(新)人教版九年级数学上册:第二十三章《旋转》课时检测试题专题 利用旋转作图求坐标
九年级数学上册第二十三章旋转23.1图形的旋转同步练习卷新版新人教版(含答案)

九年级数学上册第二十三章旋转:23.1 图形的旋转一、选择题(共5小题)1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针方向旋转60°后得到△EDC,此时点D在斜边AB上,斜边DE交AC于点F.则图中阴影部分的面积为()A.2 B. C.D.2.如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30° B.35° C.40° D.50°3.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60° B.75° C.85° D.90°4.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A.B.C.D.5.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A. B.5 C.4 D.二、填空题(共11小题)6.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C 绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为______cm.7.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=______°.8.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为______.9.如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B在旋转过程中所经过的路线的长是______cm.(结果保留π)10.如图,是两块完全一样的含30°角的三角板,分别记作△ABC与△A′B′C′,现将两块三角板重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角板ABC,使其直角顶点C恰好落在三角板A′B′C′的斜边A′B′上,当∠A=30°,AC=10时,则此时两直角顶点C、C′间的距离是______.11.如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF 时,∠AOE的大小是______.12.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件______,使四边形ABCD为矩形.13.如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是______.14.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为______.15.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为______.16.如图,△AOB中,∠AOB=90°,AO=3,BO=6,△AOB绕顶点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E的长度为______.三、解答题(共6小题)17.如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.(1)求证:△ADE≌△ABF;(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?18.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心______ 点,按顺时针方向旋转______ 度得到;(3)若BC=8,DE=6,求△AEF的面积.19.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.20.将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).21.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE 按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.22.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.23.1 图形的旋转参考答案一、选择题(共5小题)1.C;2.C;3.C;4.A;5.B;二、填空题(共11小题)6.;7.70;8.8;9.π;10.5;11.15°或165°;12.∠B=90°;13.关于旋转点成中心对称;14.1.6;15.2a;16.;三、解答题(共6小题)17.18.A;90;19.20.21.22.。
人教版九年级数学上册 23.1.2 旋转作图和应用 同步测试(含答案)

人教版九年级数学上册第23章旋转23.1.2旋转的作图及应用同步测试题号一二三总分得分第Ⅰ卷(选择题)一、选择题(共10小题,3*10=30)1. 如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( ) A.(1,1) B.(1,2) C.(1,3) D.(1,4)2.观察下列图形,其中可以看成是由“基本图案”通过旋转形成的有( ) A.1个B.2个C.3个D.4个3.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( )4.如图,由一个矩形沿顺时针方向旋转90°后所形成的图形是( )A.①④B.②③C.①②D.②④5. 如图所示,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC 先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是( ) A.(2,2) B.(1,2) C.(-1,2) D.(2,-1)6. 如图,该图形围绕点O按下列角度旋转后,不能与其自身重合的是( )A.72°B.108°C.144°D.216°7. 将等腰直角三角形AOB按如图所示位置放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B 的横坐标为2,则点A′的坐标为( )A.(1,1) B.(2,2)C.(-1,1) D.(-2,2)8. 如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为( )A.(0,4) B.(1,1) C.(1,2) D.(2,1)9. 如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为( ) A.(0,1) B.(1,-1)C.(0,-1) D.(1,0)10.如图,在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将边CD以点D为旋转中心逆时针旋转90°至ED,连接AE,则△ADE的面积是( )A.1 B.2C.3 D.不能确定第Ⅰ卷(非选择题)二.填空题(共8小题,3*8=24)11. 如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心一定是_______.12. 如图,点A,B,C,D,O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为_______.13.如图,正方形OEFG的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD与正方形OEFG的边长都为2 cm,则图中阴影部分的面积为___cm2.14. 在平面直角坐标系中,以原点为旋转中心,把点A(3,4)逆时针旋转90°,得到点B,则点B的坐标为_____________.15.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P在AB上,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长为____.16. 如图,在四边形ABCD中,AD∥BC,AB⊥BC,AD=4,将腰CD以D为中心逆时针旋转90°到DE,连接AE,CE,△ADE的面积为12,则BC的长为____.17.如图,在Rt△ABC中,∠B=90°,AB=BC=2,将△ABC绕点C顺时针旋转60°,得到△DEC,则AE的长是__________.18. 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B,O分别落在点B1,C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去.若点A(1.5,0),B(0,2),则点B2 018的坐标为___________三.解答题(共7小题,46分)19.(6分) 如图所示,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°,画出旋转后的△AB′C′.20. (6分) 在一次黑板报的评选中,九(1)班获得了第一名,其中小颖同学的图案得到了大家的一致好评.她设计的图案是由如图所示的三角形图案绕上面的点C按同一个方向依次旋转90°,180°,270°得到的图形组成的,请你画出这个图案.21. (6分)在平面直角坐标系中,四边形ABCD的位置如图所示,解答下列问题:(1)将四边形ABCD先向左平移4个单位长度,再向下平移6个单位长度,得到四边形A1B1C1D1,画出平移后的四边形A1B1C1D1;(2)将四边形A1B1C1D1绕点A1逆时针旋转90°,得到四边形A1B2C2D2,画出旋转后的四边形A1B2C2D2,并写出点C2的坐标.22. (6分)如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E,试确定B,C,D的对应点的位置以及旋转后的四边形.23.(6分) 如图,在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.24.(8分) 如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得到△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.25.(8分) 将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.参考答案1-5 BDDBA6-10 BCCBA11. 点B12. 90°13. 114. (-4,3)15. 616. 1017. 2+618. (6 054,2).19. 解:如图所示,△AB′C′即为所求三角形20.解:如图所示:21.解:(1)如图,四边形A1B1C1D1即为所求(2)四边形A1B2C2D2即为所求,C2(1,-2)22.解:如图.B,C,D的对应点分别是F,G,H,四边形EFGH是四边形ABCD旋转后得到的四23.解:(1)将线段AC先向右平移6个单位长度,再向下平移8个单位长度(或将线段AC先向下平移8个单位长度,再向右平移6个单位长度)(2)F(-1,-1)(3)画出如图所示的图形24. 解:(1)60°(2)由旋转的性质知△ABC≌△A1BC1,∴∠ABC=∠A1BC1=120°,AB=A1B,∠C=∠C1,∵∠A1BA+∠A1BC1=180°,∴∠A1BA=60°,∴△A1BA为等边三角形,∴∠A1AB=60°,∵∠A1AB+∠ABC=180°,∴AA1∥BC,∴∠C=∠A1AC,∴∠A1AC=∠C125.解:(1)由旅转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD, ∴∠AEB=∠ABE.又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF.又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G 在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,.GH⊥BC,∴四边形ABEHIM 是矩形,∴GM垂直平分AD,∴GD=GA=DA, ∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角a=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角a=360°-60°=300°时,GC=GB。
人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)

人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。
人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第2课时 旋转作图

8.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为 A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面 直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B; (2)写出点A′,C′,D′的坐标; (3)求出线段BA旋转到BA′时所扫过的扇形的面积.
2.旋转作图的步骤: (1)首先确定___旋__转__中__心________、旋转方向和____旋__转__角_______; (2)其次确定图形的关键点; (3)将这些关键点沿指定的方向旋转指定的角度; (4)连接____对__应___点_______,形成相应的图形.
练习2:如图,△ABC在网格中,画出△ABC绕点C顺时针旋转90°后 的图形△A1B1C.
(3)∵∠AOB=110°,∠DOC=60°,∴∠AOD=360°-∠AOB- ∠BOC-∠DOC=360°-110°-α-60°=190°-α.∵∠ADO= ∠ADC-∠ODC=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)= 50°.①若使AO=AD,需∠AOD=∠ADO,∴190°-α=α-60°,∴α =125°;②若使OA=OD,需∠OAD=∠ADO,∴α-60°=50°, ∴α=110°;③若使OD=AD,需∠OAD=∠AOD,∴190°-α=50°, ∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是 等腰三角形
解:(1)图略 (2)点 A′(6,0),C′(0,-6),D′(0,0) (3)∵点 A 的 坐标为(-6,12),点 B 的坐标为(-6,0),∴AB=12,∴线段 BA 旋
转到 BA′时所扫过的扇形的面积=14 π×122=36π
九年级数学上册第二十三章旋转第2课时旋转作图练习新版新人教版

第2课时旋转作图基础题知识点1 旋转作图1.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是________.2.如图所示,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°,画出旋转后的△AB′C′.3.已知△ABC,请画出以C为旋转中心,顺时针旋转90°后的△A′B′C.4.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B对应点的位置以及旋转后的三角形.5.(荆门中考)如图1,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连接BE,DF.请在图2中用实线补全图形,这时DF=BE还成立吗?请说明理由.知识点2 在平面直角坐标系中的图形旋转6.(烟台中考)如图,将△ABC 绕点P 顺时针旋转90°得到△A′B′C′,则点P 的坐标是( )A .(1,1)B .(1,2)C .(1,3)D .(1,4) 7.(邵阳中考)如图,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°到OA′,则点A′的坐标是________.8.(青岛中考)如图,△ABC 的顶点都在方格线的交点(格点)上,如果将△ABC 绕C 点按逆时针方向旋转90°,那么点B 的对应点B′的坐标是________.中档题9.如图,该图形围绕点O 按下列角度旋转后,不能与其自身重合的是( )A .72°B .108°C .144°D .216°10.(巴中中考)如图,已知直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 按顺时针方向旋转90°后得到△AO′B′,则点B′的坐标是________.11.(潜江、天门、仙桃中考)如图,在平面直角坐标系中,点A 的坐标为(-1,2)点C 的坐标为(-3,0),将点C 绕点A 逆时针旋转90°,再向下平移3个单位,此时点C 对应点的坐标为________.12.如图,四边形ABCD 绕点O 旋转后,顶点A 的对应点为点E,试确定B,C,D 的对应点的位置以及旋转后的四边形.13.(眉山中考)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.综合题14.(永州中考)在同一平面内,△ABC和△ABD如图1放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图2.请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图3,求证:四边形CDFE是平行四边形.参考答案基础题1.点B2.图略所示,△AB′C′为所求三角形.3.如图所示.4.图略,顶点B对应点的位置在点E处,△DEC为△ABC绕点C旋转后得到的三角形.5.补全图形图略.DF=BE成立.理由:∵四边形ABCD是正方形,△AEF是等腰直角三角形,∴AD=AB,AF=AE,∠FAE=∠DAB=90°.∴∠FAD =∠EAB.在△ADF 和△ABE 中,⎩⎪⎨⎪⎧AD =AB ,∠FAD =∠EAB,AF =AE.∴△ADF ≌△ABE(SAS).∴DF=BE.6.B7.(-4,3)8.(1,0)中档题9.B 10.(7,3) 11.(1,-3) 12.略.13.(1)图略.(2)图略.(3)旋转中心的坐标为(-1,0). 综合题14.(1)四边形ABDF 是菱形.理由如下:∵△DFA 是由△ABD 绕AD 的中点旋转180°所得,∴AB =DF,BD =FA.∴四边形ABDF 是平行四边形.又∵AB=BD,∴四边形ABDF 是菱形.(2)证明:由(1)知四边形ABDF 是平行四边形,∴AB ∥DF 且AB =DF.由旋转易知四边形ABCE 是平行四边形,∴AB ∥CE 且AB =CE.∴DF∥CE 且DF =CE,∴四边形CDFE 是平行四边形.。
九年级数学上册第二十三章《旋转》23.1图形的旋转第2课时旋转作图试题新人教版(2021年整理)

2018年秋九年级数学上册第二十三章《旋转》23.1 图形的旋转第2课时旋转作图试题(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第二十三章《旋转》23.1 图形的旋转第2课时旋转作图试题(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第二十三章《旋转》23.1 图形的旋转第2课时旋转作图试题(新版)新人教版的全部内容。
第2课时旋转作图知识要点基础练知识点1旋转作图1.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针方向旋转90°得到的图案是(A)2。
下列图形中,绕着某点旋转90°后可以与原来图形重合的是(B)知识点2利用旋转设计图案3。
下面四个图案中,不能由基本图案(图中阴影部分)旋转得到的是(D)4.下列选项中可看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是(B)知识点3在平面直角坐标系中的图形旋转5。
如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,把矩形OABC绕着原点顺时针旋转90°得到矩形OA'B’C',若OA=2,OC=4,则点B’的坐标为(C)A.(2,4)B.(—2,4)C.(4,2)D。
(2,—4)6。
如图,若将△ABC绕点C顺时针旋转90°得到△A'B’C',则A点的对应点A’的坐标是(C)A。
(-3,-2) B.(2,2)C.(3,0)D.(2,1)综合能力提升练7。
如图,在平面直角坐标系xOy中,△ABC的顶点坐标如图所示,都为格点坐标。
人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第2课时 旋转作图及应用

12.(梧州中考)如图,在菱形 ABCD 中,AB=2,∠BAD=60°,将菱 形 ABCD 绕点 A 逆时针方向旋转,对应得到菱形 AEFG,点 E 在 AC 上,EF 与 CD 交于点 P,则 DP 的长是___3__-__1______________.
13.(南宁中考)如图,在平面直角坐标系中,已知△ABC的三个顶点坐 标分别是A(1,1),B(4,1),C(3,3). (1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1; (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2; (3)判断以O,A1,B为顶点的三角形的形状.(无需说明理由)
解:(1)如图所示,△A1B1C1即为所求
(2)如图所示,△A2B2C2 即为所求 (3)三角形的形状为等腰直角三角形, OB=OA1= 16+1 = 17 ,A1B= 25+9 = 34 ,即 OB2+OA12= A1B2,因此以 O,A1,B 为顶点的三角形的形状为等腰直角三角形
14.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目 的.下面是一个案例,请补充完整. 原题:如图①,点E,F分别在正方形ABCD的边BC,CD上,∠EAF= 45°,连接EF,则EF=BE+DF,试说明理由.
人教版
第二十三章 旋转
23.1 图形的旋转
第2课时 旋转作图及应用
知识点1:旋转作图 1.(教材P63习题7变式)观察下列图形,其中可以看成是由“基本图案” 通过旋转形成的有( D )
A.1个 B.2个 C.3个 D.4个
2.将△AOB绕点O旋转180°得到△DOE,则下列作图正确的是( D )
(1)思路梳理 ∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD 重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F,D,G共线. 根据___S_A__S_____,易证△AFG≌___△__A__F_E________,得EF=BE+DF; (2)类比引申 如图②,在四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在 边BC,CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D 满足等量关系____∠__B__+__∠__D_=__1_8_0_°_______时,仍有EF=BE+DF;
人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)

人教版九年级数学上册第二十三章旋转单元检测(含答案)一、单选题1.下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称2.下列图案中,是中心对称图形的是( )A.B.C.D.3.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)4.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)5.如图所示,ABC V 中,5AC =,中线7AD =,EDC V 是由ADB V 旋转180o 所得,则AB 边的取值范围是( )A .1<AB<29B .4<AB<24C .5<AB<19D .9<AB<196.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .△ABD =△EB .△CBE =△C C .AD △BC D .AD =BC 7.下列图形是中心对称图形,但不是轴对称图形的是( )A .正方形B .等边三角形C .圆D .平行四边形8.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到△COD ,若15AOB ∠=︒,则AOD ∠的度数是( )A .75︒B .60︒C .45︒D .30°9.如图所示,△ABC 与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A .AB=A′B′,BC=B′C′B .AB△A′B′,BC△B′C′C .S △ABC =S △A′B′C′D .△ABC△△A′OC′10.如图,在Rt 直角△ABC 中,△B =45°,AB =AC ,点D 为BC 中点,直角△MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△AE =CF ;△△BDE△△ADF ;△BE+CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题 11.如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.12.如图,将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,若△CAE=90°,AB=1,则BD=_________.13.如图,直线443y x =+与x 轴轴分别交于A ,B 两点,把AOB ∆绕点A 逆时针旋转90︒后得到''AO B ∆,则点'B 的坐标是______.14.如图所示,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ; 将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;⋅⋅⋅如此进行下去,直到13C .若()37,P m 在第13段抛物线13C 上,则m =______.三、解答题15.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(1,1)A 、(5,1)B 、(4,4)C .(1)按下列要求作图:△将ABC ∆向左平移5个单位得到111A B C ∆,并写出点1A 的坐标;△将ABC ∆绕原点O 逆时针旋转90°后得到222A B C ∆,并写出点2B 的坐标;(2)111A B C ∆与222A B C ∆重合部分的面积为 (直接写出答案).16.如图,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,﹣1).(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕点C 逆时针旋转90°,得△A 2B 2C ,画出△A 2B 2C ,并写出点A 2的坐标;(3)直接写出△A 2B 2C 的面积.17.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)判断AB与CD的关系并证明;(2)求直线EC的解析式.18.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由答案1.D2.D3.B4.C 。