .∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f . 由04106)(2'=++=x x x g 得321-=-=x x 或, ∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .(3) 若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由(2)可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+,32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤2.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,数a 的取值围。
函数不等式恒成立问题解法

函数不等式恒成立问题解法函数和不等式是数学中的重要概念和工具,有着广泛的应用。
在解决函数和不等式恒成立的问题时,通常可以采用以下一些基本的解法。
一、函数恒成立问题的解法:1.分析函数的定义域和值域:函数的定义域是所有满足函数定义的输入值的集合,值域则是函数的所有可能输出值的集合。
通过分析函数的定义域和值域,可以判断函数在一些特定范围内是否恒成立。
2.化简和变形:有时候可以通过对函数进行化简和变形来更方便地判断函数的恒成立性。
例如,对于分式函数,可以尝试化简分式,然后观察化简后的形式是否恒成立。
对于多项式函数,可以通过因式分解或配方法进行化简和变形。
3.列出函数的性质和特点:函数有很多性质和特点,例如奇偶性、周期性、增减性等。
通过分析函数的性质和特点,可以判断函数在一些特定条件下是否恒成立。
4.利用函数的图像和性质:通过绘制函数的图像,可以帮助我们直观地理解函数的性质和变化趋势。
对于一些特殊类型的函数,如三角函数和指数函数,可以利用函数的图像和性质来判断函数是否恒成立。
二、不等式恒成立问题的解法:1.利用性质和等价变形:不等式有一些基本性质和等价变形,如加减性、乘除性、取反性、平方性等。
通过利用这些性质和等价变形,可以将原不等式转化为等价的不等式,然后判断等价不等式的恒成立性。
2.化简和变形:和函数恒成立问题类似,有时候可以通过对不等式进行化简和变形来更方便地判断不等式的恒成立性。
例如,可以合并同类项、化简分式、配方等。
3.列出不等式的性质和特点:不等式也有一些性质和特点,如单调性、对称性、周期性等。
通过分析不等式的性质和特点,可以判断不等式在一些特定条件下是否恒成立。
4.利用数轴和区间:对于一元不等式,可以利用数轴和区间的表示法来帮助我们理解和解决不等式。
可以将不等式中的变量表示在数轴上,并根据不等式的性质和条件,确定变量可取的范围和解集。
以上是一些常见的解决函数和不等式恒成立问题的基本方法和思路。
高一数学 不等式恒成立问题中的参数求解策略

不等式恒成立问题中的参数求解策略不等式恒成立问题的题目一般综合性都比较强,本文结合例题谈谈不等式恒成立问题中参数的求解策略 关键词:不等式;恒成立;求解策略在不等式中,有一类问题是求参数在什么范围内不等式恒成立。
恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点。
下面结合例题浅谈不等式恒成立问题的解题策略题型一、可化为二次函数类型有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。
常常有以下两类情况: ㈠可化为二次函数在R 上恒成立问题 设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
例1 对于x ∈R ,不等式0m 3x 2x 2≥-+-恒成立,求实数m 的取值范围。
解:不妨设m 3x 2x )x (f 2-+-=,其函数图象是开口向上的抛物线,为了使)R x (0)x (f ∈≥,只需0≤∆,即0)m 3(4)2(2≤---,解得]2(m 2m ,-∞∈⇒≤。
变形:若对于x ∈R ,不等式03mx 2mx 2>++恒成立,求实数m 的取值范围。
此题需要对m 的取值进行讨论,设3mx 2mx )x (f 2++=。
①当m=0时,3>0,显然成立。
②当m>0时,则△<03m 0<<⇒。
③当m<0时,显然不等式不恒成立。
由①②③知)30[m ,∈。
关键点拨:对于有关二次不等式0c bx ax 2>++(或<0)的问题,可设函数c bx ax )x (f 2++=,由a 的符号确定其抛物线的开口方向,再根据图象与x 轴的交点问题,由判别式进行解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数“二次型”不等式恒成立问题的解法
作者:陈珊珊
来源:《数学大世界·下旬刊》2019年第01期
【摘要】纵观近几年的全国高考数学试题可以发现,函数与不等式问题一直是重点考查的内容,所占分值比例较高。
而含参数“二次型”不等式恒成立问题可以说是“年年登场”,此类问题对大部分学生来讲难度不小。
因此,本文重点谈谈如何求解含参数不等式恒成立问题。
【关键词】参数;二次函数;不等式;解法
二次函数是高中数学知识板块的重要组成部分,也是高考考查的一大热点。
命题时多与其他知识交汇融合,特别是含参类不等式问题,一直是高考重点考查的题型。
此类问题的求解常常需结合数形结合、分类讨论、化归与转化等思想方法,是高考的一大难点。
“二次型”不等式恒成立问题一般都要转化为求函数的最值问题。
下面从三个方面来介绍含参数的“二次型”不等式的解法。
从以上解法可以看出,一般含参类不等式恒成立问题的处理方法大都可以转化为函数的最值问题,这也是我们处理这类问题的常规思路。
本文仅介绍了判别式法、分离参数法和变换主元,构造新函数法三种解答方法。
实际上,另外还有数形结合法、函数性质法、整体代换法、
反证法等多种解法,需要大家在平時的学习和练习中多归纳、多总结。