操作系统存储管理实验报告

合集下载

操作系统文件管理实验报告

操作系统文件管理实验报告

操作系统文件管理实验报告操作系统文件管理实验报告一、实验目的操作系统是计算机系统中的核心软件之一,负责管理计算机硬件资源和提供用户与计算机硬件之间的接口。

文件管理是操作系统的重要功能之一,它涉及到文件的创建、读取、写入、删除等操作。

本次实验旨在通过编写简单的文件管理程序,加深对操作系统文件管理机制的理解。

二、实验环境本次实验使用C语言编写,运行在Linux操作系统上。

实验过程中使用了gcc 编译器和Linux系统提供的文件管理函数。

三、实验内容1. 文件的创建在操作系统中,文件是存储在存储介质上的数据集合。

文件的创建是指在存储介质上分配一块空间,并为其分配一个唯一的文件名。

在本次实验中,我们使用了Linux系统提供的open函数来创建文件。

open函数接受两个参数,第一个参数是文件名,第二个参数是文件的打开模式。

通过调用open函数,我们可以在指定的路径下创建一个文件。

2. 文件的读取和写入文件的读取和写入是文件管理的核心操作。

在本次实验中,我们使用了Linux 系统提供的read和write函数来实现文件的读取和写入。

read函数接受三个参数,第一个参数是文件描述符,第二个参数是存储读取数据的缓冲区,第三个参数是要读取的数据的长度。

write函数也接受三个参数,第一个参数是文件描述符,第二个参数是要写入的数据的缓冲区,第三个参数是要写入的数据的长度。

通过调用read和write函数,我们可以实现对文件的读取和写入操作。

3. 文件的删除文件的删除是指在存储介质上释放文件占用的空间,并删除文件的相关信息。

在本次实验中,我们使用了Linux系统提供的unlink函数来删除文件。

unlink函数接受一个参数,即要删除的文件名。

通过调用unlink函数,我们可以删除指定的文件。

四、实验步骤1. 创建文件首先,我们使用open函数创建一个文件。

在调用open函数时,需要指定文件的路径和文件的打开模式。

文件的路径可以是绝对路径或相对路径,文件的打开模式可以是只读、只写、读写等。

操作系统实训报告

操作系统实训报告

引言概述:操作系统是计算机系统中最为核心的软件之一,它负责管理计算机的硬件资源并提供用户与硬件之间的接口。

为了更好地理解和掌握操作系统的工作原理和实际应用,我们进行了操作系统的实训。

本报告是操作系统实训的第二部分,主要讨论了操作系统的进程管理、内存管理、文件系统管理、设备管理和网络管理等方面的内容。

正文:一、进程管理1.进程与线程的概念及区别2.进程调度算法的分类和比较3.进程同步与互斥的实现方法4.死锁的预防和解决策略5.线程的管理与调度方式二、内存管理1.内存的分段与分页管理方式2.虚拟内存的概念与作用3.页面置换算法的原理和性能比较4.内存管理中的页表与快表5.高级内存管理机制及其实现方法三、文件系统管理1.文件系统的基本组成和功能2.文件的存储与访问方式3.文件系统的目录结构与索引方式4.文件系统的缓存和缓冲区管理5.文件系统中的权限控制和安全性保护四、设备管理1.I/O设备的分类与特点2.设备管理的基本策略与方法3.磁盘调度算法及优化策略4.设备驱动程序的设计与实现方法5.设备管理中的错误处理和故障恢复五、网络管理1.计算机网络的基本概念与体系结构2.OSI模型与TCP/IP协议族3.IP地质的分配与路由选择4.网络传输控制协议与网络编程5.网络管理中的性能优化和安全保障总结:通过本次实训,我们深入学习了操作系统的各个方面,包括进程管理、内存管理、文件系统管理、设备管理和网络管理等。

我们对操作系统的工作原理和实际应用有了更深入的了解,并掌握了相关的技术和方法。

在未来的实际工作中,我们将能够更好地应用和运用操作系统的知识,提高计算机系统的性能和稳定性。

同时,我们也意识到操作系统的重要性和复杂性,需要不断学习和研究,以适应快速发展的信息技术时代的需求。

希望通过本报告的撰写和总结,能够对其他同学的学习和研究有所帮助。

引言概述正文内容实验搭建硬件环境配置:介绍实验所需的硬件设备,包括计算机、虚拟机等。

华科操作系统实验报告

华科操作系统实验报告

华科操作系统实验报告一、实验目的操作系统是计算机系统的核心组成部分,对于理解计算机的工作原理和提高计算机应用能力具有重要意义。

本次华科操作系统实验的主要目的是通过实际操作和实践,深入理解操作系统的基本概念、原理和功能,掌握操作系统的核心技术和应用方法,提高我们的实践能力和问题解决能力。

二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 2004),开发工具包括 Visual Studio Code、GCC 编译器等。

实验硬件环境为个人计算机,配置为英特尔酷睿 i7 处理器、16GB 内存、512GB 固态硬盘。

三、实验内容1、进程管理进程创建与销毁进程调度算法模拟进程同步与互斥2、内存管理内存分配与回收算法实现虚拟内存管理3、文件系统文件操作与管理文件系统的实现与优化4、设备管理设备驱动程序编写设备分配与回收四、实验步骤及结果1、进程管理实验进程创建与销毁首先,使用 C 语言编写程序,通过系统调用创建新的进程。

在程序中,使用 fork()函数创建子进程,并在子进程和父进程中分别输出不同的信息,以验证进程的创建和执行。

实验结果表明,子进程和父进程能够独立运行,并输出相应的信息。

进程调度算法模拟实现了先来先服务(FCFS)、短作业优先(SJF)和时间片轮转(RR)三种进程调度算法。

通过模拟多个进程的到达时间、服务时间和优先级等参数,计算不同调度算法下的平均周转时间和平均等待时间。

实验结果显示,SJF 算法在平均周转时间和平均等待时间方面表现较好,而 RR 算法能够提供较好的响应时间和公平性。

进程同步与互斥使用信号量和互斥锁实现了进程的同步与互斥。

编写了生产者消费者问题的程序,通过信号量控制生产者和消费者对缓冲区的访问,避免了数据竞争和不一致的情况。

实验结果表明,信号量和互斥锁能够有效地实现进程间的同步与互斥,保证程序的正确性。

2、内存管理实验内存分配与回收算法实现实现了首次适应(First Fit)、最佳适应(Best Fit)和最坏适应(Worst Fit)三种内存分配算法。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的本次实验的目的是通过编写一段程序,实现对内存的分配和回收操作,并验证算法的正确性和性能。

二、实验内容1.实现首次适应算法首次适应算法是一种动态分配的内存管理算法,通过从低地址往高地址内存块,找到第一个满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,根据需求大小找到第一个合适的空闲块,并在其前后设置相应的标志位;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

2.实现最佳适应算法最佳适应算法是一种动态分配的内存管理算法,通过整个内存空间,找到最小的满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,遍历整个内存空间,找到满足需求且大小最小的空闲块进行分配;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

三、实验结果1.首次适应算法经过测试,首次适应算法能够正确地进行内存的分配和回收操作,并且算法的性能良好。

尽管首次适应算法在分配过程中可能会产生碎片,但是由于它从低地址开始,可以在较短的时间内找到满足需求的空闲块。

在实际应用中,首次适应算法被广泛采用。

2.最佳适应算法经过测试,最佳适应算法能够正确地进行内存的分配和回收操作,并且算法的性能较好。

最佳适应算法会整个内存空间,找到大小最小的满足需求的空闲块。

因此,在分配过程中不会产生很多的碎片,但是算法的执行时间较长。

四、实验总结通过本次实验,我们成功地实现了首次适应算法和最佳适应算法,并对算法的正确性和性能进行了验证。

两种算法在内存的分配和回收过程中都表现出良好的性能,可广泛应用于实际场景中。

存储管理实验报告

存储管理实验报告

存储管理实验报告一、实验目的1.了解存储管理的概念及作用;2.掌握存储管理的基本操作和技术;3.熟悉常见的存储管理工具和方法;4.分析存储管理对系统性能的影响。

二、实验内容1.了解存储管理的基本概念:存储管理是指对计算机中的存储器进行有效管理和利用的一种技术手段。

主要包括内存管理和外存管理两个方面。

2.学习常见的存储管理工具和方法:(1)内存管理方案:连续内存管理、非连续内存管理和虚存管理;(2)外存管理方案:磁盘存储管理、文件系统管理和缓存管理等。

3.实际操作存储管理工具:(1)使用操作系统的内存管理工具,如Windows的任务管理器和Linux的top命令等,查看内存使用情况和进程占用的内存大小;(2)使用磁盘管理工具,如Windows的磁盘管理器和Linux的fdisk命令等,查看磁盘的分区情况和使用状况;(3)使用文件系统管理工具,如Windows的资源管理器和Linux的ls命令等,查看文件和目录的存储和管理状态。

4.分析存储管理对系统性能的影响:(1)使用性能监控工具,如Windows的性能监视器和Linux的sar 命令等,实时监测系统的内存、磁盘和文件系统等性能指标;(2)对比不同存储管理方案的优缺点,分析其对系统性能的影响;(3)根据实验结果提出优化存储管理的建议。

三、实验步骤1.阅读相关文献和资料,了解存储管理的基本概念和原理;2.使用操作系统的内存管理工具,查看当前系统内存的使用情况;3.使用操作系统的磁盘管理工具,查看当前系统磁盘的分区情况;4.使用操作系统的文件系统管理工具,查看当前系统文件和目录的存储和管理状态;5.使用性能监控工具,实时监测系统的内存、磁盘和文件系统等性能指标;6.根据实验结果,分析存储管理对系统性能的影响;7.结合实验结果,提出优化存储管理的建议。

四、实验结果1.使用内存管理工具查看系统内存使用情况,发现部分进程占用内存过高,导致系统运行缓慢;2.使用磁盘管理工具查看系统磁盘分区情况,发现磁盘分区不合理,造成磁盘空间利用率较低;3.使用文件系统管理工具查看文件和目录的存储和管理状态,发现有大量重复和冗余的文件,需要进行清理和整理;4.使用性能监控工具实时监测系统的性能指标,发现内存和磁盘的利用率较高,需要优化存储管理。

操作系统存储管理实验报告

操作系统存储管理实验报告
4 / 37
操作系统实验·报告
typedef struct pfc_struct pfc_type; (2)模块结构 (伙伴系统) # define Inital 1024 //初始时的总内存
NODE root=(memory_node *)malloc(1*sizeof(memory_node));//根节点 int chip=0; // 记录总的碎片大小
total = 256 use =127 remain_max = 0 flag = 0 pid =0
total = 256 use = 0 remain_max = 256 flag = 0 pid =-1
total = 1024 use = 0 remain_max = 512 flag = 1 pid =-1
total = 512 use = 0 remain_max = 512 flag = 0 pid =-1
total = 512 use = 267 remain_max = 0 flag = 0 pid = -1
6 / 37
操作系统实验·报告
三、实验理论分析
7 / 37
操作系统实验·报告
(伙伴算法) Buddy System 是一种经典的内存管理算法。在 Unix 和 Linux 操作系统中都有用到。其 作用是减少存储空间中的空洞、减少碎片、增加利用率。避免外碎片的方法有两种: a.利用分页单元把一组非连续的空闲页框映射到非连续的线性地址区间。 b.开发适当的技术来记录现存的空闲连续页框块的情况,以尽量避免为满足对小块的 请 求而把大块的空闲块进行分割。 基于下面三种原因,内核选择第二种避免方法: a.在某些情况下,连续的页框确实必要。 b.即使连续页框的分配不是很必要,它在保持内核页表不变方面所起的作用也是不容 忽视的。假如修改页表,则导致平均访存次数增加,从而频繁刷新 TLB。 c.通过 4M 的页可以访问大块连续的物理内存,相对于 4K 页的使用,TLB 未命中率降 低,加快平均访存速度。 Buddy 算法将所有空闲页框分组为 10 个块链表,每个块链表分别包含 1,2,4,8,16,32,64,128,256,512 个连续的页框,每个块的第一个页框的物理地址是该块 大小的整数倍。如,大小为 16 个页框的块,其起始地址是 16*2^12 的倍数。 例,假设要请求一个 128 个页框的块,算法先检查 128 个页框的链表是否有空闲块, 如果没有则查 256 个页框的链表,有则将 256 个页框的块分裂两份,一 份使用,一份 插入 128 个页框的链表。如果还没有,就查 512 个页框的链表,有的话就分裂为 128, 128,256,一个 128 使用,剩余两个插入对应链 表。如果在 512 还没查到,则返回 出错信号。 回收过程相反,内核试图把大小为 b 的空闲伙伴合并为一个大小为 2b 的单独块,满足 以下条件的两个块称为伙伴: a.两个块具有相同的大小,记做 b。 b.它们的物理地址是连续的。 c.第一个块的第一个页框的物理地址是 2*b*2^12 的倍数。 该算法迭代,如果成功合并所释放的块,会试图合并 2b 的块来形成更大的块。 为了模拟 Buddy System 算法,我采用了数的数据结构,并使用了结构体,来记录各项 数据与标记,虽然不是真正的操作系统使用的方法,但成功模拟了插入和回收的过程。 在回收时我采用物理上的合并——即删除实际的物理节点,释放空间。然而实际中可 能根据需要仅仅是删除了标记项,使之标记成没用过的,从而避免了合并,会提高下 一次的插入操作。 碎片百分比 = 碎片总大小/总内存大小 (置换算法)

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。

本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。

二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。

三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。

分区的大小可以相等,也可以不等。

2、实现创建一个固定大小的内存空间数组,模拟内存分区。

为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。

3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。

分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。

(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。

2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。

实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。

3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。

观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。

(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。

2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。

模拟页面的调入和调出过程,处理缺页中断。

3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。

探讨页大小的选择对存储管理的影响。

(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。

操作系统文件管理实验报告.

操作系统文件管理实验报告.

操作系统文件管理实验报告.
操作系统文件管理实验报告是操作系统实验课程中常见的实验报告,是对学生在实验过程中所掌握的知识和技能的总结。

实验报告的主要内容包括:实验目的、实验原理、实验步骤、实验结果及分析、实验总结、实验心得体会。

实验目的:通过本次实验,学习操作系统文件管理的知识,了解文件系统的概念,并掌握文件管理的基本操作,如新建文件、复制文件、删除文件等;
实验原理:操作系统文件管理是操作系统中一项重要技术,它具有支持用户对文件进行存储、分类、保护和索引等功能。

它的核心功能是通过提供文件系统的结构和管理方法,使用户能够方便地管理文件;
实验步骤:根据实验要求,完成操作系统文件管理实验,并记录实验步骤、实验结果及分析;
实验结果及分析:根据实验结果,对操作系统文件管理实验进行分析,总结出实验中遇到的问题及解决方案;
实验总结:总结本次实验的主要内容,概括出实验的学习结果;
实验心得体会:对本次实验的学习进行反思,总结出实验的感受和收获的经验教训。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
printf("请按任意键继续:\n");
getchar();
printf("每个分区装入一道作业:\n");
for(i=0;i<NUM;i++){
AllocateMemory((i+1)*3);
/
}
checkTab();
printf("请按任意键继续:\n");
getchar();
printf("假如一段时间后,其中一个作业结束,回收给它分配的分区(假如该作业在第2分区)\n");
printf("%c\t",parTab[i].state);
printf("\n");
}
}
void recycleMemory(int i)
{
]
parTab[i-1].state='N';
}
int main(int argc, char* argv[])
{
int i;
printf("\n\n\t\t*********************************************\t\t\n");
s++;
if(s>=n)
]
{
printf("找不到该作业\n");
return;
}
used_table[s].flag=0;
S=used_table[s].address;
L=used_table[s].length;
j=-1;
[
k=-1;
i=0;
while(i<m&&(j==-1||k==-1))
通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
2、实验要求
#
设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。
free_table[t].length=L;
free_table[t].flag=1;

}
return;
}/*主存回收函数结束*/
int main( )
{
printf("\n\n\t\t*********************************************\t\t\n");
printf("\t\t\t\t实验三 存储管理实验\n");
t=0;
while(free_table[t].flag==1&&t<m)
t++;
if(t>=m) /*空闲区表满,回收空间失败,将已分配表复原*/

{
printf("主存空闲表没有空间,回收空间失败\n");
used_table[s].flag=J;
return;
}
free_table[t].address=S;
else
printf("没有空闲分区,无法分配内存!\n");
}
}
void createTab()
{

int i;
for( i=1;i<=NUM;i++)
{
o=i;
parTab[i-1].size=20;
parTab[i-1].firstAddr=21;
parTab[i-1].state='N';
}
ad=free_table[k].address;
xk=free_table[k].length;
}
else{
free_table[k].length=free_table[k].length-xk;

ad=free_table[k].address+free_table[k].length;
}
i=0;
return;
}
}
$
else
{
used_table[i].address=ad;
used_table[i].length=xk;
used_table[i].flag=J;
}
return;
}
(
void reclaim(char J)
{
int i,k,j,s,t;
float S,L;
s=0;
while((used_table[s].flag!=J||used_table[s].flag==0)&&s<n)
设计一个可变式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
对分区的管理法可以是下面三种算法之一:首次适应算法;最坏适应算法;最佳适应算法。
编写并调试一个段页式存储管理的地址转换的模拟程序。
首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。
free_table[0].length=10240; /*长度假定为10240,即10k*/
free_table[0].flag=1; /*初始空闲区为一个整体空闲区*/
\
for(i=1; i<m; i++)
free_table[i].flag=0; /*其余空闲分区表项未被使用*/
/*已分配表初始化:*/
printf("%%%6d\n",free_table[i].address,free_table[i].length, free_table[i].flag);
printf(" 按任意键,输出已分配区表\n");
getch();
printf(" 输出已分配区表:\n起始地址 分区长度 标志\n");
printf("\t\t\t\t实验一 存储管理实验\n");
printf("\t\t\t\t固定式分区分配存储管理\n");
>
printf("\t\t*********************************************\t\t\n");
createTab();
checkTab();

for(i=0; i<n; i++)
if(used_table[i].flag!=0)
printf("%%%6c\n",used_table[i].address,used_table[i].length, used_table[i].flag);
else
printf("%%%6d\n",used_table[i].address,used_table[i].length, used_table[i].flag);
recycleMemory(2);
checkTab();
printf("请按任意键继续:\n");

getchar();
printf("接着,从外存后备作业队列中选择一个作业装入该分区(假如该作业大小为10)\n");
AllocateMemory(10);
checkTab();
return 0;
}
#include<>
3、实验步骤
(1)理解实验要求,联系所学知识; (2)根据要求编写调度算法; (3)编写完整的实验代码并在VC++ 环境下编译运行; (4)调试程序直至得出结果。
4、
5、程序清单
#include <>
#include <>
#include<>
#include<>
#define NUM 4
#define alloMemory(type) (type*)malloc(sizeof(type))

}
void checkTab()
{
int i;
printf("分区号\t大小\t起址\t状态\n");
for(i=0;i<NUM;i++)
{
printf("%d\t",parTab[i].no);
`
printf("%d\t",parTab[i].size);
printf("%d\t",parTab[i].firstAddr);
if(k==-1||free_table[i].length<free_table[k].length)
k=i;
if(k==-1)
{
printf("无可用空闲区\n");
return;
}
-
if(free_table[k].length-xk<=minisize)
{
free_table[k].flag=0;
{
ifபைடு நூலகம்free_table[i].flag==1)
{
if(free_table[i].address+free_table[i].length==S)k=i;
if(free_table[i].address==S+L)j=i;

}
i++;
}
if(k!=-1)
if(j!=-1) /* 上邻空闲区,下邻空闲区,三项合并*/
相关文档
最新文档