高考均值不等式经典例题

合集下载

均值不等式高考冲刺练习

均值不等式高考冲刺练习

均值不等式练习1、设正数,a b 满足22144a b ab++=,则=a ,=b . 2、若,,a b c 是正实数,且满足a b c +≥,则b a a b c++的最小值为 . 3、若实数,a b 满足0ab >,则2a a a b a b-++的最大值为 . 4、已知实数110,0,1,211a b a b a b >>+=+++则的最小值为 . 5、已知180,0,2,2x y x y x y x y>>-=-+则的最小值为 . 6、已知0,0,35,4x y x y xy x y >>+=+当3取得最小值时,2x y +的值为 .7、设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值为 . 8、若实数,a b 满足22231a ab b +-=,则22a b +的最小值为 .9、设a b c >>,且11m a b b c a c+≥---恒成立,求m 的取值范围. 10、记((0,0)F x y a x x y =+-+>>.若对任意的0,0x y >>,恒有0F ≥请求出a 的取值范围.11、已知22451(,)x y y x y R +=∈,则22x y +的最小值为 .12、已知0,0,25,x y x y >>+=则的最小值为 . 13、已知,,x y z 均为正数,则2223xy yz x y z +++的最大值为 . 14、已知不等式12111112log (1)1232123a n n n n +++⋅⋅⋅+>-++++对于一切大于1的自然数n 都成立,求实数a 的取值范围.15、已知函数2()(3)21f x x a x a b =-++++.(1)若关于x 的不等式()0f x >的解集为{}23x x x <>或,求,a b 的值.(2)若关于x 的不等式()1f x b <-的解集中恰好有1个整数,求实数a的取值范围.16、已知函数22()f x x x =+.(1)求(1),(2)f f 的值;(2)设1a b >>,试比较(),()f a f b 的大小,并说明理由;(3)若不等式2(1)2(1)1f x x m x -≥-++-对一切实数x 恒成立,求实数m 的最大值.均值不等式练习1、设正数,a b 满足22144a b ab ++=,则=a ,=b .2、若,,a b c 是正实数,且满足a b c +≥,则b a a b c ++的最小值为 .3、若实数,a b 满足0ab >,则2a a a b a b -++的最大值为 .4、已知实数110,0,1,211a b a b a b >>+=+++则的最小值为 .5、已知180,0,2,2x y x y x y x y >>-=-+则的最小值为 .6、已知0,0,35,4x y x y xy x y >>+=+当3取得最小值时,2x y +的值为 .7、设0a b c >>>,求221121025()a ac c ab a a b ++-+-的最小值为 .8、若实数,a b 满足22231a ab b +-=,则22a b +的最小值为 .9、设a b c >>,且11m a b b c a c+≥---恒成立,求m 的取值范围.10、记((0,0)F x y a x x y =+-+>>.若对任意的0,0x y >>,恒有0F ≥请求出a 的取值范围.11、已知22451(,)x y y x y R +=∈,则22x y +的最小值为 .12、已知0,0,25,x y x y >>+=则的最小值为 .13、已知,,x y z 均为正数,则2223xy yz x y z +++的最大值为 .14、已知不等式12111112log (1)1232123a n n n n +++⋅⋅⋅+>-++++对于一切大于1的自然数n 都成立,求实数a 的取值范围.15、已知函数2()(3)21f x x a x a b =-++++.(1)若关于x 的不等式()0f x >的解集为{}23x x x <>或,求,a b 的值.(2)若关于x 的不等式()1f x b <-的解集中恰好有1个整数,求实数a 的取值范围.16、已知函数22()f x x x =+.(1)求(1),(2)f f 的值;(2)设1a b >>,试比较(),()f a f b 的大小,并说明理由;(3)若不等式2(1)2(1)1f x x m x -≥-++-对一切实数x 恒成立,求实数m 的最大值.。

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案均值不等式专题3学校:___________姓名:___________班级:___________考号:___________⼀、填空题1.若则的最⼩值是__________.2.若,且则的最⼤值为______________.3.已知,且,则的最⼩值为______.4.已知正数满⾜,则的最⼩值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最⼩值是______.6.设正实数满⾜,则的最⼩值为________7.已知,且,则的最⼩值是________8.已知正实数x,y满⾜,则的最⼩值是______9.已知,函数的值域为,则的最⼩值为________.10.已知,,且,则的最⼩值为__________.11.若正数x,y满⾜,则的最⼩值是______.12.已知正实数x,y满⾜,则的最⼩值为______.13.若,,,则的最⼩值为______.14.若,则的最⼩值为________.15.已知a,b都是正数,满⾜,则的最⼩值为______.16.已知,且,则的最⼩值为______.17.已知点在圆上运动,则的最⼩值为___________.18.若函数的单调递增区间为,则的最⼩值为____.19.已知正实数,满⾜,则的最⼤值为______.20.已知,,则的最⼩值为____.参考答案1.【解析】【分析】根据对数相等得到,利⽤基本不等式求解的最⼩值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题考查基本不等式求解和的最⼩值问题,关键是能够利⽤对数相等得到的关系,从⽽构造出符合基本不等式的形式. 2.【解析】【分析】先平⽅,再消元,最后利⽤基本不等式求最值.【详解】当时,,,所以最⼤值为1,当时,因为,当且仅当时取等号,所以,即最⼤值为,综上的最⼤值为【点睛】本题考查利⽤基本不等式求最值,考查基本分析求解能⼒,属中档题.3.4.【解析】【分析】直接利⽤代数式的恒等变换和利⽤均值不等式的应⽤求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应⽤,主要考查学⽣的运算能⼒和转化能⼒,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满⾜,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】由题意可得经过圆⼼,可得,再+利⽤基本不等式求得它的最⼩值.【详解】圆,即,表⽰以为圆⼼、半径等于2的圆.再根据弦长为4,可得经过圆⼼,故有,求得,则,当且仅当时,取等号,故则的最⼩值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应⽤,属于基础题.6.8【解析】【分析】根据基本不等式求最⼩值.【详解】令,则当且仅当时取等号.即的最⼩值为8.【点睛】在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.7.【解析】【分析】根据基本不等式求最⼩值.【详解】因为,当且仅当时取等号,所以的最⼩值是【点睛】由已知分离,然后进⾏1的代换后利⽤基本不等式即可求解.【详解】正实数x,y满⾜,则当且仅当且即,时取得最⼩值是故答案为:【点睛】本题主要考查了利⽤基本不等式求解最值,解题的关键是进⾏分离后利⽤1的代换,在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利⽤基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成⽴,所以的最⼩值为,故答案为.【点睛】本题主要考查⼆次函数的图象与性质,以及基本不等式的应⽤,属于中档题. 在利⽤基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满⾜基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另⼀边必须为定值)、“等”(等号取得的条件)的条件才能应⽤,否则会出现错误.10.【解析】【分析】因为,所以,=(当且仅当,即,时取等号),所以的最⼩值为,故答案为.【点睛】本题考查基本不等式及利⽤基本不等式求最值,将所求式运⽤“1”的变换,化为积为常数的形式是关键,属于中档题. 11.【解析】【分析】利⽤乘“1”法,借助基本不等式即可求出.【详解】正数x,y满⾜,则,,当且仅当时取等号,故的最⼩值是12,故答案为:12【点睛】本题考查了基本不等式及其应⽤属基础题.12.2【解析】【分析】利⽤“1”的代换,求得最值,再对直接利⽤基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满⾜,,,当且仅当,即,时,取等号,的最⼩值为2.故答案为:2.【点睛】本题考查基本不等式的应⽤,熟记不等式应⽤条件,多次运⽤基本不等式要注意“=”是否同时取到,是中档题【分析】由条件可得,即有,由基本不等式可得所求最⼩值.【详解】若,,,即,则,当且仅当取得最⼩值9,故答案为:9.【点睛】本题考查基本不等式的运⽤,注意运⽤“1”的代换,考查化简运算能⼒,属于基础题.【解析】【分析】由基本不等式,可得到,然后利⽤,可得到最⼩值,要注意等号取得的条件。

(完整版)均值不等式专题20道-带答案

(完整版)均值不等式专题20道-带答案

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。

均值不等式【高考题】

均值不等式【高考题】

利用一、求最值之杨若古兰创作直接求 例1、若x,y 是负数,则(x +1)2+(y +1)2的最小值是【】2y LXA.3B.7C .4D .922例2、设X ,”R ,a >1,b >1,若a x -b y -3,a +b =23,则1+1的最大值为【】xyA.2B.3C.1D.122练习1.若x >0,则x +2的最小值为.x练习2.设x ,y 为负数,则(x +y )(1+4)的最小值为【】xyA.6B.9C.12D 15练习3.若a >0,b >0,且函数f (x )-4x 3一ax 2-2bx +2在x -1处有极值,则ab 的最大值等于【】A.2B.3C.6D.9练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,贝1J x -吨. 练习5.求以下函数的值域:(a +b )2的最小值是【】cd A.0B.4C.2D.1 例3、已知a>0,b >0,c >0且a +b +c —1,则(1一1)(1一1)(1一1)最小值为【】abcA.5B.6C.7D.8凑系数例4、若x ,y e R +,且x +4y -1,则x .y 的最大值是. 练习1.已知x ,y E R +,且满足x +y =1,则孙的最大值为. 34练习2.当0<x <4时,求y -x (8-2x )的最大值.凑项例5、若函数f (x )-x +1(x >2)在x -a 处取最小值,则a -【】x -2⑴y-3x 2+2:2⑵ 练习6.已知x >0,y >0, 1 y -x + x x ,a ,b ,y 成等差数列,x , d ,y 成等比数列,则A-1+2B-1+3C-3D-4练习1.已知x <5,求函数尸4,一2+,的最大值.44%—5 练习2.函数,+%(%>3)的最小值为【】%—3A.2B.3C.4D.5练习3.函数2%2+3(%>0)的最小值为【】% A-艰BYCWD-微 两次用不等式例6、已知抽a +log b >1,贝I3a +9b 的最小值为 22例7、已知a >0,b >0,则1+1+2%a 的最小值是【】ab A-2B-2R C-4D-5例8、设a >b >c >0,则2a 2+L -10ac +25c 2的最小值是【aba (a -b ) A-2B-4C-2V 5D-5练习1.设a >b >0,A-1B-2C-3D-4 练习2.设a >b >0,则a 2+1的最小值是【】b (a —b )A-2B-3C-4D-5练习3.设a >b >0,则a +1的最小值是【】 十b (2a -b )A-33/2B-3<3C-232D-33/4222 练习4.设a >2b >0,则(a -b )2+9的最小值是-b (a-2b ) 换元例9、若%2+y 2二4,则%-y 的最大值是-练习1.设a ,b G R ,a 2+2b 2=6,则a +b 的最小值是【】 A--22B--52C--3D--732 例10、设%,y 是实数,且%2+y 2=4,则S =2%y 的最小值是【】%+y -2A --2B--、2C-2-2k D-2(<2+1)练习1.若%2+y2T 盯则最大值是%y —±,%+y -1 练习2.若0<a <1,0<%<y <1,且(log x )(log y )二1则冲【】aa 消元例11、设x ,y ,z 为正实数,满足%.2y +3z =0,则竺的最小值是. xz练习1.已知实数a ,b ,c 〉0满足a +b +c =9,ab +b c +ca=24,,则b 的取值范围为 两次用 11 a 2+—+j aba (a —b ) 的最小值是【例12、已知负数x,y,z满足x2+y2+z2=1,则S=上z的最小值是【】2xyzA.3B.3a+;")C.4D.2(v2+1)练习1.已知负数x,y,z满足x2+y2+z2=1,则S=上的最小值是【】2xyz2A.3B.9C.4D.2c2练习2.已知x,y,z均为负数,则盯+y z的最大值是【】x2+y2+z2A.q初C.2,/2D.2V3练习3.已知实数x,y,z满足x2+y2+z2=1,则尤xy+yz的最大值是全体代换例13、已知〃>0,b>0,a+b=2,贝y=1+4的最小值是【】abA.7B.4C.9D.5例14、函数y=a-(a>0,a01)的图象恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则I—+—的最小值为.mn例15、设a>0,b>0,若4万是3a与3b的等比中项,则1+1的最小值为abA.8B.4C.1D.14、例16、已知a,b,c都是正实数,且满足log(9a+b)=log abb,则使4a+b>c恒成93立的c的取值范围是A.[4,2)B.[0,22)C.[2,23)D.(0,25]练习1.函数klogG+3)」(〃>0且a=1)的图象恒过定点A,若点A在直线a mx+ny+1=0上,其中mn>0,则1+2的最小值为.mn练习2.若x,y e R+,且2x+y=1,则L1的最小值为.xy练习3.已知x>0,y>0,且1+9=1,求x+y的最小值.xy练习4.若x,y e R+且2x+y=1,求11的最小值.+xy练习5.已知a,b,x,y e R+且ab[,求x+y的最小值.+=1xy练习6.已知x>1,x>1,xx2=1000,则上+▲的最小值等于【I1212lg x lg x12A.4B,4<6C,7+2、落D.7—261-33练习7.若0<x<1,a,b为常数,则竺+上的最小值是x 1一x练习8.已知a >b >也,+'>与恒成立,则m 的取值范围是a -bb -ca 一c 练习9.a ,b e(0,+8),a +3b =1,则+_L 最小值为aa33b分离法【分式】例17、已知t >0,则函数y ='2一4t +1的最小值为.t例18、已知x >5,则f (x )=x 2一4x +5有【】 22x -4A.£大值58.最小值50最大值1口.最小值1 练习1.求y =x 2+7x +10(x >_1)的值域.x +1练习2.若x >1,则函数y =x +1+上的最小值为.'xx 2+1放缩法——解不等式例19、设x ,y 为实数,若4x 2+y 2+町=1,则2x +y 的最大值 是.例20已知2+1=2(x >0,y >0),则xy 的最小值是.xy 例21、若a 是1+2b 与1_2b 的等比中项,则2ab 的最大值为【】a +2bA.空B.,翔C.V5D.\;215丁"5"万 练习1.若实数x ,y 满足x 2+y 2+町=1,则x +y 的最大值是. 练习2.若正实数X ,Y 满足2X +Y +6=XY ,则XY 的最小值是 练习3.已知x >0,y >0,x +2y +2町=8,则X +2y 的最小值是【】A.3B.4C.£D.q练习4.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值.练习5:已知5+2=2(X >0,y >0)恒成立,则xy 的最小值是. Xy 练习6.若直角三角形周长为1,求它的面积最大值. 练习7.若实数X ,y 满足4X +4y =2X +1+2y +1则t=2X +2y 的取值范围是 取平方例22、若a ,b ,c >0且a 2+2ab +2ac +4bc =12,则a +b +c 的最小值是【】A.2x /3B .3C .2D .<3练习1.若a ,b ,c>0且a (a+b+c )+bc =4-2a ,则2a +b +c 的最小值为【】A -<3-1B .\;3+1C .2七3+2D.2,;3-2练习2.已知X ,y 为正实数,3X +2y =10,求函数w =3X +2y 的最值.取平方+解不等式 例23、已知a>0,b>0,c >0且a +b+c =1,则a 2+b 2+c 2最小值为【】A.1B.1C.1D.1结合2单3调性4——5与函数例24、若a ,b e R +,a +b=1,则ab+-1的最小值为【】abA.41B.41C.°1D,2 44224-练习1,求函数丫_%2+5的值域. y _E练习2.求以下函数的最小值,并求取得最小值时工的值. ⑴y _X 2+3X +1,(X >0)(2)y _2X +—,X >3X X -3(3)y _2sin X +—i —,X e (0,兀)sin X练习3.已知0<%<1,求函数y =\X E )的最大值. 练习4.0<X <2,求函数y _.X 2F 的最大值.3 练习5.设a ,b e R +且2a+b_1,S_2ab-4a 2-b 2的最大值是【】A.2-1B.2-1C.2+1D.2+122例25、已知0+b_1,则a 4+b 4的最小值是【】A.1B.£C.1D.1练习1.若实数a ,b ,c 满足2a +2b =2a +b ,2a +2b +2c =2a +b +c ,则c 的最大值是 用另一个公式例26、函数、3+4=7的最大值为.练习1.已知a ,b G R+,a 2+吃=1,,则a 、瓦的最大值是【】2 A.1B.1C.32D.三212例27、已知a 〉0,b >0,c >0且a+b+c =1,则工+_!+_!最小值为【】a 2b 2c 2A.12B.11C.21D.27直接取值【讨论】例28、a 2+b 2-1,b 2+c 2-2,c 2+a 2=2,则ab +bc +ca 的最小值【】A.右一1B.1_、,3C.-1_,运D.1+;32222利用二、恒成立成绩例1、若a ,b e R ,且ab>0,则以下不等式中,恒成立的是【】 A,a 2+b 2>2ab B-a +b>2、/abC 112ba 、C*-+->^=D--+->2ababbab 例2、设a ,b ,c 是互不相等的负数, A*|a -b 1<1a -c 1+1b -c I B,a 2+—>a +1a 2a0*I a -b I +>2D *a+3-a+1<a+2-aa -b例3、设a >0,b>0,则以下不等式中不恒成立的是【••••a 2+b 2+2>2a +2b *I a —b I >a —例4、已知不等式a+y )(i+a )>9对任意正实数羽》恒成立,则正实数a xy的最小值为【】 A.8B.6C.4D.2例5、若直线x +y =1通过点M (cos a ,sin 。

均值不等式练习题及答案解析

均值不等式练习题及答案解析

均值不等式练习题及答案解析一.均值不等式1.若a,b?R,则a2?b2?2ab 若a,b?R,则ab2. 若a,b?R*,则a?b2?*?a?b222a?b时取“=”)ab 若a,b?R,则a?b?22aba?b?若a,b?R,则ab??) ?? ?2a?b2注:当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.求最值的条件“一正,二定,三取等”均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域y=3x解:y=3x+11y=x+xx13x =∴值域为[,+∞)2x1x· =2; x1x· =-2x1≥22x1当x>0时,y=x+≥x11当x<0时, y=x+= -≤-2xx∴值域为解题技巧:技巧一:凑项例1:已知x?54,求函数y?4x?2?14x?5的最大值。

1解:因4x?5?0,所以首先要“调整”符号,又?x?54,?5?4x?0,?y?4x?2?14x?5不是常数,所以对4x?2要进行拆、凑项,???2?3?1 ??3?1????5?4x?4x?55?4x?当且仅当5?4x?15?4x,即x?1时,上式等号成立,故当x?1时,ymax?1。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求y?x的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2x??8为定值,故只需将y?x凑上一个系数即可。

当,即x=2时取等号当x=2时,y?x的最大值为8。

32评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设0?x?,求函数y?4x的最大值。

322x?3?2x?9解:∵0?x?∴3?2x?0∴y?4x?2?2x?2????222??当且仅当2x?3?2x,即x?3?3???0,?时等号成立。

完整版)均值不等式测试题(含详解)

完整版)均值不等式测试题(含详解)

完整版)均值不等式测试题(含详解)解析:将不等式化简为x2-x+1/4+1/4≥1,即(x-1/2)2≥3/4,当x≤1/2-√3/2或x≥1/2+√3/2时,不等式成立,选项B符合条件。

3.C解析:2x+8y=2(x+4y),由于x+3y-1=0,所以2x+8y=2(x+4y)=(x+3y-1)+5y+1≥2√15,故最小值为2√15,选项C符合条件。

4.B解析:根据柯西-施瓦茨不等式,有|(mx+ny)|≤√(m2+n2)(x2+y2),代入已知条件得到|(mx+ny)|≤√3,故mx+ny的最大值为3,选项B符合条件。

5.B解析:将选项B化简为(a-b)2(a2+b2+ab)≥0,显然成立,其他选项均不成立。

6.A解析:将选项A化简为(x+1/x+2)2≥4,即(x2+1+2x/x)2≥4,由于x>0,故(x2+1+2x/x)2≥(2(x2+1))/x≥4,故选项A成立。

7.A解析:将2a+b+c表示为a+(a+b+c),代入已知条件得到a(a+b+c)+bc=4-2(a+b+c),化简得到(a+b+c-2)2=4-23,故a+b+c的最小值为3-1,选项A符合条件。

填空题:8.最大值为2,当x=1时取得。

9.最小值为2,当x=2时取得。

10.最小值为2,当x=1时取得。

11.最大值为4,当x=2时取得。

解答题:12.由于点A在直线mx+ny+1=0上,所以loga(3)-1=-(mx+ny)/a,化简得到mx+ny=-a(loga(3)-1),代入mn>0得到a>1/3,且mn=a2>0,故m=n=a/√2,所以m+n=√2a,最小值为2√2.13.设购买次数为n,则每次购买x=400/n吨,总运费为4n万元,总存储费用为4x=1600/n万元,总花费为4n+1600/n,根据均值不等式,有4n+1600/n≥2√(4n×1600/n)=80,即n≥4,故购买次数至少为4,每次购买100吨。

经典均值不等式练习题

经典均值不等式练习题

均值不等式均值不等式又名基本不等式、均值定理、重要不等式。

是求范围问题最有利的工具之一,在形式上均值不等式比较简单,但是其变化多样、使用灵活。

尤其要注意它的使用条件(正、定、等)。

1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3. 均值不等式链:若b a 、都是正数,则2211222b a b a ab b a +≤+≤≤+,当且仅当b a =时等号成立。

(注:以上四个式子分别为:调和平均数、几何平均数、代数平均数、加权(平方)平均数)一、 基本技巧技巧1:凑项例 已知54x<,求函数14245y x x =-+-的最大值。

技巧2:分离配凑 例 求2710(1)1x x y x x ++=>-+的值域。

技巧3:利用函数单调性例 求函数2y =的值域。

技巧4:整体代换例 已知0,0x y >>,且191x y+=,求x y +的最小值。

典型例题1. 若正实数X ,Y 满足2X+Y+6=XY , 则XY 的最小值是2. 已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则()cdb a 2+的最小值是( )A.0B.1C.2D. 43. 若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为( )A.[)+∞,0B.[)+∞-,4C.[)+∞-,5D.[]4,4-4. 若直线2ax+by-2=0 (a,b ∈R +)平分圆x 2+y 2-2x-4y-6=0,则a 2+b1的最小值是( )A.1B.5C.42D.3+225. 已知x>0,y>0,x+2y+3xy=8,则x+2y 的最小值是 .6. 已知,x y R +∈,且满足134x y +=,则xy 的最大值为 .7. 设0,0.a b >>1133a b a b+与的等比中项,则的最小值为( ) A 8 B 4 C 1 D 14 8. 若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( ) A. 245 B. 285C.5D.6 9. 若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 (写出所有正确命题的编号).①1ab ≤; ②≤; ③ 222a b +≥; ④333a b +≥;⑤112a b+≥ 10.设0a >b >,则()211a ab a a b ++-的最小值是( ) (A )1 (B )2 (C )3 (D )411.下列命题中正确的是A 、1y xx=+的最小值是2 B 、2y =的最小值是2C 、423(0)y x x x =-->的最大值是2- D 、423(0)y x x x =-->的最小值是2-12. 若21x y +=,则24x y +的最小值是______。

均值不等式专题20道-带答案

均值不等式专题20道-带答案

均值不等式专题3学校:___________姓名:___________班级:___________考号:___________一、填空题1.若则的最小值是__________.2.若,且则的最大值为______________.3.已知,且,则的最小值为______.4.已知正数满足,则的最小值是_______.5.若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则+的最小值是______.6.设正实数满足,则的最小值为________7.已知,且,则的最小值是________8.已知正实数x,y满足,则的最小值是______9.已知,函数的值域为,则的最小值为________.10.已知,,且,则的最小值为__________.11.若正数x,y满足,则的最小值是______.12.已知正实数x,y满足,则的最小值为______.13.若,,,则的最小值为______.14.若,则的最小值为________.15.已知a,b都是正数,满足,则的最小值为______.16.已知,且,则的最小值为______.17.已知点在圆上运动,则的最小值为___________.18.若函数的单调递增区间为,则的最小值为____.19.已知正实数,满足,则的最大值为______.20.已知,,则的最小值为____.参考答案1.【解析】【分析】根据对数相等得到,利用基本不等式求解的最小值得到所求结果. 【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.2.【解析】【分析】先平方,再消元,最后利用基本不等式求最值.【详解】当时,,,所以最大值为1,当时,因为,当且仅当时取等号,所以,即最大值为,综上的最大值为【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属中档题.3.4.【解析】【分析】直接利用代数式的恒等变换和利用均值不等式的应用求出结果.【详解】∵,∴,∴,当且仅当,时取等号,故答案为:4.【点睛】本题考查的知识要点:代数式的恒等变换,均值不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.【解析】【分析】由题得,所以,再根据基本不等式即可求出答案.【详解】正数,满足,则,则,当且仅当时,即,时取等号,故答案为:.【点睛】本题考查了条件等式下利用基本不等式求最值,考查了变形的能力,考查了计算能力,属于中档题.5.4【解析】【分析】由题意可得经过圆心,可得,再+利用基本不等式求得它的最小值.【详解】圆,即,表示以为圆心、半径等于2的圆.再根据弦长为4,可得经过圆心,故有,求得,则,当且仅当时,取等号,故则的最小值为4,故答案为:4【点睛】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.6.8【解析】【分析】根据基本不等式求最小值.【详解】令,则当且仅当时取等号.即的最小值为8.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.7.【解析】【分析】根据基本不等式求最小值.【详解】因为,当且仅当时取等号,所以的最小值是【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.【解析】【分析】由已知分离,然后进行1的代换后利用基本不等式即可求解.【详解】正实数x,y满足,则当且仅当且即,时取得最小值是故答案为:【点睛】本题主要考查了利用基本不等式求解最值,解题的关键是进行分离后利用1的代换,在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.【解析】【分析】由函数的值域为,可得,化为,利用基本不等式可得结果.【详解】的值域为,,,,,当,即是等号成立,所以的最小值为,故答案为.【点睛】本题主要考查二次函数的图象与性质,以及基本不等式的应用,属于中档题. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.10.【解析】【分析】由已知将化为一次式,运用“1”的变换,再利用基本不等式可得.【详解】因为,所以,=(当且仅当,即,时取等号),所以的最小值为,故答案为.【点睛】本题考查基本不等式及利用基本不等式求最值,将所求式运用“1”的变换,化为积为常数的形式是关键,属于中档题.11.【解析】【分析】利用乘“1”法,借助基本不等式即可求出.【详解】正数x,y满足,则,,当且仅当时取等号,故的最小值是12,故答案为:12【点睛】本题考查了基本不等式及其应用属基础题.12.2【解析】【分析】利用“1”的代换,求得最值,再对直接利用基本不等式求得最值,再结合题意求解即可【详解】正实数x,y满足,,,当且仅当,即,时,取等号,的最小值为2.故答案为:2.【点睛】本题考查基本不等式的应用,熟记不等式应用条件,多次运用基本不等式要注意“=”是否同时取到,是中档题13.9【解析】【分析】由条件可得,即有,由基本不等式可得所求最小值.【详解】若,,,即,则,当且仅当取得最小值9,故答案为:9.【点睛】本题考查基本不等式的运用,注意运用“1”的代换,考查化简运算能力,属于基础题.14.【解析】【分析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考均值不等式经典例题
1.已知正数,,a b c 满足2
15b ab bc ca +++=,则58310a b c +++的最小值为 。

2.设M 是ABC V
内一点,且30AB AC A =∠=︒u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是
,,MBC MCA MAB V V V 的面积,若1()(,,)2
f M x y =,则14x y +的最小值为 . 3.已知实数1,12
m n >>,则224211n m m n +--的最小值为 。

4.设22110,21025()
a b c a ac c ab a a b >>>++-+-的最小值为 。

5.设,,a b c R ∈,且222
,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。

6.已知ABC V 中,142,
10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。

7.已知112,,339
a b ab ≥≥=,则a b +的最大值为 。

8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。

9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。

10.
函数()f x =的最小值为 。

11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。

12.若*3()k k N ≥∈,则(1)log k k
+与(1)log k k -的大小: 。

13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。

14.若平面向量,a b r r 满足23a b -≤r r ,则a b ⋅r r 的最小值为 。

15.
的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。

16.设{}n a 是等比数列,
公比q =n S 为{}n a 的前n 项和,记*21
17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

相关文档
最新文档