(推荐)3D打印外文文献翻译最新译文

合集下载

英文文献翻译

英文文献翻译

外文文献原稿和译文原稿Sodium Polyacrylate:Also known as super-absorbent or “SAP”(super absorbent polymer), Kimberly Clark used to call it SAM (super absorbent material). It is typically used in fine granular form (like table salt). It helps improve capacity for better retention in a disposable diaper, allowing the product to be thinner with improved performance and less usage of pine fluff pulp. The molecular structure of the polyacrylate has sodium carboxylate groups hanging off the main chain. When it comes in contact with water, the sodium detaches itself, leaving only carboxylions. Being negatively charged, these ions repel one another so that the polymer also has cross-links, which effectively leads to a three-dimensional structure. It has hige molecular weight of more than a million; thus, instead of getting dissolved, it solidifies into a gel. The Hydrogen in the water (H-O-H) is trapped by the acrylate due to the atomic bonds associated with the polarity forces between the atoms. Electrolytes in the liquid, such as salt minerals (urine contains 0.9% of minerals), reduce polarity, thereby affecting superabsorbent properties, especially with regard to the superabsorbent capacity for liquid retention. This is the main reason why diapers containing SAP should never be tested with plain water. Linear molecular configurations have less total capacity than non-linear molecules but, on the other hand, retention of liquid in a linear molecule is higher than in a non-linear molecule, due to improved polarity. For a list of SAP suppliers, please use this link: SAP, the superabsorbent can be designed to absorb higher amounts of liquids (with less retention) or very high retentions (but lower capacity). In addition, a surface cross linker can be added to the superabsorbent particle to help it move liquids while it is saturated. This helps avoid formation of "gel blocks", the phenomenon that describes the impossibility of moving liquids once a SAP particle gets saturated.History of Super Absorbent Polymer ChemistryUn til the 1980’s, water absorbing materials were cellulosic or fiber-based products. Choices were tissue paper, cotton, sponge, and fluff pulp. The water retention capacity of these types of materials is only 20 times their weight – at most.In the early 1960s, the United States Department of Agriculture (USDA) was conducting work on materials to improve water conservation in soils. They developed a resin based on the grafting of acrylonitrile polymer onto the backbone of starch molecules (i.e. starch-grafting). The hydrolyzed product of the hydrolysis of this starch-acrylonitrile co-polymer gave water absorption greater than 400 times its weight. Also, the gel did not release liquid water the way that fiber-based absorbents do.The polymer came to be known as “Super Slurper”.The USDA gave the technical know how several USA companies for further development of the basic technology. A wide range of grating combinations were attempted including work with acrylic acid, acrylamide and polyvinyl alcohol (PVA).Since Japanese companies were excluded by the USDA, they started independent research using starch, carboxy methyl cellulose (CMC), acrylic acid, polyvinyl alcohol (PVA) and isobutylene maleic anhydride (IMA).Early global participants in the development of super absorbent chemistry included Dow Chemical, Hercules, General Mills Chemical, DuPont, National Starch & Chemical, Enka (Akzo), Sanyo Chemical, Sumitomo Chemical, Kao, Nihon Starch and Japan Exlan.In the early 1970s, super absorbent polymer was used commercially for the first time –not for soil amendment applications as originally intended –but for disposable hygienic products. The first product markets were feminine sanitary napkins and adult incontinence products.In 1978, Park Davis (d.b.a. Professional Medical Products) used super absorbent polymers in sanitary napkins.Super absorbent polymer was first used in Europe in a baby diaper in 1982 when Schickendanz and Beghin-Say added the material to the absorbent core. Shortly thereafter, UniCharm introduced super absorbent baby diapers in Japan while Proctor & Gamble and Kimberly-Clark in the USA began to use the material.The development of super absorbent technology and performance has been largely led by demands in the disposable hygiene segment. Strides in absorption performance have allowed the development of the ultra-thin baby diaper which uses a fraction of the materials – particularly fluff pulp – which earlier disposable diapers consumed.Over the years, technology has progressed so that there is little if any starch-grafted super absorbent polymer used in disposable hygienic products. These super absorbents typically are cross-linked acrylic homo-polymers (usually Sodium neutralized).Super absorbents used in soil amendments applications tend to be cross-linked acrylic-acrylamide co-polymers (usually Potassium neutralized).Besides granular super absorbent polymers, ARCO Chemical developed a super absorbent fiber technology in the early 1990s. This technology was eventually sold to Camelot Absorbents. There are super absorbent fibers commercially available today. While significantly more expensive than the granular polymers, the super absorbent fibers offer technical advantages in certain niche markets including cable wrap, medical devices and food packaging.Sodium polyacrylate, also known as waterlock, is a polymer with the chemical formula [-CH2-CH(COONa)-]n widely used in consumer products. It has the ability to absorb as much as 200 to 300 times its mass in water. Acrylate polymers generally are considered to possess an anionic charge. While sodium neutralized polyacrylates are the most common form used in industry, there are also other salts available including potassium, lithium and ammonium.ApplicationsAcrylates and acrylic chemistry have a wide variety of industrial uses that include: ∙Sequestering agents in detergents. (By binding hard water elements such as calcium and magnesium, the surfactants in detergents work more efficiently.) ∙Thickening agents∙Coatings∙Fake snowSuper absorbent polymers. These cross-linked acrylic polymers are referred to as "Super Absorbents" and "Water Crystals", and are used in baby diapers. Copolymerversions are used in agriculture and other specialty absorbent applications. The origins of super absorbent polymer chemistry trace back to the early 1960s when the U.S. Department of Agriculture developed the first super absorbent polymer materials. This chemical is featured in the Maximum Absorbency Garment used by NASA.译文聚丙烯酸钠聚丙烯酸钠,又可以称为超级吸收剂或者又叫高吸水性树脂,凯博利克拉克教授曾经称它为SAM即:超级吸收性物质。

外文文献及翻译

外文文献及翻译

外文文献原稿和译文原稿DATABASEA database may be defined as a collection interrelated data store together with as little redundancy as possible to serve one or more applications in an optimal fashion .the data are stored so that they are independent of programs which use the data .A common and controlled approach is used in adding new data and in modifying and retrieving existing data within the data base .One system is said to contain a collection of database if they are entirely separate in structure .A database may be designed for batch processing , real-time processing ,or in-line processing .A data base system involves application program, DBMS, and database.THE INTRODUCTION TO DATABASE MANAGEMENT SYSTEMSThe term database is often to describe a collection of related files that is organized into an integrated structure that provides different people varied access to the same data. In many cases this resource is located in different files in different departments throughout the organization, often known only to the individuals who work with their specific portion of the total information. In these cases, the potential value of the information goes unrealized because a person in other departments who may need it does not know it or it cannot be accessed efficiently. In an attempt to organize their information resources and provide for timely and efficient access, many companies have implemented databases.A database is a collection of related data. By data, we mean known facts that can be recorded and that have implicit meaning. For example, the names, telephone numbers, and addresses of all the people you know. You may have recorded this data in an indexed address book, or you may have stored it on a diskette using a personalcomputer and software such as DBASE Ⅲor Lotus 1-2-3. This is a collection of related data with an implicit meaning and hence is a database.The above definition of database is quite general. For example, we may consider the collection of words that made up this page of text to be usually more restricted. A database has the following implicit properties:● A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot be referred to as a database.● A database is designed, built, and populated with data for a specific purpose. It has an intended group of user and some preconceived applications in which these users are interested.● A database represents some aspect of the real world, sometimes called the miniworld. Changes to the miniworld are reflected in the database.In other words, a database has some source from which data are derived, some degree of interaction with events in the real world, and an audience that is actively interested in the contents of the database.A database management system (DBMS) is composed of three major parts: (1) a storage subsystem that stores and retrieves data in files; (2)a modeling and manipulation subsystem that provides the means with which to organize the data and to add, delete, maintain, and update the data; and (3) an interface between the DBMS and its users. Several major trends are emerging that enhance the value and usefulness of database management systems.●Managers who require more up-to-date information to make effective decisions.●Customers who demand increasingly sophisticated information services and more current information about the status of their orders, invoices, and accounts.●Users who find that they can develop custom applications with database systems in a fraction of the time it takes to use traditional programming languages.●Organizations that discover information has a strategic value; they utilize their database systems to gain an edge over their competitors.A DBMS can organize, process, and present selected data elements from the database. This capability enables decision makers to search, probe, and query database contents in order to extract answers to nonrecurring and unplanned questions that aren’t available in regular reports. These questions might initially be vague and/or p oorly defined, but people can “browse” through the database until they have the needed information. In short, the DBMS will “mange” the stored data items and assemble the needed items from the common database in response to the queries of those who aren’t programmers. In a file-oriented system, user needing special information may communicate their needs to a programmer, who, when time permits, will write one or more programs to extract the data and prepare the information. The availability of a DBMS, however, offers users a much faster alternative communications path.DATABASE QUERYIf the DBMS provides a way to interactively enter and update the database ,as well as interrogate it ,this capability allows for managing personal database. However, it does not automatically leave an audit trail of actions and does not provide the kinds of controls necessary in a multi-user organization .There controls are only available when a set of application programs is customized for each data entry and updating function.Software for personal computers that perform some of the DBMS functions has been very popular .Individuals for personal information storage and processing intended personal computers for us .Small enterprises, professionals like doctors, architects, engineers, lawyers and so on have also used these machines extensively. By the nature of intended usage ,database system on there machines are except from several of the requirements of full-fledged database systems. Since data sharing is not intended, concurrent operations even less so ,the software can be less complex .Security and integrity maintenance are de-emphasized or absent .as data volumes will be small, performance efficiency is also less important .In fact, the only aspect of a database system that is important is data independence. Data independence ,as stated earlier ,means that application programs and user queries need not recognize physical organization of data on secondary storage. The importance of this aspect , particularly for the personal computer user ,is that this greatly simplifies database usage . The user can store ,access and manipulate data at ahigh level (close to the application)and be totally shielded from the low level (close to the machine )details of data organization.DBMS STRUCTURING TECHNIQUESSpatial data management has been an active area of research in the database field for two decades ,with much of the research being focused on developing data structures for storing and indexing spatial data .however, no commercial database system provides facilities for directly de fining and storing spatial data ,and formulating queries based on research conditions on spatial data.There are two components to data management: history data management and version management .Both have been the subjects of research for over a decade. The troublesome aspect of temporal data management is that the boundary between applications and database systems has not been clearly drawn. Specifically, it is not clear how much of the typical semantics and facilities of temporal data management can and should be directly incorporated in a database system, and how much should be left to applications and users. In this section, we will provide a list of short-term research issues that should be examined to shed light on this fundamental question.The focus of research into history data management has been on defining the semantics of time and time interval, and issues related to understanding the semantics of queries and updates against history data stored in an attribute of a record. Typically, in the context of relational databases ,a temporal attribute is defined to hold a sequence of history data for the attribute. A history data consists of a data item and a time interval for which the data item is valid. A query may then be issued to retrieve history data for a specified time interval for the temporal attribute. The mechanism for supporting temporal attributes is to that for supporting set-valued attributes in a database system, such as UniSQL.In the absence of a support for temporal attributes, application developers who need to model and history data have simply simulated temporal attributes by creating attribute for the time interval ,along with the “temporal” attribute. This of course may result in duplication of records in a table, and more complicated search predicates in queries. The one necessary topic of research in history data management is to quantitatively establish the performance (and even productivity) differences betweenusing a database system that directly supports attributes and using a conventional database system that does not support either the set-valued attributes or temporal attributes.Data security, integrity, and independenceData security prevents unauthorized users from viewing or updating the database. Using passwords, users are allowed access to the entire database of the database, called subschemas. For example, an employee database can contain all the data about an individual employee, but one group of users may be authorized to view only payroll data, while others are allowed access to only work history and medical data.Data integrity refers to the accuracy, correctness, or validity of the data in the database. In a database system, data integrity means safeguarding the data against invalid alteration or destruction. In large on-line database system, data integrity becomes a more severe problem and two additional complications arise. The first has to do with many users accessing the database concurrently. For example, if thousands of travel agents book the same seat on the same flight, the first agent’s booking will be lost. In such cases the technique of locking the record or field provides the means for preventing one user from accessing a record while another user is updating the same record.The second complication relates to hardware, software or human error during the course of processing and involves database transaction which is a group of database modifications treated as a single unit. For example, an agent booking an airline reservation involves several database updates (i.e., adding the passenger’s name and address and updating the seats-available field), which comprise a single transaction. The database transaction is not considered to be completed until all updates have been completed; otherwise, none of the updates will be allowed to take place.An important point about database systems is that the database should exist independently of any of the specific applications. Traditional data processing applications are data dependent.When a DMBS is used, the detailed knowledge of the physical organization of the data does not have to be built into every application program. The application program asks the DBMS for data by field name, for example, a coded representationof “give me customer name and balance due” would be sent to the DBMS. Without a DBMS the programmer must reserve space for the full structure of the record in the program. Any change in data structure requires changes in all the applications programs.Data Base Management System (DBMS)The system software package that handles the difficult tasks associated with creating ,accessing and maintaining data base records is called a data base management system (DBMS). A DBMS will usually be handing multiple data calls concurrently.It must organize its system buffers so that different data operations can be in process together .It provides a data definition language to specify the conceptual schema and most likely ,some of the details regarding the implementation of the conceptual schema by the physical schema.The data definition language is a high-level language, enabling one to describe the conceptual schema in terms of a “data model “.At the present time ,there are four underling structures for database management systems. They are :List structures.Relational structures.Hierarchical (tree) structures.Network structures.Management Information System(MIS)An MIS can be defined as a network of computer-based data processing procedures developed in an organization and integrated as necessary with manual and other procedures for the purpose of providing timely and effective information to support decision making and other necessary management functions.One of the most difficult tasks of the MIS designer is to develop the information flow needed to support decision making .Generally speaking ,much of the information needed by managers who occupy different levels and who have different levels and have different responsibilities is obtained from a collection of exiting information system (or subsystems)Structure Query Language (SQL)SQL is a data base processing language endorsed by the American NationalStandards Institute. It is rapidly becoming the standard query language for accessing data on relational databases .With its simple ,powerful syntax ,SQL represents a great progress in database access for all levels of management and computing professionals.SQL falls into two forms : interactive SQL and embedded SQL. Embedded SQL usage is near to traditional programming in third generation languages .It is the interactive use of SQL that makes it most applicable for the rapid answering of ad hoc queries .With an interactive SQL query you just type in a few lines of SQL and you get the database response immediately on the screen.译文数据库数据库可以被定义为一个相互联系的数据库存储的集合。

(完整版)外文翻译

(完整版)外文翻译

外文文献原稿和译文原稿logistics distribution center location factors:(1) the goods distribution and quantity. This is the distribution center and distribution of the object, such as goods source and the future of distribution, history and current and future forecast and development, etc. Distribution center should as far as possible and producer form in the area and distribution short optimization. The quantity of goods is along with the growth of the size distribution and constant growth. Goods higher growth rate, the more demand distribution center location is reasonable and reducing conveying process unnecessary waste.(2) transportation conditions. The location of logistics distribution center should be close to the transportation hub, and to form the logistics distribution center in the process of a proper nodes. In the conditional, distribution center should be as close to the railway station, port and highway.(3) land conditions. Logistics distribution center covers an area of land in increasingly expensive problem today is more and more important. Is the use of the existing land or land again? Land price? Whether to conform to the requirements of the plan for the government, and so on, in the construction distribution center have considered.(4) commodities flow. Enterprise production of consumer goods as the population shift and change, should according to enterprise's better distribution system positioning. Meanwhile, industrial products market will transfer change, in order to determine the raw materials and semi-finished products of commodities such as change of flow in the location of logistics distribution center should be considered when the flow of the specific conditions of the relevant goods.(5) other factors. Such as labor, transportation and service convenience degree, investment restrictions, etc.How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center.At present,most of the research on logistics cost concentrates off theoretical analysis of direct factors of logistics cost, and solves the problem of over-high logistics Cost mainly by direct channel solution.This research stresses on the view of how to loeate distribution center, analyzes the influence of locating distribution center on logistics cost.and finds one kind of simple and easy location method by carrying on the location analysis of distribution center through computer modeling and the application of Exeel.So the location of agricultural product logistics distribution center can be achieved scientifically and reasonably, which will attain the goal of reducing logistics cost, and have a decision.making support function to the logisties facilities and planning of agricultural product.The agricultural product logistics distribution center deals with dozens and even hundreds of clients every day, and transactions are made in high-frequency. If the distribution center is far away from other distribution points,the moving and transporting of materials and the collecting of operational data is inconvenient and costly. costly.The modernization of agricultural product logistics s distribution center is a complex engineering system,not only involves logistics technology, information technology, but also logistics management ideas and its methods,in particular the specifying of strategic location and business model is essential for the constructing of distribution center. How to reduce logistics cost,enhance the adaptive capacity and strain capacity of distribution center is a key research question of agricultural product logistics distribution center. The so—called logistics costs refers to the expenditure summation of manpower, material and financial resources in the moving process of the goods.such as loading and unloading,conveying,transport,storage,circulating,processing, information processing and other segments. In a word。

外文文献翻译(英文+中文对照)

外文文献翻译(英文+中文对照)

外文文献翻译 例如例如::下面是一个样板下面是一个样板,,如需要更多的机械相关专业的外文文献可以联系QQ: 763077177 (非诚勿扰) Coating thickness effects on diamond coated cutting tools F. Qin, Y.K. Chou,D. Nolen and R.G. ThompsonAvailable online 12 June 2009. Abstract :Chemical vapor deposition (CVD)-grown diamond films have found applications as a hard coating for cutting tools. Even though the use of conventional diamond coatings seems to be accepted in the cutting tool industry, selections of proper coating thickness for different machining operations have not been often studied. Coating thickness affects the characteristics of diamond coated cutting tools in different perspectives that may mutually impact the tool performance in machining in a complex way.In this study, coating thickness effects on the deposition residual stresses, particularly around a cutting edge, and on coating failure modes were numerically investigated. On the other hand, coating thickness effects on tool surface smoothness and cutting edge radii were experimentally investigated. In addition, machining Al matrix composites using diamond coated tools with varied coating thicknesses was conducted to evaluate the effects on cutting forces, part surface finish and tool wear.The results are summarized as follows. Increasing coating thickness will increase the residual stresses at the coating–substrate interface. On the other hand, increasing coating thickness will generally increase the resistance of coating cracking and delamination. Thicker coatings will result in larger edge radii; however, the extent of the effect on cutting forces also depends upon the machining condition. For the thickness range tested, the life of diamond coated tools increases with the coating thickness because of delay of delaminations. Keywords: Coating thickness; Diamond coating; Finite element; Machining; Tool wear1. IntroductionDiamond coatings produced by chemical vapor deposition (CVD) technologies have been increasingly explored for cutting tool applications. Diamond coated tools have great potential in various machining applications and an advantage in fabrications of cutting tools with complex geometry such as drills. Increased usages of lightweight high-strength components have also resulted in significant interests in diamond coating tools. Hot-filament CVD is one of common processes of diamond coatings and diamond films as thick as 50 µm have been deposited on various materials including cobalt-cemented tungsten carbide (WC-Co) . There have also been different CVD technologies, e.g., microwave plasma assisted CVD , developed to enhance the deposition process as well as the film quality too. However, despite the superior tribological and mechanical properties, the practical applications of diamond coated tools are still limited.Coating thickness is one of the most important attributes to the coating system performance. Coating thickness effects on tribological performance have been widely studied. In general, thicker coatings exhibited better scratch/wear resistance performance than thinner ones due to their better load-carrying capacity. However, there are also reports that claim otherwise and . For example, Dorner et al. discovered, that the thickness of diamond-like-coating (DLC), in a range of 0.7–3.5 µm, does not influence the wear resistance of the DLC–Ti6Al4V . For cutting tool applications, however, coating thickness may have a more complicated role since its effects may be augmented around the cutting edge. Coating thickness effects on diamond coated tools are not frequently reported. Kanda et al. conducted cutting tests using diamond-coated tooling . The author claimed that the increased film thickness is generally favorable to tool life. However, thicker films will result in the decrease in the transverse rupture strength that greatly impacts the performance in high speed or interrupted machining. In addition, higher cutting forces were observed for the tools with increased diamond coating thickness due to the increased cutting edge radius. Quadrini et al. studied diamond coated small mills for dental applications . The authors tested different coating thickness and noted that thick coatings induce high cutting forces due to increased coating surface roughness and enlarged edge rounding. Such effects may contribute to the tool failure in milling ceramic materials. The authors further indicated tools with thin coatings results in optimal cutting of polymer matrix composite . Further, Torres et al. studied diamondcoated micro-endmills with two levels of coating thickness . The authors also indicated that the thinner coating can further reduce cutting forces which are attributed to the decrease in the frictional force and adhesion.Coating thickness effects of different coating-material tools have also been studied. For single layer systems, an optimal coating thickness may exist for machining performance. For example, Tuffy et al. reported that an optimal coating thickness of TiN by PVD technology exists for specific machining conditions . Based on testing results, for a range from 1.75 to 7.5 µm TiN coating, thickness of 3.5 µm exhibit the best turning performance. In a separate study, Malik et al. also suggested that there is an optimal thickness of TiN coating on HSS cutting tools when machining free cutting steels . However, for multilayer coating systems, no such an optimum coating thickness exists for machining performance .The objective of this study was to experimentally investigate coating thickness effects of diamond coated tools on machining performance — tool wear and cutting forces. Diamond coated tools were fabricated, by microwave plasma assisted CVD, with different coating thicknesses. The diamond coated tools were examined in morphology and edge radii by white-light interferometry. The diamond coated tools were then evaluated by machining aluminum matrix composite in dry. In addition, deposition thermal residual stresses and critical load for coating failures that affect the performance of diamond coated tools were analytically examined.2. Experimental investigationThe substrates used for diamond coating experiments, square-shaped inserts (SPG422), were fine-grain WC with 6 wt.% cobalt. The edge radius and surface textures of cutting inserts prior to coating was measured by a white-light interferometer, NT1100 from Veeco Metrology.Prior to the deposition, chemical etching treatment was conducted on inserts to remove the surface cobalt and roughen substrate surface. Moreover, all tool inserts were ultrasonically vibrated in diamond/water slurry to increase the nucleation density. For the coating process, diamond films were deposited using a high-power microwave plasma-assisted CVD process.A gas mixture of methane in hydrogen, 750–1000 sccm with 4.4–7.3% of methane/hydrogen ratio, was used as the feedstock gas. Nitrogen gas, 2.75–5.5 sccm, was inserted to obtain nanostructures by preventing columnar growth. The pressure was about 30–55 Torr and the substrate temperature was about 685–830 °C. A forward power of 4.5–5.0 kW with a low deposition rate obtained a thin coating; a greater forward power of 8.0–8.5 kW with a highdeposition rate obtained thick coatings, two thicknesses by varying deposition time. The coated inserts were further inspected by the interferometer.A computer numerical control lathe, Hardinge Cobra 42, was used to perform machining experiments, outer diameter turning, to evaluate the tool wear of diamond coated tools. With the tool holder used, the diamond coated cutting inserts formed a 0° rake angle, 11° relief angle, and 75° lead angle. The workpieces were round bars made of A359/SiC-20p composite. The machining conditions used were 4 m/s cutting speed, 0.15 mm/rev feed, 1 mm depth of cut and no coolant was applied. The selection of machining parameters was based upon previous experiences. For each coating thickness, two tests were repeated. During machining testing, the cutting inserts were periodically inspected by optical microscopy to measure the flank wear-land size. Worn tools after testing were also examined by scanning electron microscopy (SEM). In addition, cutting forces were monitored during machining using a Kistler dynamometer.5. ConclusionsIn this study, the coating thickness effects on diamond coated cutting tools were studied from different perspectives. Deposition residual stresses in the tool due to thermal mismatch were investigated by FE simulations and coating thickness effects on the interface stresses were quantified. In addition, indentation simulations of a diamond coated WC substrate with the interface modeled by the cohesive zone were applied to analyze the coating system failures. Moreover, diamond coated tools with different thicknesses were fabricated and experimentally investigated on surface morphology, edge rounding, as well as tool wear and cutting forces in machining. The major results are summarized as follows.(1) Increase of coating thickness significantly increases the interface residual stresses, though little change in bulk surface stresses.(2) For thick coatings, the critical load for coating failure decreases with increasing coating thickness. However, such a trend is opposite for thin coatings, for which radial cracking is the coating failure mode. Moreover, thicker coatings have greater delamination resistance.(3) In addition, increasing the coating thickness will increase the edge radius. However, for the coating thickness range studied, 4–29 µm, and with the large feed used, cutting forces were affected only marginally.(4) Despite of greater interface residual stresses, increasing the diamond coating thickness, for the range studied, seem to increase tool life by delay of coating delaminations.AcknowledgementsThis research is supported by National Science Foundation, Grant No.: CMMI 0728228. P. Lu provided assistance in some analyses.金刚石涂层刀具的涂层厚度的影响作者:F. Qin, Y.K. Chou,D. Nolen and R.G. Thompson发表日期:2009摘要:化学气相沉积法(CVD),金刚石薄膜的发现,作为涂层刀具的应用。

3D打印机外文文献翻译、中英文翻译、机械类外文翻译

3D打印机外文文献翻译、中英文翻译、机械类外文翻译

3D打印机3D打印技术(英语:3Dprinting),即快速成形技术的一种,它是一种数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。

过去其常在模具制造、工业设计等领域被用于制造模型,现正逐渐用于一些产品的直接制造。

特别是一些高价值应用(比如髋关节或牙齿,或一些飞机零部件)已经有使用这种技术打印而成的零部件。

“3D打印技术”意味着这项技术的普及。

3D打印技术出现在上世纪90年代中期,实际上是利用光固化和纸层叠等技术的快速成型装置。

它与普通打印机工作原理基本相同,打印机内装有液体或粉末等“印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。

这一技术如今在多个领域得到应用,人们用它来制造服装、建筑模型、汽车、巧克力甜品等。

3D打印技术最突出的优点是无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。

近年来,3D打印技术发展迅速,在各领域都取得了长足发展,已成为现代模型、模具和零部件制造的有效手段,在航空航天、汽车摩托车、家电、生物医学等领域得到了一定应用,在工程和教学研究等领域也占有独特地位。

具体应用领域包括:1、机械制造:3D打印技术制造飞机零件、自行车、步枪、赛车零件等。

2、医疗行业:在医学领域,借助3D打印制作假牙,股骨头、膝盖等骨关节技术应用也非常广,技术越来越成熟。

3、建筑行业:工程师和设计师们已经接受了用3D打印机打印的建筑模型,这种方法快速、成本低、环保,同时制作精美,完全合乎设计者的要求,同时又能节省大量材料。

4、汽车制造行业:用3D打印技术为汽车公司制造自动变速箱的壳体。

汽车公司会对变速箱进行各种极端状况下的测试,其中一些零件就是用3D打印方法做的。

定型了以后,再开模具,然后按照传统制造方法批量生产,这样成本就会大大降低。

5、教育:可应用于模型验证科学假设,用于不同学科实验、教学。

英文论文(外文文献)翻译成中文的格式与方法

英文论文(外文文献)翻译成中文的格式与方法

英文论文(外文文献)翻译成中文的格式与方法英文论文(外文文献)翻译成中文的格式与方法本文关键词:外文,英文,中文,翻译成,文献英文论文(外文文献)翻译成中文的格式与方法本文简介:在撰写毕业设计(论文)或科研论文时,需要参考一些相关外文文献,了解国外的最新研究进展,这就需要我们找到最新最具代表性的外文文献,进行翻译整理,以备论文写作时参考,外文文献中英文文献占绝大多数,因此英文论文准确的翻译成中文就显得尤为重要!一、外文文献从哪里下载1、从知网国际文献总库中找英文论文(外文文献)翻译成中文的格式与方法本文内容:在撰写毕业设计(论文)或科研论文时,需要参考一些相关外文文献,了解国外的最新研究进展,这就需要我们找到最新最具代表性的外文文献,进行翻译整理,以备论文写作时参考,外文文献中英文文献占绝大多数,因此英文论文准确的翻译成中文就显得尤为重要!一、外文文献从哪里下载1、从知网国际文献总库中找,该数据库中包含14,000多家国外出版社的文献,囊括所有专业的英文文献资料。

2、一些免费的外文数据库或网站,为了方便大家查找,编者整理成文档供大家下载:国外免费文献数据库大全下载3、谷歌学术检索工具,检索时设置成只检索英文文献,键入与专业相关的关键词即可检索。

二、英文论文翻译格式与要求翻译的外文文献的字符要求不少于1.5万(或翻译成中文后至少在3000字以上)。

字数达到的文献一篇即可。

翻译的外文文献应主要选自学术期刊、学术会议的文章、有关着作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献。

并在每篇中文译文首页用"脚注"形式注明原文作者及出处,中文译文后应附外文原文。

需认真研读和查阅术语完成翻译,不得采用翻译软件翻译。

中文译文的编排结构与原文同,撰写格式参照毕业论文的格式要求。

参考文献不必翻译,直接使用原文的(字体,字号,标点符号等与毕业论文中的参考文献要求同),参考文献的序号应标注在译文中相应的地方。

外文文献翻译译稿和原文【范本模板】

外文文献翻译译稿和原文【范本模板】

外文文献翻译译稿1卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。

在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。

同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。

例如,对于雷达来说,人们感兴趣的是其能够跟踪目标.但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。

卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计.这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑).命名[编辑]这种滤波方法以它的发明者鲁道夫。

E。

卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法。

斯坦利。

施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。

关于这种滤波器的论文由Swerling(1958)、Kalman (1960)与Kalman and Bucy(1961)发表。

目前,卡尔曼滤波已经有很多不同的实现.卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。

除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton开发的平方根滤波器的变种.也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

以下的讨论需要线性代数以及概率论的一般知识。

卡尔曼滤波建立在线性代数和隐马尔可夫模型(hidden Markov model)上.其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。

系统的状态可以用一个元素为实数的向量表示.随着离散时间的每一个增加,这个线性算子就会作用在当前状态上,产生一个新的状态,并也会带入一些噪声,同时系统的一些已知的控制器的控制信息也会被加入。

3D打印外文文献翻译最新译文

3D打印外文文献翻译最新译文

3D打印外文文献翻译最新译文3D XXX years。

especially in the field of industrial product design。

The manufacturing of digital product models through 3D printing has e a trend and a hot topic。

With the gradual maturity of -level 3D printing devices。

the rise of the global 3D printing market has been promoted。

According to a research report by Global Industry Analysis Inc。

the global 3D printing market XXX n by 2018.2 The ns of 3D printingThe ns of 3D XXX。

In the medical field。

3D printing has been used to create prosthetics。

implants。

XXX industry。

3D printing has been used to create XXX industry。

3D printing has been used to create unique and XXX possibilities of 3D printing seem endless。

and it is expected to XXX industries.3 The future of 3D printingThe future of 3D printing is promising。

with the potential to transform the way we XXX 3D XXX advance。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献出处: Paul G. 3D printing technology and its application [J]. Anatomical sciences education, 2015, 10(3): 430-450.原文3D printing technology and its applicationPaul GAbstract3D printing technology in the industrial product design, especially the application of digital product model manufacturing is becoming a trend and hot topic. Desktop level gradually mature and application of 3D printing devices began to promote the rise of the Global 3D printing market, Global industrial Analysis company (Global Industry Analysis Inc) research report predicts Global 3D printing market in 2018 will be $2.99 billion.Keywords: 3D printing; Application; Trend1 3D printing and 3D printers3D printing and 3D printing are two entirely different concepts.3D printing is separated into different angles the picture of the red, blue two images, then the two images according to the regulation of parallax distance overprint together, using special glasses to create the 3D visual effect, or after special treatment, the picture printed directly on the special grating plate, thus rendering 3D visual effect of printing technology. And 3D printing refers to the 3D ink-jet printing technology, stacked with hierarchical processing forms, print increase step by step a material to generate a 3D entity, meet with 3D models, such as laser forming technology of manufacturing the same real 3D object digital manufacturing technology.3D printers, depending on the technology used by its working principle can be divided into two categories:1.1 3D printer based on 3D printing technologyBased on 3D printing technology of 3D printer, by stored barrels outa certain amount of raw material powder, powder on processing platform is roller pushed into a thin layer, then the print head in need of forming regional jet is a kind of special glue.At this time, met the adhesive will rapidly solidified powder binder, and does not meet the adhesive powder remain loose state. After each spray layer, the processing platform will automatically fall a bit, according to the result of computer chip cycle, until the real finished. After just remove the outer layer of the loose powder can obtain required for manufacturing three-dimensional physical.1.2 3D printers based on fused deposition manufacturing technologyBased on fused deposition manufacturing technology of the working principle of 3D printer is first in the control software of 3D printers into physical data generated by CAD and treated generated to support the movement of materials and thermal spray path. Then hot nozzle will be controlled by computer according to the physical section contour information in printed planar motion on the plane, at the same time by thermoplastic filamentous material for wire agency sent to the hot shower, and after the nozzle to add heat and melt into a liquid extrusion, and spraying in the corresponding work platform. Spray thermoplastic material on the platform after rapid cooling form the outline of a thickness of 0.1 mm wafer, forming a 3D printing section. The process cycle, load, decrease of bench height then layers of cladding forming stacked 3D printing section, ultimately achieve the desired three-dimensional object.2 The application of 3D printing needsThe 3D printing technology support for a variety of materials, can be widely used in jewelry, footwear, industrial design, construction, automotive, aerospace, dental, medical, and even food, etc. Different areas., according to the requirements of application targets used by material with resin, nylon, gypsum, ABS, polycarbonate (PC) or food ingredients, etc.3D printers of rapid prototyping technology has a distinct advantage in the market, the huge potential in the production application, hot applications outlined below.2.1 Industrial applications"Air cycling" is located in Bristol, UK the European aeronautic defense and Space Company using 3D printers, application of 3D printing technology to create the world's first print bike. The bike to use as strong as steel and aluminum alloy material of nylon, the weight is 65% lighter than metal materials. More interestingly, "air bike", chain wheels and bearings are printed at a time, without the original manufacture parts first, and then the parts together of assembly process, after printing, bicycles will be able to move freely. Bicycle manufacturing process like printing discontinuous in graphic print as simple lines, 3D printer can print out the object space is not connected to each other.2.2 Medical applicationsIn medicine, the use of 3D printing will two-photon polymer and biological functional materials combination modified into the capillaries, not only has good flexibility and compatibility of human body, also can be used to replace the necrosis of blood vessels, combined with artificial organs, partly replacing experimental animals in drug development. Biotechnology in Germany in October 2011 show, Biotechnical Fair), using 3D printers print artificial blood capillary to attract the attention of the participants, these artificial capillary has been applied in clinical medicine.2.3 application of daily life"3D food printer" is developed by Cornell University in New York, the United States food manufacturing equipment. The "3D food printer" usedsimilar routine computer printers, the working principle of ingredients and ingredients in the container (cartridge) in advance only need to enter the required recipe, by supporting the CAD software can keep the food "print out". For many chefs, the new kitchen cooking means that they can create new dishes make food more individuality, higher food value. Using the "3D food printer" making food, from raw materials to finished products can significantly reduce the link, so as to avoid the pollution in the links of food processing, transportation, packing and so on and preservation, etc. Because of the cooking materials and ingredients must be placed in the printer, so food raw materials must be liquid or other can "print" state.2.4 IT applicationsRecently, a group of researchers in Disney's use of 3D printing in the same effect with the organic glass high pervious to light plastic, at low cost to print out the LCD screen with a variety of sensors, realize the new breakthrough in the IT applications. Using 3D printing light pipe can produce high-tech international chess; the chess pieces can detect and display the current location. Although the monochrome screen compared with in the daily life, rich and colorful display some insignificant, but it has a 3D printing the advantages of low cost, simple manufacturing process. In addition to the display screen, the use of 3D printing will also be able to print out a variety of sensors. These sensors can be through the stimulation such as infrared light to detect touch, vibration, and the results output.3D printing will create more for life and wisdom city of IT applications.3 The development trend of 3D printing technology3D printing technology continues to develop, greatly reduce the cost of the already from research and development of niche space into the mainstream market, the momentum of development is unstoppable, has becomea widespread concern and civil market rapidly emerging new areas.3D printing production model, the application of gifts, souvenirs and arts and crafts, greatly attracted social attention and investment, development speed, the market began to quantity and qualitative leap. It is predicted that in 2020, 3D printing products will account for 50% of the total production. In the next 10 years on the computer to complete the product design blueprint, gently press the "print" key, 3D printers can bit by bit with the designed model. Now some foundry enterprises began to develop selective laser sintering, 3D printer and its application to complex casting time reduced from 3 months to 10 days. Engine manufacturers through 3D printing, large six-cylinder diesel engine cylinder head of sand core development cycles, reduced to 1 week from the past 5 months. The biggest advantage of 3D printing is to expand the designers’imagination space. As long as you can on the computer design into 3D graphics, whether is different styles of dress, elegant handicraft, or personalized car, as long as can solve the problem of material, can achieve 3D printing.With 3D printing technology breakthroughs, constantly improved increasingly, the new material of 3D printing in improving speed, size, its technology is constantly optimized, expanding application fields, especially in the field of graphic art potential, producer of the concept of 3D model can better communicate ideas or solutions, a picture can be more than a few hundred or even thousands of words of description. Professionals believe that personalized or customized 3D printing can be envisioned a real-time 3D model in the eyes, can quickly improve product, growth will be more than imagine, will shape the future of social applications.3D printing technology to eliminate traditional production line, shorten the production cycle, greatly reduce production waste, raw materials consumption will be reduced to a fraction of the original.3D printing is not only cost savings, improve production precision, also willmake up for the inadequacy of traditional manufacturing, and will rise rapidly in the civilian market, thus opening a new era of manufacturing, bring new opportunities and hope for the printing industry.译文3D打印技术及其应用Paul G摘要3D打印技术在工业产品设计,特别是数字产品模型制造领域的应用正在成为一种潮流和热门话题。

相关文档
最新文档