不等式恒成立问题经典例题

合集下载

第10讲 恒成立能成立3种常见题型(解析版)

第10讲 恒成立能成立3种常见题型(解析版)

第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题的基本类型及常用解法 - 副本

不等式恒成立问题基本类型及常用解法类型1:设f(x)=ax+bf(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m ff(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。

例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(21)12-+a x 恒成立的x 的取值范围。

类型2:设f(x)=ax 2+bx+c (a ≠0)f(x) >0在x ∈R 上恒成立⇔a >0 且△<0;f(x) <0在x ∈R 上恒成立⇔a <0 且△<0.说明:①.只适用于一元二次不等式②.若未指明二次项系数不等于0,注意分类讨论.例3.不等式3642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。

类型3:设f(x)=ax 2+bx+c (a ≠0)(1) 当a >0时① f(x) >0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0)(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f . (2) 当a <0时① f(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0)(2 n f n a b . 说明:只适用于一元二次不等式.类型4:a >f(x) 恒成立对x ∈D 恒成立⇔a >f(x)m ax ,a <f(x)对x ∈D 恒成立⇔ a <f(x)m in .说明:①. f(x) 可以是任意函数②.这种思路是:首先是---分离变量,其次用---极端值原理。

一类不等式恒成立问题

一类不等式恒成立问题
例1.关于x的不等式x2-2x+a-8<0在x∈[1,3]上恒成
Байду номын сангаас
立,则实数a的取值范围是__________.
例2.关于x的不等式x2-2x+a-8>0在x∈[2,3]上恒成立,
则实数a的取值范围是__________.
【规律总结】
若函数y=f(x),x∈D,则: 1) a>f(x),x∈D恒成立⇔a>f(x)max; 2) a<f(x),x∈D恒成立⇔a<f(x)min.
O
x
【实战演练】
1.(2016·杭州高二检测)不等式(a-2)x2+2(a-2)x4<0对一切x∈R恒成立,则实数a的取值范围是
_________.
2.(2015·武汉高三一测)设函数f(x)=ax2-ax+1,若
对于一切实数x,f(x)≥0恒成立,求a的取值范围.
类型二、能分离参数的不等式恒成立问题
【实战演练】
1.(2015·洛阳高三模拟)已知关于x的不等式x2-4x≥m
对任意x∈(0,1]恒成立,则m的范围是__________.
2.(2016·许昌高二检测)已知关于x的不等式-x2-2xa≥0对任意x∈[1,2]恒成立,则a 的范围是__________.
【回顾总结】
1.R上的不等式恒成立问题.
1)判断是否为一元二次不等式; 2)套结论.
2.能分离参数的不等式恒成立问题.
1)分离出孤独的参数;
2)求最值.
一元二次不等式
一类不等式恒成立问题
1.会解R上的不等式恒成立问题
2.会解能分离参数的不等式恒成立问 题.
类型一、R 上的不等式恒成立问题

考点练习(必修五):不等式的恒成立问题(附答案)

考点练习(必修五):不等式的恒成立问题(附答案)

不等式恒成立问题一、利用根的判别式1. 若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(-∞,-1)C.⎝⎛⎭⎫-∞,-1311 D.⎝⎛⎭⎫-∞,-1311∪(1,+∞)2. 已知不等式22230ax ax a -++>的解集为R,则a 的取值范围是( )A.a ≥0B.a >0C.a ≥-3D.a >-33. 若关于的不等式的解集为,则实数的取值范围为__________.4. 若关于x 的不等式2224< 24ax ax x x +-+对一切x R ∈恒成立,则a 的取值范围是____.5. 若不等式x 2-4x +3m <0的解集为空集,则实数m 的取值范围是________.6. 若不等式x 2+mx +m2>0恒成立,则实数m 的取值范围是( )A .(2,+∞)B .(-∞,2)C .(-∞,0)∪(2,+∞)D .(0,2)7. 若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]8. 已知f (x )=x 2+2(a -2)x +4,如果对一切x ∈R ,f (x )>0恒成立,求实数a 的取值范围.9. 已知函数f (x )=mx 2-2x -m +1,是否存在实数m 对所有的实数x ,f (x )<0恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.10. 不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.11. 若函数f (x )=log 2(x 2-2ax -a )的定义域为R ,则a 的取值范围为________.12. 定义在R 上的运算:()*1x y x y =-,若不等式()()*1x y x y -+<对一切实数x 恒成立,则实数y 的取值范围是______.13. 设0πα≤≤,不等式()288sin cos20x x αα-+≥对x ∈R 恒成立,则α的取值范围为 .14. 已知函数)()lgf x x x =+,若不等式()()33920x x x f m f ⋅+--<对任意x ∈R恒成立,求实数m 的取值范围.二、转化为函数最值问题1. 若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( )A .1B .-1C .-3D .32. 当x ∈(1,2)时,不等式240x mx ++<恒成立,则m 的取值范围是_______________.3. 设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.4. 对一切实数x ,不等式x 2+a |x |+1≥0恒成立,则实数a 的取值范围是________.5. 已知函数()221f x x ax =-+对任意0 1]x ∈(,恒有()0f x ≥成立,则实数a 的取值范围是( )A .[1 +∞,)B .[1 2∞-+,)C .1] -∞(,D .12]∞--(,6. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( ).A .[]5,3--B .96,8⎡⎤--⎢⎥⎣⎦C .[]6,2--D .[]4,3--7. 已知()()()()23 22x f x m x m x m g x =-++=-,.若任意() < 0x R f x ∈,或()< 0g x ,则m 的取值范围是________.三、变更主元1. 对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m ≥0恒成立,求x 的取值范围.2. 已知函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立,试求x 的取值范围.3. 对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)4. 已知不等式mx 2-2x +m -2<0.(1)若对于所有的实数x 不等式恒成立,求m 的取值范围;(2)设不等式对于满足|m |≤2的一切m 的值都成立,求x 的取值范围.5. 设函数21f x mx mx =--() (1)若对一切实数() < 0x f x ,恒成立,求m 的取值范围. (2)若对一切实数 2 [ 2]m ∈-,,()< 5f x m -+恒成立,求x 的取值范围.四、存在问题1. 存在实数x ,使得243< 0x bx b -+成立,则b 的取值范围是________.2. 若不存在整数x 使不等式()()2440kx k x <---成立,则实数k 的取值范围是____.3. 关于x 的不等式()21< 0x a x a -++的解集中恰有3个整数解,则a 的取值范围是________.4. 已知f(x)=x2+2(a-2)x+4,是否存在实数a,使得对任意x∈[-3,1],f(x)<0恒成立.若存在求出a的取值范围;若不存在说明理由.5. 已知函数f(x)=2kxx2+6k(k>0).(1)若f(x)>m的解集为{x|x<-3或x>-2},求不等式5mx2+kx+3>0的解集;(2)若存在x>3,使得f(x)>1成立,求k的取值范围.参考答案 不等式恒成立问题一、利用根的判别式1. 解析:选C ①当m =-1时,不等式为2x -6<0,即x <3,不符合题意.②当m ≠-1时,则⎩⎪⎨⎪⎧m +1<0,Δ<0,解得m <-1311,符合题意.故实数m 的取值范围为⎝⎛⎭⎫-∞,-1311. 2. 【答案】A 【解析】由题意可知当时,符合题意;当时,要求解得.综上所述a 的取值范围是a ≥0.. 3.【解析】当时,不等式变形为,解集为,符合题意; 当时,依题意可得,综上可得.4. 【答案】]2 2-(,【解析】不等式2224< 24ax ax x x +-+,可化为()()22224< 0a x a x -+--, 当20a -=,即2a =时,恒成立,合题意.当20a -≠时,要使不等式恒成立, 需020a ∆<⎧⎨-<⎩,解得2< < 2a -.所以a 的取值范围为]2 2-(,.故答案为:]2 2-(,5. 解析:由题意,知x 2-4x +3m ≥0对一切实数x 恒成立,所以Δ=(-4)2-4×3m ≤0,解得m ≥43. 答案:⎣⎡⎭⎫43,+∞ 6. 解析:选D ∵不等式x 2+mx +m2>0,对x ∈R 恒成立,∴Δ<0即m 2-2m <0,∴0<m <2.7. 解析:选D 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实数x 都成立的k 的取值范围是(-3,0].8. [解] 由题意可知,只有当二次函数f (x )=x 2+2(a -2)x +4的图象与直角坐标系中的x 轴无交点时,才满足题意,则其相应方程x 2+2(a -2)x +4=0此时应满足Δ<0,即4(a -2)2-16<0,解得0<a <4.故a 的取值范围是(0,4).9. 已知函数f (x )=mx 2-2x -m +1,是否存在实数m 对所有的实数x ,f (x )<0恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.解:f (x )=mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数f (x )=mx 2-2x -m +1为二次函数,需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m-m <0,不等式组的解集为空集,即m 无解. 综上可知不存在这样的m .10. 解析:∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)11. 解析:已知函数定义域为R ,即x 2-2ax -a >0对任意x ∈R 恒成立.∴Δ=(-2a )2+4a <0. 解得-1<a <0. 答案:(-1,0) 12.【答案】13 22⎛⎫- ⎪⎝⎭,【解析】由已知()()()()*11x y x y x y x y -+=---<对一切实数x 恒成立, 所以2210x x y y --++>对一切实数x 恒成立,所以()21410y y ∆=--++<,所以1322y -<<. 13. 分析 根据开口向上的二次函数定义域为R 时函数值非负的条件()0∆≤列式直接运算求解.解析 由题意,要使()288sin cos20x x αα-+≥对x ∈R 恒成立,需264sin32cos20∆αα=-≤,化简得1cos 22α≥.又0πα≤≤,所以π5π0222π33αα或≤≤≤≤,解得π5π0π66αα或≤≤≤≤. 答案:0,π5π⎡⎤⎡⎤,π⎢⎥⎢⎥66⎣⎦⎣⎦. 14. 略二、转化为函数最值问题1. 解析:选C 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,∴f (x )min =f (1)=-3,∴m ≤-3. 2. (],5-∞-3. 解:要使f (x )<-m +5在[1,3]上恒成立,则mx 2-mx +m -6<0,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一:令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)=m -6<0. 所以m <6,则m <0.综上所述,m 的取值范围是(-∞,0)∪⎝⎛⎭⎫0,67. 法二:因为x 2-x +1=⎝⎛⎭⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1. 因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是(-∞,0)∪⎝⎛⎭⎫0,67.4. 解析:当x =0时,不等式恒成立,当x ≠0时,将问题转化为-a ≤1|x |+|x |,由1|x |+|x |≥2,故-a ≤2,即a ≥-2.所以实数a 的取值范围为[-2,+∞).答案:[-2,+∞)5. 【答案】C【解析】解法一:依题意可得2440a ∆=-≤,或0(0)0202f a ∆>⎧⎪-⎪-⎨≤≥⎪⎪⎩或1(1)0202f a ∆>⎧⎪-⎪-⎨≥≥⎪⎪⎩,解得11a ≤≤-,或01 1 10a a a ><-⎧≥⎪≤⎪⎨⎩或或111 1 a a a a ><-⎧≤⎪≥⎪⎨⎩或,即有11a ≤≤-,或1a <-或a ∈∅,故实数a 的取值范围是:1] -∞(,. 解法二:()221f x x ax -=+对任意0 1]x ∈(,恒有()0f x ≥成立,即有12a x x≤+在0 1]x ∈(,恒成立,由于12x x+≥,当且仅当1x =取最小值2,则22a ≤,即有1a ≤.故选C . 6. 略7.【答案】()4 0-,【解析】因为()22x g x =-,当1x ≥时,()0g x ≥,又因为任意x R ∈,()< 0f x 或()< 0g x , 所以此时()()()230f x m x m x m =-++<在1x ≥时恒成立.若()0 0m f x ==,恒成立,不符合,0m ≠故, 则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面 则03121m m m <⎧⎪--<⎨⎪<⎩,所以40m -<<.故答案为: 4 0-(,).三、变更主元1. 解:由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4.由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0, 解得x <1或x >3.故当x ∈(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函数f (x )的值恒大于零.2. 解:原函数可化为g (a )=2xa +x 2-4x +4,是关于a 的一元一次函数.要使对任意a ∈[-3,1],y <0恒成立,只需满足⎩⎪⎨⎪⎧ g<0,g -<0,即⎩⎪⎨⎪⎧x 2-2x +4<0,x 2-10x +4<0. 因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立. 3. 解析:选B 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧ g =x 2-3x +2>0,g-=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 4. 解:(1)对所有实数x ,都有不等式mx 2-2x +m -2<0恒成立,即函数f (x )=mx 2-2x +m -2的图象全部在x 轴下方.当m =0时,-2x -2<0,显然对任意x 不能恒成立; 当m ≠0时,由二次函数的图象可知有⎩⎪⎨⎪⎧m <0,Δ=4-4mm -,解得m <1-2,综上可知,m 的取值范围是(-∞,1-2).(2)设g (m )=(x 2+1)m -2x -2,它是一个以m 为自变量的一次函数,由x 2+1>0,知g (m )在[-2,2]上为增函数,则只需g (2)<0即可,即2x 2+2-2x -2<0,解得0<x <1. 故x 的取值范围是(0,1).5. 【答案】(1)]( 4 0-,;(2)()1 2-,. 【解析】(1)当0m =时,()211f x mx mx =--=-,对一切实数x ,()< 0f x 恒成立; 当0m ≠时,若对一切实数x ,()< 0f x 恒成立,则有2040m m m <⎧⎪⎨+<⎪⎩,所以4< < 0m -,综上,m 的取值范围是]( 4 0-,. (2)因为()< 5f x m -+,所以21< 5mx mx m ---+,所以()216< 0x x m -+-, 因为对一切实数 2 [ 2]m ∈-,,()< 5f x m -+恒成立,且21>0x x -+,所以只需()2216< 0x x -+-,解得1< < 2x -.所以x 的取值范围是()1 2-,.四、存在问题1. 【答案】3> < 04b b 或【解析】因为存在实数x ,使得243< 0x bx b -+成立的等价说法是:存在实数x ,使得函数243y x bx b =-+的图象在x 轴下方,即函数与x 轴有两个交点,故对应的()23443>0< 0>4b b b b ∆=--⨯⇒或.故答案为:< 0b 或3>4b .2. 【答案】14k ≤≤【解析】设原不等式的解集为A ,当0k =时,则>4x ,不合题意,当>0k 且2k ≠时,原不等式化为[]44< 0x k x k -+-()(),因为4>4k k+,所以44 ()A k k =+,,要使不存在整数x 使不等式()()244< 0kx k x ---成立,需45k k+≤,解得:14k ≤≤;当2k =时,A =∅,合题意;当< 0k 时,原不等式化为44>[]0x k x k-+-()(),所以44 A k k=-∞++∞(,)(,),不合题意,故答案为:14k ≤≤.3. 【答案】 3 2 ]4 [5--,)(,【解析】由()21< 0x a x a -++,得()()1< 0x x a --,若1a =,则不等式无解. 若>1a ,则不等式的解为1< < x a ,此时要使不等式的解集中恰有3个整数解,则此时3个整数解为 2 3 4x =,,,则45a <≤.若1a <,则不等式的解为1a x <<,此时要使不等式的解集中恰有3个整数解,则此时3个整数解为0 1 2x =--,,,则3< 2a -≤-.综上,满足条件的a 的取值范围是 3 2 ]4 [5--,)(,.故答案为: 3 2 ]4 [5--,)(,.4. 解:若对任意,x ∈[-3,1],f (x )<0恒成立,则满足题意的函数f (x )=x 2+2(a -2)x +4的图象如图所示.由图象可知,此时a 应该满足⎩⎪⎨⎪⎧f-<0,f <0,即⎩⎪⎨⎪⎧25-6a <0,1+2a <0,解得⎩⎨⎧a >256,a <-12.这样的实数a 是不存在的,所以不存在实数a 满足:对任意x ∈[-3,1],f (x )<0恒成立.5. 解:(1)由不等式f (x )>m ⇔2kxx 2+6k>m ⇔mx 2-2kx +6km <0,∵不等式mx 2-2kx +6km <0的解集为{x |x <-3或x >-2}, ∴-3,-2是方程mx 2-2kx +6km =0的根,∴⎩⎪⎨⎪⎧ 2k m =-5,6k =6,解得⎩⎪⎨⎪⎧k =1,m =-25,故有5mx 2+kx +3>0⇔2x 2-x -3<0⇔-1<x <32, ∴不等式5mx 2+kx +3>0的解集为⎝⎛⎭⎫-1,32. (2)f (x )>1⇔2kxx 2+6k>1⇔x 2-2kx +6k <0⇔(2x -6)k >x 2.存在x >3,使得f (x )>1成立,即存在x >3,使得k >x 22x -6成立.令g (x )=x 22x -6,x ∈(3,+∞),则k >g (x )min .令2x -6=t ,则x =t +62,则t ∈(0,+∞),y =⎝⎛⎭⎫t +622t=t 4+9t+3≥2 t 4·9t+3=6, 当且仅当t 4=9t ,即t =6时等号成立.当t =6时,x =6,∴g (x )min =g (6)=6,故k 的取值范围为(6,+∞).。

高考100题不等式:专题三 不等式恒成立问题

高考100题不等式:专题三 不等式恒成立问题

I.题源探究·黄金母题【例1】当k 取何值时,一元二次不等式23208kx kx +-<对一切实数x 都成立?【解析】由已知结合二次函数的图像可得20,3420,8k k k <⎧⎪⎨⎛⎫∆=-⨯⨯-< ⎪⎪⎝⎭⎩解得30k -<<.所以当30k -<<时,一元二次不等式23208kx kx +-<对一切实数x 都成立.精彩解读【试题来源】人教版A 版必5第4页例3.【母题评析】本题考查一元二次不等式恒成立参数取值范围问题.不等式恒成立问题,是历年来高考的一个常考点.【思路方法】合理运用二次函数的图像及其性质解题.II.考场精彩·真题回放【例2】【2016高考浙江理数】已知实数,,a b c ()A .若221a b c a b c +++++≤,则222100a b c ++<B .若221a b c a b c ++++-≤,则222100a b c ++<C .若221a b c a b c ++++-≤,则222100a b c ++<D .若221a b c a b c ++++-≤,则222100a b c ++<【答案】D【解析】采用反例排除法:令10,110===-a b c ,排除此选项A;令10,100,0==-=a b c ,排除此选项B;【命题意图】本题考查绝对值不等式的性质,属于创新题,有一定的难度.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力.【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度较大,往往是高中数学主要知识的交汇题.【难点中心】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时能够对四个选项逐个利用赋值的方式进行排除,确认成立的不等式.令100,100,0==-=a b c ,排除此选项C,故选D.【例3】【2014湖北15】如图所示,函数)(x f y =的图象由两条射线和三条线段组成.若R ∈∀x ,)1()(->x f x f ,则正实数a 的取值范围是.【解析】10,6⎛⎫ ⎪⎝⎭.【解析】由已知得()0,331,a a a >⎧⎪⎨--<⎪⎩解得106a <<,即正实数a 的取值范围是10,6⎛⎫ ⎪⎝⎭.【命题意图】本题综合考查函数的图像、函数奇偶性、分段函数、恒成立问题中的参数取值范围问题,考查学生分析问题与解决问题的能力.【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度较大,往往是高中数学主要知识的交汇题.【难点中心】解决此类问题的关键是运用函数图像及其性质(数形结合)解题.III.理论基础·解题原理(1)()200ax bx c a ++>≠对一切x R ∈恒成立20,40.a b ac >⎧⇔⎨∆=-<⎩。

基本不等式的恒成立问题

基本不等式的恒成立问题

基本不等式的恒成立问题一、基本不等式1. 基本不等式的形式- 对于正实数a,b,有a + b≥2√(ab),当且仅当a = b时等号成立。

- 变形形式:ab≤((a + b)/(2))^2。

2. 基本不等式成立的条件- a>0,b>0。

二、基本不等式恒成立问题的常见类型及解法1. 类型一:求参数的取值范围使得不等式恒成立- 例1:已知x>0,y>0,若x + y+ (1)/(x)+(1)/(y)≥ m恒成立,求m的取值范围。

- 解析:- 因为x>0,y>0,根据基本不等式x+(1)/(x)≥2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时等号成立;同理y+(1)/(y)≥2,当且仅当y = 1时等号成立。

- 所以x + y+(1)/(x)+(1)/(y)=(x+(1)/(x))+(y+(1)/(y))≥2 + 2=4。

- 因为x + y+(1)/(x)+(1)/(y)≥ m恒成立,所以m≤4。

2. 类型二:已知不等式恒成立,求代数式的最值- 例2:若对于任意x>0,(x)/(x^2)+3x + 1≤ a恒成立,求a的最小值。

- 解析:- 因为x>0,则(x)/(x^2)+3x + 1=(1)/(x+frac{1){x}+3}。

- 根据基本不等式x+(1)/(x)≥2√(x×frac{1){x}} = 2,当且仅当x=(1)/(x)即x = 1时等号成立。

- 所以x+(1)/(x)+3≥2 + 3=5,则0<(1)/(x+frac{1){x}+3}≤(1)/(5),即0<(x)/(x^2)+3x + 1≤(1)/(5)。

- 因为(x)/(x^2)+3x + 1≤ a恒成立,所以a≥(1)/(5),a的最小值为(1)/(5)。

3. 类型三:含有多个变量的基本不等式恒成立问题- 例3:已知x,y∈ R^+,若2x + y = 1,且(1)/(x)+(a)/(y)≥8恒成立,求正实数a 的值。

微专题不等式恒成立问题常见类型及解法

恒成立问题常见类型及解法恒成立问题在解题过程中大致可分为以下几种类型:(1)一次函数型;(2)二次函数型;(3)变量分离型;(4)利用函数的性质求解;(5)直接根据函数的图象求解;(6)反证法求解。

一、一次函数型给定一次函数()==+y f x kx b (k ≠0),若()=y f x 在[m,n]内恒有()f x >0,则根据函数的图象(线段)可得①0()0>⎧⎨>⎩k f m 或②0()0<⎧⎨>⎩k f n ,也可合并成f (m)0f (n)0>⎧⎨>⎩,同理,若在[,]m n 内恒有()0<f x ,则有f (m)0f (n)0<⎧⎨<⎩.典例1.若不等式2x -1>()21-m x 对一切[]2,2∈-m 都成立,求实数x 的取值范围。

【解析】令f (m)=(21-x )m -2x +1,则上述问题即可转化为关于m 的一次函数=y ()f m 在区间[-2,2]内函数值小于0恒成立的问题。

考察区间端点,只要(2)(2)-⎧⎨⎩<0,<0f x f 即x的取值范围是(12,12). 二、二次函数型若二次函数2(0,)=++≠∈y ax bx ca x R 的函数值大于(或小于)0恒成立,则有a 00>⎧⎨∆<⎩(或00a ì<ïïíïD <ïî),若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及二次函数的图象求解。

典例2关于x 的方程9x +(4+a )3x +4=0恒有解,求a 的取值范围。

【解析】方法1(利用韦达定理)设3x=t,则t>0.那么原方程有解即方程t 2+(4+a )t+4=0有正根。

1212Δ0(4)040≥⎧⎪∴+=-+>⎨⎪=>⎩g x x a x x ,即2(4a)160a 4⎧+-≥⎨<-⎩,a 0a 8a 4≥≤-⎧∴⎨<-⎩或,解得a ≤-8.方法2(利用根与系数的分布知识)即要求t 2+(4+a )t+4=0有正根。

高中数学不等式的恒成立问题

高中数学不等式的恒成立问题一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。

基本结论总结例1 对于x∈R,不等式恒成立,求实数m的取值范围。

例2:已知不等式对于R恒成立,求参数的取值范围.解:要使对于R恒成立,则只须满足:(1)或(2)解(1)得,解(2)=2∴参数的取值范围是-2<2.练习1.已知函数的定义域为R,求实数的取值范围。

2.若对于x∈R,不等式恒成立,求实数m的取值范围。

3.若不等式的解集是R,求m的范围。

4.取一切实数时,使恒有意义,求实数的取值范围.例3.设,当时,恒成立,求实数的取值范围。

-1关键点拨:为了使在恒成立,构造一个新函数是解题的关键,再利用二次函数的图象性质进行分类讨论,使问题得到圆满解决。

若二次不等式中的取值范围有限制,则可利用根的分布解决问题。

解:,则当时,恒成立当时,显然成立;当时,如图,恒成立的充要条件为:解得。

综上可得实数的取值范围为。

例4 。

已知,求使不等式对任意恒成立的a的取值范围。

解法1:数形结合结合函数的草图可知时恒成立。

所以a的取值范围是。

解法2:转化为最值研究1. 若上的最大值。

2. 若,得,所以。

综上:a的取值范围是。

注:1. 此处是对参a进行分类讨论,每一类中求得的a的范围均合题意,故对每一类中所求得的a的范围求并集。

2. 恒成立;解法3:分离参数。

设,注:1. 运用此法最终仍归结为求函数的最值,但由于将参数a与变量x分离,因此在求最值时避免了分类讨论,使问题相对简化。

2. 本题若将“”改为“”可类似上述三种方法完成。

仿解法1:即读者可仿解法2,解法3类似完成,但应注意等号问题,即此处也合题。

例5. 已知:求使恒成立的a的取值范围。

解法1:数形结合结合的草图可得:或得:。

解法2:转化为最值研究1.,所以。

2. 若矛盾。

3. 若矛盾。

综上:a的取值范围是。

恒成立问题题型大全(详解详析)

不等式中恒成立问题在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。

恒成立问题的基本类型:2f(x) 0在x Rf(x) ax bx c(a 0)类型1:设,(1)且 0f(x) 0在x R;上恒成立 a 0且 0 a 0(2)上恒成立。

2f(x) ax bx c(a 0)类型2:设f(x) 0在x *,+a 0(1)当时,上恒成立或或bbb2a2a2a,() 0 f() 0 f() 0 0ff(x) 0在x *,+ 上恒成立f() 0 f() 0 f(x) 0在x *,+a 0 (2)当时,上恒成立f() 0 bbbf(x) 0在x *,+ 或或2a2a2a 上恒成立类型3:f() 0 0f() 0f(x) 对一切x I恒成立 f(x) min f(x) 对一切x I恒成立 f(x) 。

max类型4: f(x) g(x)对一切x I恒成立 f(x)的图象在g(x)的图象的上方或f(x) g(x)minmax(x I) 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。

一、用一次函数的性质f(x) kx b,x *m,n+ 对于一次函数有:恒成立 ,f(x) 0恒成立 f(m) 0f(m) 0 f(x) 0f(n) 0f(n) 0 12m2 m 22x1 m(x1)例1:若不等式对满足的所有都成立,求x的范围。

解析:我们可以用改变主元的办法,将m视为主变元,即将元不等式化为:222 m 2m(x1)(2x1) 0f(m) m(x1)(2x 1),;令,则时,恒成2 f(2) 02(x1)(2x1) 0 f(m) 0立,所以只需即,所以x的范围 f(2) 02 2(x1)(2x1) 01713x (,)是。

22二、利用一元二次函数的判别式2f(x) ax bx c 0(a 0,x R) 对于一元二在x R(1)上恒次函数有: a 0且 0f(x) 0成立; a 0且 0f(x) 0在x R(2)上恒成立2(m1)x(m1)x2 0例2:若不等式的解集是R,求m的范围。

不等式有解与恒成立问题

不等式恒成立与能成立问题学号 姓名不等式恒成立指不等式对指定其间上的任意值都成立;不等式能成立指不等式在指定其间上至少有一个解(或称有解)。

下面从三个例子针对这两类问题的解决策略作比较说明。

例1.(1)若不等式()350x a -+<在[]1,1x ∈-内恒成立,求实数a 的取值范围。

(2).若不等式()350x a -+<在[]1,1x ∈-内能成立,求实数a 的取值范围。

例2.(1)若不等式22310x x m ++-≥在[]0,1x ∈内恒成立,求实数m的取值范围. (2)若不等式22310x x m ++-≥在[]0,1x ∈有解,求实数m的取值范围.例3.(1)若不等式245462x x a x -+≤+-在[]3,5x ∈内恒成立,求实数a的取值范围. (2)若不等式245462x x a x -+≤+-在[]3,5x ∈内有解,求实数a的取值范围。

总结:1.不等式恒成立与能成立(有解)解法策略比较:2.恒成立的参数范围是有解的参数范围的子集。

3. 不等式恒成立与能成立(有解)问题都是转化为最值解决。

作业:1.已知关于x 的不等式2350x a +-<。

(1)若此不等式对[]1,5x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,5x ∈上能成立,求实数a的取值范围。

2.已知关于x 的不等式20x a +>。

(1)若此不等式对[]1,2x ∈上恒成立,求实数a的取值范围。

(2)若此不等式对[]1,2x ∈上能成立,求实数a的取值范围。

3. 已知关于x 的不等式2+2310x x a -+>。

(1)若此不等式对[]0,1x ∈上恒成立,求实数a的取值范围。

(2)若此不等式在[]0,1x ∈上有解,求实数a的取值范围。

4. 若不等式4213a x x +≤+-在[]0,1x ∈内有解,求实数a的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由题意得:
a 1 a 0 0 2 2 2 或 2 或 a a f (0) 1 0 f ( ) 0 2 4
5 所以 a 2
a 1 2 2 1 1 5 f( ) a 0 2 2 4
立,求实数a的取值范围
练习1、若对于任意 2 m 2 ,不等式 恒成立,求实数x的取值范围
2 x 1 m( x 2 1)
2 m ( x 1) 2x 1 0 解:原不等式可化为:

f (m) m( x2 1) 2x 1, m 2,2
f (2) 2 x2 2 x 3 0 f (2) 2 x2 2 x 1 0
xm

m 1 f (1) 2 0
由题意得: m0 或 f (0) 2m 1 0
1 所以 m 2
f (m) m2 2m 1 0
练习1、若对于任意 2 m 2 ,不等式 2 x 1 m( x 2 1) 恒成立,求实数x的取值范围 练习2、若对于任意 p 2 ,不等式x 2 px 1 2 x p 恒成 立,求实数x的取值范围 练习3、若对于任意 练习4、若对于任意
解:要使函数f(x)有意义,则必有
kx 6kx (k 8) 0
2
因为函数f(x)的定义域为R,所以 2 kx 6kx (k 8) 0 对一切 x R 恒成立. ①当k=0,不等式8>0对一切 x R 恒成立.
2
②当k≠0时,不等式 kx 6kx (k 8) 0对一切 x R 恒成立,则必有
2 例1、若对于任意 a 1 ,不等式x (a 4) x 2a 0 恒成 立,求实数x的取值范围
解:令 f (a) ( x 2)a x 4x, a 1,1
2
由题意得:
f 1 x 2 5x 2 0 1 x 2 3x 2 0
所以
3 17 x 2
5 17 或 x 2
例2、若对于任意
x 0,1
,不等式
x 2 2mx 2m 1 0
恒成立,求实数m的取值范围 解 : 令
f ( x) x2 2mx 2m 1, x 0,1
f ( x) 的图像开口向上,且对称轴为
0 m 1
2
p 1 0
由题意得:
f (2) x2 4 x 3 0 f (2) x2 1 0
所以
x 1

x3
练习3、若对于任意
x 2 ,不等式 (1 m) x2 (m 1) x 3 0
恒成立,求实数m的取值范围
解:若1-m=0即m=1时,原不等式可化为:3>0,适合题意。
a 1

f a a 2 a 2 0
所以 3 a 1
不等式恒成立问题的解题原理: 不等式 f x 0 在区间D上恒成立 f x min 0x D 或
不等式 f x 0 在区间D上恒成立 不等式
f xmax 0x D 或 f x上限 0x D f a f x 在区间D上恒成立 f (a) f xmax x D 或 f (a) f x上限x D
2
求实数k的取值范围.
(, 2 2] [2 2, )
例1:不等式
x 2 ax 4 0 当 x (1,2) 时恒
2
成立,求a的范围。
解: 令
f ( x) x ax 4, x (1,2)
由题意得:
f 1 a 5 0 f 2 2a 8 0
f (a) f x 下限x D
f x下限 0x D
不等式 f (a) f x 在区间D上恒成立 f (a) f x min x D 或
不等式恒成立问题的一般步骤: (1)明确变量和参数(求谁的范围谁是参数,谁的范 围已知谁是自变量),合理变形(一次二次不等式的标 准形式或变量参数的分离式 )。 (2) 构建函数,注意标明自变量范围。 (3)求函数的最值或限值,利用最值或限值构建关于参 数的不等式求出参数的范围。 注意事项: (1)形式上的一元二次不等式要对二次项系数等零不 等零进行讨论。 (2)指对不等式在底数不确定时要对底数进行讨论。 (3)如最值或限值总在定义域的两端点处产生时,不 必讨论。
由题意得:
所以
1 7 1 3 x 2 2
练习2、若对于任意 p 2 ,不等式x 2
px 1 2x p
恒成
立,求实数x的取值范围
解:原不等式可化为:x2 ( p 2) x 令
f ( p) ( x 1) p x 2x 1, p 2,2
2
f (2) x 2 x 3 0
所以
1 13 1 13 x 2 2
练习5、若对于任意
1 x 0, ,不等式 2
x 2 ax 1 0 恒成
立,求实数a的取值范围 解:令
f ( x) x ax 1,
2
1 x 0, 2
例题选讲
恒成立问题
2 ( a 2 ) x 2(a 2) x 4 0 例1.不等式
对一切 x R 恒成立,则a的取值范围。 变式1.不等式(a 2 4) x 2 (a 2) x 1 0 的解为空集 ,求a的取值范围。
变式2.若函数 f ( x) kx 2 6kx ( k 8) 的定义 域为R,求实数k的取值范围.
,不等式(1 m) x2 (m 1) x 3 0 m 2
恒成立,求实数x的取值范围
解: 原不等式可化为: ( x x)m x x 3 0
2 2

f (m) (x2 x)m x2 x 3, m 2,2
由题意得:
f (2) x 3x 3 0
x 2 ,不等式 (1 m) x2 (m 1) x 3 0
2 ,不等式 (1 m ) x (m 1) x 3 0 m 2
恒成立,求实数m的取值范围 恒成立,求实数x的取值范围 练习5、若对于任意
1 x 0, ,不等式 2
x 2 ax 1 0 恒成
所以
a 5
例2:不等式x² -2ax+2≥a当x∈[-1,+∞)时恒成立,求a 的范围。
解:原不等式可化为:
x 2 2ax a 2 0
2 f ( x ) x 2ax a 2, x 1, 令
f x 的图像开口向上,且对称轴为
xa
由题意得:
a 1 f 1 a 3 0
(6k )2 4k (k 8) 0
解得:0<k≤1 综上所述: 0 ≤ k≤1
k>0
易错题
1.函数 f ( x) log 1 ( x2 kx 2) 的定义域为R,
2
求实数k的取值范围.
2
(2 2, 2 2)
2.函数 f ( x) log 1 ( x kx 2) 的值域为R,
若1-m≠0即m≠1时, 令
2
f ( x) (1 m) x (m 1) x 3, x 2,2
1 m 0 f (2) 6m 9 0
由题意得:
1 m 0 1 1 11 或 f ( ) m 0 2 4 4
所以
3 11 m 2
练习4、若对于任意
相关文档
最新文档