高考数学(文)二轮复习(全国通用)大题规范天天练 第三周 星期四 Word版含解析

合集下载

高考数学(文)二轮复习(全国通用)大题规范天天练 第二周 星期四 Word版含解析

高考数学(文)二轮复习(全国通用)大题规范天天练 第二周 星期四 Word版含解析

星期四(函数与导数)年月日
函数与导数(命题意图:考查函数的单调性及不等式恒成立问题,考查等价转化思
想)
(本小题满分分)已知函数()=(-)-+- (∈).
()若函数=()在区间(,)上单调,求的取值范围;
()若函数()=()-在上无零点,求的最小值.
解()函数()的定义域为(,+∞),′()=--=.
当≥时,有′()<,即函数()在区间(,)上单调递减;
当<时,令′()=,得=,若函数=()在区间(,)上单调,则
≤或≥,解得≤或≤<;
综上,的取值范围是(-∞,]∪.
()因为当→时,()→+∞,所以()=(-)(-)-<在区间上恒成立不可能,
故要使函数()在上无零点,只要对任意的∈,()>恒成立,
即对∈,>--)恒成立,
令()=--),∈,
则′()=-,(-))=+()-,(-)),
再令()=+-,∈,
则′()=-+=<,
故()在上为减函数,于是()>=->,
从而′()>,于是()在上为增函数,
所以()<=-,
故要使>--)恒成立,只要∈[-,+∞),
综上,若函数()在上无零点,则的最小值为- .。

高考数学二轮复习(浙江专用)大题规范天天练星期四第四周Word版含解析

高考数学二轮复习(浙江专用)大题规范天天练星期四第四周Word版含解析

高考数学二轮复习(浙江专用)大题规范天天练星期四第四周Word版含解析礼拜四 (函数与导数 )2017 年____月____日函数与导数知识 (命题企图:考察函数的极值点及函数的零点(或方程根 )的问题 )1 2(本小题满分 15 分 )已知函数 f(x)= xln x,g(x)=8x -x.(1)求 f(x)的单一区间和极值点;(2)能否存在实数,使得函数3f(x)+m+g(x)有三个不一样的零点?若存m h(x)=4x在,求出 m 的取值范围;若不存在,请说明原因.解 (1)f ′(x)=ln x+1(x>0),由 f′(x)>0 得1x>e, f′(x)<01得 0<x<e,∴ f(x)在10,e上单一递减,在1e,+∞ 上单一递加,1f(x)的极小值点为 x=e.3f( x)(2)假定存在实数 m,使得函数 h(x)=+m+g(x)有三个不一样的零点,4x2即方程 6ln x+8m+x - 8x=0 有三个不等实根,62-4x+3)(-)(-)2( x 2 x 3x 1φ′(x)=x+2x- 8=x=x,由φ′(x)>0 得 0<x<1 或 x>3,由φ′(x)<0 得 1<x<3,∴φ(x)在(0,1)上单一递加, (1,3)上单一递减, (3,+∞ )上单一递加,因此φ(x)的极大值为φ(1)=-7+8m,φ(x)的极小值为φ(3)=-15+6ln 3+8m. 要使方程 6ln x+ 8m+ x2-8x= 0 有三个不等实根,则函数φ(x)的图象与 x 轴要有三个交点,依据φ(x)的图象可知一定知足-7+8m>0,7153-15+ 6ln 3+ 8m<0,解得8<m< 8-4ln 3,3f(x)∴存在实数 m,使得方程+m+g(x)=0有三个不等实根,715 3实数 m 的取值范围是8<m< 8-4ln 3.。

高考数学二轮复习(浙江专用)大题规范天天练星期四第三周Word版含解析

高考数学二轮复习(浙江专用)大题规范天天练星期四第三周Word版含解析

礼拜四(函数与导数 )2017 年____月____日函数与导数知识 (命题企图:考察含参数的函数单一性的求解以及不等式恒建立条件下的参数范围的求取.考察考生的分类议论思想以及转变与化归思想的应用) (本小题满分 15 分 )已知函数 f(x)= (a+1)ln x+ax2+1.(1)议论函数 f(x)的单一性;<-,假如对随意1,x2∈(0,+∞),|f(x1 - 2 ≥4|x 1-x2,求a的取(2)设 a1x)f(x )||值范围 .2+a+ 1解 (1)f(x)的定义域为 (0,+∞ ), f′(x)=a+1+2ax=2axx .x当 a≥0 时, f′(x)>0,故 f(x)在 (0,+∞ )上单一递加;当a≤- 1 时, f′ (x)< 0,故 f(x)在(0,+∞ )上单一递减;当- 1<a<0 时,令 f′(x)=0,解得 x=-a+1 2a.即 x∈0,-a+1时, f ′(x)> 0;2aa+1x∈-2a,+∞ 时, f′(x)<0.故 f(x)在0,-a+1上单一递加,2a在-a+2a1,+∞ 上单一递减 .(2)法一不如设x1≤x2,而a<-1,由(1)知f(x)在(0,+∞ )上单一递减,进而对随意x1、x2∈(0,+∞ ),恒有|f(x1)-f(x2)|≥4|x1-x2|? f(x1)-f(x2)≥4(x2- x1 )? f(x1)+4x1≥f(x2)+ 4x2.a+1令 g(x)=f(x)+ 4x,则 g′(x)=x+2ax+ 4,则 f(x1)+4x1≥f(x2)+4x2等价于 g(x)在 (0,+∞ )上单一递减,a+ 1即 g′(x)=x+2ax+4≤ 0,-4x-1 (2x-1)2- 4x2- 2 (2x-1)2进而 a≤2x2+1=2x2+1=2x2+1-2,故 a 的取值范围为 (-∞,- 2].法二 a≤-4x- 1- 4x-12x2+1min.设φ(x)=2x2+1,则φ′(x)=-4(2x2+1)-(- 4x-1)·4x(2x2+1)22+4x-42+4x-4(-)(+)=8x2=8x2=42x 1x1 222+1)2.(2x+1)(2x +1)(2x当x ∈0,1时,φ′(x)<,φ(x)为减函数,∈1,+∞时,φ′>,φ20x2(x) 01(x)为增函数,∴φ(x)min=φ2=- 2,∴ a 的取值范围为 (-∞,- 2].。

高考数学(文)二轮复习:大题规范天天练 第三周 星期三

高考数学(文)二轮复习:大题规范天天练 第三周 星期三

星期三 (解析几何) 2017年____月____日解析几何(命题意图:考查椭圆方程与几何性质,直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点到直线x -y +32=0的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为10.(1)求椭圆C 的标准方程;(2)给出定点Q ⎝ ⎛⎭⎪⎫655,0,对于椭圆C 的任意一条过Q 的弦AB ,1|QA |2+1|QB |2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意知右焦点(c ,0)到直线x -y +32=0的距离d =|c +32|2=5,所以c =22,则a 2-b 2=8.①又由题意,得a 2+b 2=10,即a 2+b 2=10.②由①②解得a 2=9,b 2=1,所以椭圆C 的标准方程为x 29+y 2=1. (2)当直线AB 与x 轴重合时,1|QA |2+1|QB |2=1⎝ ⎛⎭⎪⎫655+32+1⎝ ⎛⎭⎪⎫655-32=10. 当直线AB 不与x 轴重合时,设A (x 1,y 1),B (x 2,y 2), 设直线AB 的方程为x =my +65,与椭圆C 方程联立. 化简得(m 2+9)y 2+12m 5y -95=0, 所以y 1+y 2=-12m 5(m 2+9).③ y 1y 2=-95(m 2+9).④ 又1|QA |2=1⎝ ⎛⎭⎪⎫x 1-652+y 21=1m 2y 21+y 21=1(m 2+1)y 21.同理1|QB|2=1(m2+1)y22,所以1|QA|2+1|QB|2=1(m2+1)y21+1(m2+1)y22=(y1+y2)2-2y1y2(m2+1)y21y22,(*)将③④代入(*)式,化简可得1|QA|2+1|QB|2=10.综上所述,1|QA|2+1|QB|2为定值10.。

高考数学二轮复习大题规范天天练第三周三角与数列文

高考数学二轮复习大题规范天天练第三周三角与数列文

星期一 (三角与数列)2016年____月____日1.三角知识(命题意图:考查平面向量数量积的坐标运算、三角恒等变换以及余弦定理的应用.)若向量a =(3sin ωx ,cos ωx ),b =(cos ωx ,cos ωx ),ω>0,x ∈R ,f (x )=a ·b -12,且f (x )的最小正周期是π,设△ABC 三个角A ,B ,C 的对边分别为a ,b ,c . (1)求ω的值;(2)若c =7,f (C )=12,sin B =3sin A ,求a ,b 的值. 解 (1)f (x )=a ·b -12=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +12cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π6, 由T =2π2ω=πω=π得ω=1. (2)∵f (C )=sin ⎝⎛⎭⎪⎫2C +π6=12, ∴2C +π6=π6(舍去)或2C +π6=5π6. ∴C =π3. 由余弦定理知7=a 2+b 2-2ab cos π3,即a 2+b 2-ab =7.① ∵sin B =3sin A ,∴由正弦定理得b =3a .②由①②解得a =1,b =3.2.数列知识(命题意图:考查等差、等比数列的通项公式以及数列不等式恒成立下的参数范围.)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围. 解 (1)等差数列{a n },a 1=1,S 3=6,∴d =1,故a n =n . ⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n ,①b 1·b 2·b 3·…·b n -1=2S n -1,② ①÷②得b n =2S n -S n -1=2a n =2n (n ≥2), b 1=2S 1=21=2,满足上式,故b n =2n .(2)设λb n >a n 恒成立⇒λ>n 2n 恒成立,设c n =n 2n ⇒c n +1c n =n +12n, 当n ≥2时,c n +1c n<1,{c n }单调递减, ∴(c n )max =c 1=12,故λ>12.。

高考数学二轮复习 大题规范天天练 第三周 综合限时练

高考数学二轮复习 大题规范天天练 第三周 综合限时练

星期六 (综合限时练)2016年____月____日解答题综合练(设计意图:训练考生在规定时间内得高分,限时:80分钟.)1.(本小题满分12分)已知向量m =(3sin 2x -1,cos x ),n =⎝ ⎛⎭⎪⎫12,cos x ,设函数f (x )=m ·n +1.(1)求函数f (x )的最小正周期及在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值;(2)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,其中A ,B 为锐角,f ⎝⎛⎭⎪⎫A +π6=85,f ⎝ ⎛⎭⎪⎫B 2-π12-1=1010,又a +b =2+1,求a ,b ,c 的值.解 (1)函数f (x )=m ·n +1=32sin 2x -12+cos 2x +1=sin ⎝⎛⎭⎪⎫2x +π6+1.∴T =2πω=2π2=π.∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴-12≤⎝ ⎛⎭⎪⎫2x +π6≤1,即12≤sin ⎝⎛⎭⎪⎫2x +π6+1≤2. ∴函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为2.(2)∵f ⎝ ⎛⎭⎪⎫A +π6=sin ⎝ ⎛⎭⎪⎫2A +π2+1=cos 2A +1=85,∴cos 2A =35,∴sin 2A =1-cos 2A 2=15.∵A 为锐角,∴sin A =55,cos A =255.又f ⎝ ⎛⎭⎪⎫B 2-π12-1=1010,∴sin B =1010.∵B 为锐角,∴cos B =31010.由正弦定理得a sin A =bsin B ,∴a =2b .又a +b =2+1,∴a =2,b =1.而sin C =sin(A +B )=sin A cos B +cos A sin B =22, 由正弦定理得a sin A =csin C ,∴c = 5.2.(本小题满分12分)某电视台2014年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训.下面是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图:赛制规定:参加复赛的40名选手中,获得的支持票数排在前5名的选手可进入决赛,若第5名出现并列,则一起进入决赛;另外,票数不低于95票的选手在决赛时拥有“优先挑战权”.(1)从进入决赛的选手中随机抽出3名,求其中恰有1名拥有“优先挑战权”的概率;(2)电视台决定,复赛票数不低于85票的选手将成为电视台的“签约歌手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关?”甲班乙班总计签约歌手未签约歌手总计P(K2≥k0)0.150.100.050.0250.0100.0050.001 k0 2.072 2.706 3.841 5.024 6.6357.87910.828参考公式:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d解(1)进入决赛的选手共6名,其中拥有“优先挑战权”的选手共3名.设拥有“优先挑战权”的选手编号为1,2,3,其余3人编号为A,B,C.被选中3人的编号所有可能的情况共20种,列举如下:123,12A,12B,12C,13A,13B,13C,1AB,1AC,1BC,23A,23B,23C,2AB,2AC,2BC,3AB,3AC,3BC,ABC,其中拥有“优先挑战权”的选手恰有1名的情况共9种,如下:1AB,1AC,1BC,2AB,2AC,2BC,3AB,3AC,3BC,∴所求概率为P=9 20.(2)2×2列联表:甲班乙班总计签约歌手31013未签约歌手171027总计20 20 40根据列联表中的数据,得到K 2的观测值k =213×27×20×20≈5.584>5.024,因此在犯错误的概率不超过0.025的前提下认为成为‘签约歌手’与选择的导师有关. 3.(本小题满分12分)如图所示,在正三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都是2,D 是侧棱CC 1上任意一点,E 是A 1B 1的中点.(1)求证:A 1B 1∥平面ABD ; (2)求证:AB ⊥CE ; (3)求三棱锥C -ABE 的体积.(1)证明 由正三棱柱的性质知A 1B 1∥AB ,因为AB ⊂平面ABD ,A 1B 1⊄平面ABD , 所以A 1B 1∥平面ABD .(2)证明 设AB 中点为G ,连接GE ,GC . ∵△ABC 为正三角形,且G 为中心, ∴AB ⊥GC .又EG ∥AA 1,AA 1⊥AB ,∴AB ⊥GE ,又CG ∩GE =G ,所以AB ⊥平面GEC . 而CE ⊂平面GEC , 所以AB ⊥CE .(3)解 由题意可知:V C -ABE =V E -ABC =13×EG ×S △ABC =13×2×12×22×32=233.4.(本小题满分12分)已知椭圆x 2a 2+y 2b2=1(a >b >0)上有一个长轴端点到两个焦点之间的距离分别为3+22,3-2 2.(1)如果直线x =t (t ∈R )与椭圆相交于不同的两点A ,B ,若C (-3,0),D (3,0),直线CA 与直线BD 的交点是K ,求点K 的轨迹方程;(2)过点Q (1,0)作直线l (与x 轴不垂直)与该椭圆交于M 、N 两点,与y 轴交于点R ,若RM→=λMQ →,RN →=μNQ →,试判断:λ+μ是否为定值?并说明理由.解 (1)由已知⎩⎨⎧a +c =3+22,a -c =3-22⇔⎩⎨⎧a =3,c =22,b 2=a 2-c 2=1.所以椭圆方程为x 29+y 2=1.依题意可设A (t ,y 0),B (t ,-y 0),K (x ,y ), 且有t 29+y 20=1,又CA :y =y 0t +3(x +3),DB :y =-y 0t -3(x -3),y 2=-y 20t 2-9(x 2-9),将t 29+y 2=1代入即得y 2=19(x 2-9),x 29-y 2=1. 所以直线CA 与直线BD 的交点K 的轨迹方程是x 29-y 2=1.(y ≠0)(2)λ+μ是定值,λ+μ=-94,理由如下:依题意,直线l 的斜率存在,故可设直线l 的方程为y =k (x -1),设M (x 3,y 3)、N (x 4,y 4)、R (0,y 5),则M 、N 两点坐标满足方程组⎩⎪⎨⎪⎧y =k (x -1),x 29+y 2=1. 消去y 并整理,得(1+9k 2)x 2-18k 2x +9k 2-9=0, 所以x 3+x 4=18k 21+9k 2①,x 3x 4=9k 2-91+9k2②.因为RM →=λMQ →,所以(x 3,y 3)-(0,y 5)=λ[(1,0)-(x 3,y 3)], 即⎩⎪⎨⎪⎧x 3=λ(1-x 3),y 3-y 5=-λy 3,又l 与x 轴不垂直,所以x 3≠1,所以λ=x 31-x 3,同理μ=x 41-x 4,所以λ+μ=x 31-x 3+x 41-x 4=(x 3+x 4)-2x 3x 41-(x 3+x 4)+x 3x 4.将①②代入上式可得λ+μ=-94.5.(本小题满分12分)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数解.解 (1)当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=-1+1x =1-xx ,令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数,f (x )max =f (1)=-1, (2)∵f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞. ①若a ≥-1e ,则f ′(x )≥0,f (x )在(0,e]上是增函数,∴f (x )max =f (e)=a e +1≥0不合题意. ②若a <-1e ,则由f ′(x )>0⇒a +1x >0,即0<x <-1a.由f ′(x )<0得a +1x<0,即-1a<x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上是增函数,在⎝ ⎛⎭⎪⎫-1a ,e 上是减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,则ln ⎝ ⎛⎭⎪⎫-1a =-2,∴-1a=e -2,即a =-e -2.∵-e 2<-1e ,∴a =-e 2为所求.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, ∴|f (x )|≥1又令g (x )=ln x x +12,g ′(x )=1-ln xx 2.令g ′(x )=0,得x =e.当0<x <e 时,g ′(x )>0,g (x )在(0,e)上单调递增, 当x >e 时,g ′(x )<0,g (x )在(e ,+∞)上单调递减, ∴g (x )max =g (e)=1e +12<1,∴g (x )<1,∴|f (x )|>g (x ), 即|f (x )|>ln x x +12,∴方程|f (x )|=ln x x +12没有实数解.6.请同学从下面所给的三题中选定一题作答 A.(本小题满分10分)选修4-1:几何证明选讲如下图所示,AB 是⊙O 的直径,C 、E 为⊙O 上的点,CA 平分∠BAE ,CF ⊥AB ,F 是垂足,CD ⊥AE ,交AE 延长线于D .(1)求证:DC 是⊙O 的切线; (2)求证:AF ·FB =DE ·DA .证明 (1)连接OC ,∠DAC =∠FAC ,∠FAC =∠ACO , ∴∠DAC =∠ACO , ∴AD ∥OC , ∵∠ADC =90°, ∴∠OCD =90°, ∴DC 为圆O 的切线. (2)△ADC 与△AFC 全等,∴DC =CF ,连接BC ,在Rt△ABC 中CF ⊥AB , ∴CF 2=AF ·FB , 又DC 2=DE ·DA , ∴AF ·FB =DE ·DA .B.(本小满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =5-32t ,y =-3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4cos ⎝ ⎛⎭⎪⎫θ-π3.(1)判断直线l 与圆C 的位置关系;(2)若点P (x ,y )在圆C 上,求3x +y 的取值范围.解 (1)直线l :x +3y -2=0,圆C :(x -1)2+(y -3)2=4, 圆心C 到直线的距离d =|1+3-2|2=1<2=r ,相交.(2)令⎩⎨⎧x =1+2cos θ,y =3+2sin θ(θ为参数),∴3x +y =3(1+2cos θ)+3+2sin θ=2sin θ+23cos θ+23=4sin ⎝ ⎛⎭⎪⎫θ+π3+23,∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π3≤1,∴3x +y 的取值范围是[23-4,23+4].C.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=log 3(|x -1|+|x -4|-a ),a ∈R . (1)当a =-3时,求f (x )≥2的解集;(2)当f (x )定义域为R 时,求实数a 的取值范围.解 (1)a =-3时,f (x )≥2等价于|x -1|+|x -4|+3≥9, ∴|x -1|+|x -4|≥6, ①当x ≥4时,2x -5≥6, ∴x ≥112;②当1<x <4时,3≥6,不成立; ③当x ≤1时,5-2x ≥6, ∴x ≤-12.综上,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥112或x ≤-12.(2)f (x )=log 3(|x -1|+|x -4|-a )的定义域为R ,即|x -1|+|x -4|>a 恒成立,|x -1|+|x -4|≥|(x -1)-(x -4)|=3, 当且仅当1≤x ≤4时取等号, ∴a <3,即a 的取值范围是(-∞,3).。

高三数学(文)二轮复习(全国通用) 题型增分天天练 答案 Word版含答案

高三数学(文)二轮复习(全国通用) 题型增分天天练 答案 Word版含答案

参考答案客观题提速练一1.B2.B3.C4.D 由余弦定理得5=b2+4-2×b×2×,解得b=3(b=-舍去),选D.5.B 因为6-2m>0,所以m<3,c2=m2-2m+14=(m-1)2+13,所以当m=1时,焦距最小,此时,a=3,b=2,所以=.选B.6.B 由题可得4×+ϕ=+kπ,k∈Z,所以ϕ=+kπ,k∈Z.因为ϕ<0,所以ϕmax=-.选B.7.C 在如图的正方体中,该几何体为四面体ABCD,AC=2,其表面积为×2×2×2+×2×2×2=4+4.选C.8.B 因为a2+a<0,所以a(a+1)<0,所以-1<a<0.取a=-,可知-a>a2>-a2>a.故选B.9.C 易判断函数为偶函数,由y=0,得x=±1.当x=0时,y=-1,且当0<x<1时,y<0;当x>1时,y>0.故选C.10.B 因为p=或p=,所以8.5=或8.5=,解得x3=8.故选B.11.C取CS的中点O,连接OA,OB.则由题意可得OA=OB=OS=2.CS为直径,所以CA⊥AS,CB⊥SB.在Rt△CSA中,∠CSA=45°,故AS=CScos 45°=4×=2,在△OSA中,OA2+OS2=AS2,所以OA⊥OS.同理,OS⊥OB.所以OS⊥平面OAB.△OAB中,OA=OB=AB=2,故△OAB的面积S=×OA2=×22=.故=S △OAB×OS=××2=.由O为CS的中点,可得=2=.12.D g′(x)=-x==,则当0<x<1时,g′(x)>0;当x>1时,g′(x)<0.所以g(x)max=g(1)=3,f(x)=-2-(x+1+),令t=x+1(t<0),设h(t)=-2-(t+),作函数y=h(t)的图象如图所示,由h(t)=3得t=-1或t=-4,所以b-a的最大值为3.选D.13.解析:由已知可得=2,即a·b=4.因为|a-b|=,所以a2-2a·b+b2=5,解得|a|=3.答案:314.解析:倾斜角为α的直线l与直线x+2y-3=0垂直,可得tan α=2.所以cos(π-2α)=-sin 2α=-=-=-=-.答案:-15.解析:作出可行域Ω(图略)可得,(4-a)(-a+2-1)=××5×1,所以(4-a)2=10,因为0<a<4,所以a=4-.答案:4-16.解析:由圆心在曲线y=(x>0)上,设圆心坐标为(a,),a>0,又圆与直线2x+y+1=0相切,所以圆心到直线的距离d=圆的半径r,由a>0得到d=≥=,当且仅当2a=,即a=1时取等号,所以圆心坐标为(1,2),圆的半径的最小值为,则所求圆的方程为(x-1)2+(y-2)2=5.答案:(x-1)2+(y-2)2=5客观题提速练二1.B2.A3.A4.D5.D6.D 已知sin2α+cos 2α=,将cos 2α=cos2α-sin2α,代入化简可得cos2α=,又因为α∈(0,),所以cos α=,α=,则tan α=.故选D.7.B 依题意,3x-2+=2⇒3x-1+(x-1)=5,log3(x-1)+(x-1)=5,令x-1=t(t>0),故3t=5-t,log3t=5-t,设两个方程的根分别为t1,t2,其中t1=a-1,t2=b-1,结合指数函数与对数函数图象间的关系可知t1+t2=5,故a+b=7.故选B.8.C 开始S=0,i=1;第一次循环S=1,i=2;第二次循环S=4,i=3;第三次循环S=11,i=4;第四次循环S=26,i=5;第五次循环S=57,i=6;故输出i=6.选C.9.C 由c2=(a-b)2+6可得c2=a2+b2-2ab+6.由余弦定理知c2=a2+b2-2abcos C,所以-2ab+6=-2abcos C,所以ab(1-cos C)=3.又C=,所以cos C=,则ab=6.所以S△ABC=absin C=.选C.10.A 由题意知该几何体的形状是放倒的圆柱,底面半径为1,高为2,左侧为一个底面半径为1,高为1的半圆锥、右侧是一个半径为1的半球组成的组合体,几何体的体积为××π×12×1+2π×12+××13=.选A.11.B 由已知可得f(x)=sin x-cos x=2sin(x-).将其图象向左平移m个单位(m>0)后可得g(x)=2sin(x+m-),其图象关于y轴对称,则其为偶函数,故有g(x)=2sin[+(x+m-π)]=2cos(x+m-).从而m-=kπ(k∈Z),所以m的最小值为π.故选B.12.A 因为OP在y轴上,在平行四边形OPMN中,MN∥OP,所以M,N两点的横坐标相等,纵坐标互为相反数,即M,N两点关于x轴对称,|MN|=|OP|=a,可设M(x,-y 0),N(x,y0),由k ON=k PM可得y0=,把点N的坐标代入椭圆方程得|x|=b,得N(b,).因为α为直线ON的倾斜角,所以tan α==,因为α∈(,],所以<tan α≤1即<≤1,≤<1,≤<1,又离心率e=,所以0<e≤.选A.13.514.解析:连接AC交BD于H,则可证得AC⊥平面PDB,连接PH,则∠CPH就是直线PC与平面PDB所成的角,即∠CPH=30°,因为CH=,所以PC=2,所以PD=2,所以四棱锥P ABCD的外接球的半径为,则其表面积为4π·3=12π. 答案:12π15.解析:设P(x,y),则满足(x-3)2+y2≤4,所以动点P在圆M:(x-3)2+y2=4上及内部,当AP与圆M相切时,sin ∠ACB最大.此时AP:y=(x+1),点C(0,),∠ACO=60°,tan ∠OCB=2,tan ∠ACB==-,sin ∠ACB=.答案:16.解析:当0≤x<2时,f(x)≤0,当x≥2时,函数 f(x)=1-|x-4|关于 x=4“对称”,当x≤-2时,函数关于x=-4“对称”,由F(x)=f(x)-a(0<a<1),得y=f(x),y=a(0<a<1),所以函数 F(x)=f(x)-a有5个零点.从左到右依次设为x1,x2,x3,x4,x5,因为函数f(x)为奇函数,所以x1+x2=-8,x4+x5=8,当-2<x≤0时,0≤-x<2,所以f(-x)=(-x+1)=-log3(1-x),即f(x)=log3(1-x),-2<x≤0,由f(x)=log3(1-x)=a,解得 x=1-3a,即x3=1-3a,所以函数F(x)=f(x)-a(0<a<1)的所有零点之和为x1+x2+x3+x4+x5=1-3a. 答案:1-3a客观题提速练三1.C2.B3.B4.B5.C 因为双曲线-=1(a>0,b>0)的一个焦点坐标为(2,0),所以c=2,焦点在x轴上,因为渐近线方程是y=x,所以=,令b=m(m>0),则a=m,所以c==2m=2,所以m=1,所以a=1,b=,所以双曲线方程为x2-=1.6.B 因为a2-8a5=0,所以=q3=,所以q=.所以=+1=+1=.选B.7.D 根据约束条件画出大致可行域,可判断a>0,z=表示过点(-1,1)和可行域内一点直线的斜率,则当取直线x=a和2x+y-2=0的交点(a,2-2a)时,z取最小值,得<⇒a>.选D.8.B 将函数f(x)=cos 2x的图象向右平移个单位得到函数g(x)=cos 2(x-)=cos(2x-)=sin 2x的图象,图象不关于x=对称,故A不对,g(x)是奇函数,故C不对,周期T=π,不关于点(,0)对称,故D不对,故选B.9.B N=5,k=1,S=0,第一次循环S=,k=2;第二次循环S=,k=3;第三次循环S=,k=4;第四次循环S=,k=5;第五次循环S=,k<5不成立,输出S=.故选B.10.B 由y=f(x)和y=g(x)的图象知,当a=1时,h(x)的图象如图,h(x)max=2.故选B.11.C 由三视图可知,该几何体的直观图如图所示,是由两个相同的直五棱柱组合而成,故这个几何体的表面积为S=[(2×2-×1×1)×2+2×2+1×2+×2+2×2]×2=34+4.选C.12.A f′(x)=3ax2+2bx-3,因为在点(1,f(1))处的切线方程为y+2=0,所以解得a=1,b=0,f(x)=x3-3x,在[-2,2]上f(x)的最大值为2,最小值为-2, 因为对任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,所以c≥|2-(-2)|=4.故选A.13.解析:S2n+3=a1+(a2+a3)+(a4+a5)+…+(a2n+2+a2n+3)=1+++…+=(1-).答案:(1-)14.y=7x15.解析:因为BC⊥AA1,BC⊥A1B,所以BC⊥平面AA1B,则BC⊥AB,所以三棱锥的外接球的球心是A1C的中点,则外接球的半径R=,所以外接球的表面积S=4π×()2=8π.答案:8π16.解析:设内切圆分别与AC,BC切于点F,G,BE的中点为H,则AF=AH,BG=BH,CF=CG,所以CA-CB=AF-BG=AH-BH=2,所以点C在以A,B为焦点的双曲线的右支上.以AB所在直线为x轴,ED所在直线为y轴建立平面直角坐标系.如图所示,则B(2,0),D(0,3),易得2c=4,2a=2.故点C在双曲线x2-=1的右支上.因为CA+CD=2+CB+CD,所以当B,C,D三点共线,且C在线段BD上时,CA+CD取得最小值.将直线BD的方程+=1与x2-=1联立消去y得x2+12x-16=0,解得x=-6±2,由图可知CA+CD取得最小值时点C的横坐标为2-6,即点C到DE的距离为2-6.答案:2-6客观题提速练四1.B2.A3.D4.B5.B 因为=3,所以数列{a n-1}是公比q=3,首项为1的等比数列,所以a n=3n-1+1,所以a5=82,a6=244,所以n的最大值为5.选B.6.C 由侧视图、俯视图知该几何体是高为2、底面积为×2×(2+4)=6的四棱锥,其体积为4,又三棱柱的体积为8.故选C.7.D 线段AB的垂直平分线2x-y-4=0过圆心,令y=0得x=2,所以圆心为(2,0),半径为=.选D.8.A S=0,n=0,满足条件0≤k,S=3,n=1,满足条件1≤k,S=7,n=2,满足条件2≤k,S=13,n=3,满足条件3≤k,S=23,n=4,满足条件4≤k,S=41,n=5,满足条件5≤k,S=75,n=6,…若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5, 则输入的整数k的最大值为4.故选A.9.C a n=2n-1,S n==2n-1.A.+=+,2=,+=⇒=0⇒n 0∈⌀,所以A 错.B.a n·a n+1=2n-1·2n=22n-1,a n+2=2n+1,构造函数f(x)=2x,易知f(x)在R上单调递增,当x=2时,f(2x-1)=f(x+1),R上不能保证f(2x-1)≤f(x+1)恒成立,所以B错.C.S n<a n+1恒成立即2n-1<2n恒成立,显然C正确.10.A 因为AC⊥平面BCD,所以AC⊥BD,因为BD⊥AD,所以BD⊥平面ACD,所以三棱锥A BCD可以补成以AB为对角线的长方体,外接球直径为AB. 所以4R2=AB2=BD2+AD2=4+20=24.R=,V=πR3=8π.选A.11.C 由y=是奇函数,其图象关于原点对称.又当x>0时,y=,y′=,由y′=0得x=,当0<x<时,y′>0,当x>时,y′<0,所以原函数在(0,)上是增函数,在(,+∞)上是减函数,故选C. 12.B 因为y=f(x+1)-1为奇函数,所以f(-x+1)-1=-f(x+1)+1,即f(x+1)+f(-x+1)=2.所以(x+1)3+a(x+1)2+b(x+1)+1+(-x+1)3+a(-x+1)2+b(-x+1)+1=2.即(3+a)x2+a+b+1=0,所以所以所以f(x)=x3-3x2+2x+1,所以f′(x)=3x2-6x+2.令f′(x)=0,得x=,所以易知f(x)在(-∞,),(,+∞)上单调递增,在(,)上单调递减,f()>0,所以f(x)的大致图象如图.所以f(x)有1个零点.故选B.13.解析:由图象可得点B的纵坐标为y B=1,令tan(x-)=1,则有x-=,解得x=3,即B(3,1),故有=(3,1);由图象知点A的纵坐标为y A=0,令tan(x-)=0,则有x-=0,解得x=2,即A(2,0),故有=(2,0),所以(+)·=(5,1)·(1,1)=6.答案:614.解析:令这个三角形区域的三个顶点分别是A(0,4),B(2,2),C(4,4),经过计算知道当直线经过点C时z的最大值是z=3×4-2×4=4.答案:415.解析:利用双曲线的方程及性质求解.设双曲线的焦点坐标为F1(-c,0),F2(c,0).因为B(0,b),所以F 1B所在的直线为-+=1.双曲线渐近线为y=±x,由得Q(,).由得P(-,).所以PQ的中点坐标为(,).由a2+b2=c2得,PQ的中点坐标可化为(,).直线F1B的斜率为k=,所以PQ的垂直平分线为y-=-(x-).令y=0,得x=+c,所以M(+c,0),所以|F2M|=.由|MF2|=|F1F2|,得==2c,即3a2=2c2,所以e2=,e=.答案:16.解析:当x≥0时,f′(x)=1+cos x≥0,所以f(x)在[0,+∞)上单调递增.又f(x)为偶函数,所以f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增. 因为f(ax+1)≤f(x-2),所以|ax+1|≤|x-2|对∀x∈[,1]恒成立,即|ax+1|≤2-x.所以即所以所以-2≤a≤0.答案:[-2,0]客观题提速练五1.D2.D3.C4.D5.A 因为|QF|=2|PF|,所以x2+1=2(x1+1),所以x2=2x1+1.选A.6.D 函数f(x)=x2-lg(10x+10)=x2-1-lg(x+1),在同一坐标系中画出函数y=x2-1和y=lg(x+1)的图象,可判断f(b)<0.又f(-)>0,f()>0.故选D.7.B 利用正弦定理化简(a+b+c)(sin A+sin B-sin C)=asin B得(a+b+c)(a+b-c)=ab,整理得(a+b)2-c2=ab,即a2+b2-c2=-ab,所以cos C===-,又C为三角形的内角,则C=.选B.8.D 由三视图可得该几何体是一个由直四棱柱与半圆柱组成的组合体,其中四棱柱的底面是长为2,宽为1的长方形,高为2,故其体积V1=1×2×2=4;半圆柱的底面半径为r=1,母线长为2,故其体积V2=π×r2h=π×12×2=π.所以该组合体的体积V=V1+V2=4+π.9.C 根据题意,a是从集合{1,2,3,4,5}中随机抽取的一个数,a有5种情况,b是从集合{1,2,3}中随机抽取的一个数,b有3种情况,则方程x2+2ax+b2=0中a,b有3×5=15种情况,若方程x2+2ax+b2=0有两个不相等的实根,则Δ=(2a)2-4b2>0,即a>b,共9种情况;则方程x2+2ax+b2=0有两个不相等的实根的概率P==.故选C.10.B 不等式组表示的可行域如图所示,由z=ax+y的最大值为2a+3,可知z=ax+y在的交点(2,3)处取得,由y=-ax+z可知,当-a≥0时,需满足-a≤1,得-1≤a≤0,当-a<0时,需满足-a≥-3,得0<a≤3,所以-1≤a≤3.选B.11.B 分别过点A,B作准线x=-1的垂线,垂足分别为A1,B1,设准线x=-1与x轴交于点K.根据抛物线的定义得|AA1|=|AF|,|BB1|=|BF|.设|BF|=m,|AF|=n,则|BB1|=m,|AA1|=n,|BC|=2m,由△CBB1∽△CFK得=,=,n=4,选B.=,3m=4.由△CFK∽△CAA12.B 由f(x)+xf′(x)>0⇒[xf(x)]′>0,设g(x)=xf(x)=ln x+(x-b)2.若存在x∈[,2],使得f(x)+xf′(x)>0,则函数g(x)在区间[,2]上存在子区间使得g′(x)>0成立.g′(x)=+2(x-b)=,设h(x)=2x2-2bx+1,则h(2)>0或h()>0,即8-4b+1>0或-b+1>0,得b<.故选B.13.414.解析:开始n=1,S=1,第一次循环,S=,n=2;第二次循环,S=,n=3;第三次循环,S=,n=4;第四次循环,S=,n=5;第五次循环,S=,n=6.n>5,输出S=.答案:15.解析:函数f(x)=cos 2x+asin x在区间(,)上是减函数, 则f′(x)=-2sin 2x+acos x≤0在(,)上恒成立,2x∈(,π)⇒sin 2x∈(0,1],又cos x∈(0,),-2sin 2x+acos x≤0⇒a≤=4sin x,因为sin x∈(,1),所以a≤2,所以a的取值范围是(-∞,2].答案:(-∞,2]16.解析:设数列{a n}的公差为d,数列{b n}的公比为q,则由得解得所以a n=3+2(n-1)=2n+1,b n=2n-1,=,T n=+++…+,T n=+++…+,所以T n=1++++…+-=1+-=5-,T n=10-<10.答案:10客观题提速练六1.D2.C3.A4.C 据题意,双曲线的一条渐近线方程为bx-ay=0,点F(c,0)到渐近线的距离为=b,所以2a=b,即得e===.选C.5.D 因为cos(π+2α)=-sin 2α=-=-=-=-.故选D.6.D 因为tan(α+β)=9tan β,所以=9tan β,所以9tan αtan2β-8tan β+tan α=0,(*)因为α,β∈(0,),所以方程(*)有两正根,tan α>0,所以Δ=64-36tan2α≥0,所以0<tan α≤.所以tan α的最大值是.故选D.7.C8.B 设切点坐标为(x0,ax0),由y′=,则解得a=2.故选B.9.C S=6+2+4+(1+3)×1=12+4.10.C 由f(x)≤|f()|对x∈R恒成立知x=时,f(x)取得最值,故+ϕ=k π+(k∈Z),ϕ=kπ+(k∈Z),又f()>f(π),所以ϕ=(2k+1)π+(k∈Z),所以f(x)=-sin(2x+),令2kπ+≤2x+≤2kπ+(k∈Z)得kπ+≤x≤k π+,k∈Z.11.A 当a>0时,在R上不具有单调性(如图1),排除B;取a=-3时,在R 上不具有单调性(如图2),排除D;取a=-时,在R上不具有单调性(如图3),排除C.故选A.12.D 因为f(x)-2=(e x+1)(ax+2a-2)-2<0,x∈(0,+∞),所以a(x+2)-2<,所以∃x∈(0,+∞)时,直线g(x)=a(x+2)-2的图象在函数h(x)=的图象的下方.因为h(x)=在(0,+∞)上单调递减,g(x)=a(x+2)-2过定点A(-2,-2).由g(x)和h(x)的图象知当直线g(x)过点B(0,1)时,a=,此时,x∈(0,+∞),g(x)>h(x),要使∃x∈(0,+∞),g(x)<h(x),则a<.故选D.13.14.解析:取=a,=b,则|a|=|b|=2,且a·b=0.则=-=b-a;=+=+=a+(b-a)=a+b.故·=(a+b)·(b-a)=-a2+b2=-×22+×22=-2.答案:-215.解析:在△ABC中,由余弦定理知BC2=AB2+AC2-2AB·AC·cos 120°=4+4-2×2×2×(-)=12,所以BC=2.由正弦定理,设△ABC的外接圆半径为r,满足=2r,所以r=2.由题意知球心到平面ABC的距离为1,设球的半径为R,则R==,所以S球=4πR2=20π.答案:20π16.解析:圆的标准方程为(x-1)2+(y-1)2=4,则圆心为C(1,1),半径R=2,△PAC的面积S=PA·AC=×2PA=PA,所以要使△PAC的面积最小,则PA最小.由PC=,知PC最小即可,此时最小值为圆心C到直线的距离d===4.即PC=d=4,此时PA====2,即△PAC的面积的最小值为S=2.答案:2客观题提速练七1.C2.A3.B4.D 抛掷一枚质地均匀的骰子包含6个基本事件,由函数f(x)=x2+2ax+2有两个不同零点,得Δ=4a2-8>0,解得a<-或a>.又a为正整数,故a的取值有2,3,4,5,6,共5种结果,所以函数f(x)=x2+2ax+2有两个不同零点的概率为.故选D.5.C 由三视图可知,该棱锥是以边长为的正方形为底面,高为2的四棱锥,其直观图如图所示,则PA=2,AC=2,PC=2,PA⊥底面ABCD,PC为该棱锥的外接球的直径,所以R=,外接球的体积V=πR3=π,故选C.6.B 由程序框图可知,第一次循环,S=1,i=2;第二次循环,S=5,i=3;第三次循环,S=14,i=4;第四次循环,S=30,i=5;结束循环,输出S=30,故选B.7.B 设等差数列{a n}的公差为d,由-=3,得-=3,解得d=2.故选B.8.D 双曲线-=1(a>0,b>0)的渐近线方程为y=±x,又此双曲线的离心率为2,所以c=2a,可得b==a,因此,双曲线的渐近线方程为y=±x.故选D.9.D 由函数的部分图象,可得A=2,=·=-,所以ω=2.再根据图象经过点(,0),可得2·+ϕ=π+2kπ,k∈Z,所以ϕ=-,所以f(x)=2sin(2x-).在区间[0,]上,2x-∈[-,],f(x)∈[-1,2],所以f(x)在区间[0,]上没有单调性,且f(x)有最小值为-1,故排除A,B,C.故选D.10.B 由题意知a>0,f′(x)=a(x-1)2+≥,即tan α≥,所以α∈[,).故选B.11.C 如图所示,=a,=b,则==a-b,因为a-b与b的夹角为150°,所以∠ADB=30°,设∠DBA=θ,则0°<θ<150°,在三角形ABD 中,由正弦定理得=,所以|b|=×sin θ=2sin θ,所以0<|b|≤2,故选C.12.D 根据题意,作出示意图,如图所示,设|PA|=|PB|=x(x>0),∠APO=α,则∠APB=2α,|PO|==,所以sin α==,cos ∠APB=cos 2α=1-2sin2α=,所以·=||·||cos 2α=x2·=(2+x2)+-6≥2-6=4-6,当且仅当2+x2=,即x=时等号成立,故选D.13.解析:作出约束条件表示的可行域,如图△ABC内部(含边界),作直线l:ax+by=0,把直线l向上平移时z增大,即l过点A(3,4)时,z取最大值7,所以3a+4b=7,因此+=(3a+4b)(+)=(25++)≥(25+2)=7,当且仅当=时等号成立,故所求最小值为7.答案:714.解析:当x>0时,由ln x-x2+2x=0得ln x=x2-2x,设y=ln x,y=x2-2x,作出函数y=ln x,y=x2-2x的图象(图略),由图象可知,此时有两个交点.当x≤0时,由4x+1=0,解得x=-.所以函数的零点个数为3.答案:315.解析:在△ABC中,设a,b,c分别是△ABC的三个角A,B,C的对边. 因为∠B=60°,由余弦定理得b2=a2+c2-2accos60°=a2+c2-ac=(a+c)2-3ac,则ac==(a+c)2-1≤()2(当且仅当a=c时等号成立).即(a+c)2-1≤()2,所以0<a+c≤2,故<a+b+c≤3,则△ABC周长的最大值为3.答案:316.解析:设MN为曲线y=1-x2的切线,切点为(m,n), 可得n=1-m2,y=1-x2的导数为y′=-x,即有直线MN的方程为y-(1-m2)=-m(x-m),令x=0,可得y=1+m2,再令y=0,可得x=(m>0),即有△MON面积为S=(1+m2)·=,由S′=(-+48m2+24)=0,解得m=,当m>时,S′>0,函数S递增;当0<m<时,S′<0,函数S递减.即有m=处取得最小值,且为.答案:客观题提速练八1.C2.A3.A 在矩形ABCD中,=+=+,则==(5e1+3e2),故选A.4.D 因为f(x)=x+=x-2++2≥2+2=4,当且仅当x-2=,即x=3时等号成立,故选D.5.B6.C 由于该四棱锥为正四棱锥,其下底面正方形的边长为2,高为2,侧面的高为h==,所以该四棱锥的侧面积S=4××2×=4.故选C.7.C 由程序框图可知,第一次循环,S=log23,k=3;第二次循环,S=log23·log34=log24,k=4;第三次循环,S=log24·log45=log25,k=5;…;第六次循环,S=log28=3,k=8,结束循环,输出S=3,故选C.8.C y=log2x的图象关于y轴对称后和原来的图象一起构成y=log2|x|的图象,再向右平移1个单位得到y=log2|x-1|的图象,然后把x轴上方的不动,下方的对折上去,可得g(x)=|log2|x-1||的图象;又f(x)=cos πx的周期为2,如图所示,两图象都关于直线x=1对称,且共有A,B,C,D4个交点,由中点坐标公式可得x A+x D=2,x B+x C=2,所以所有交点的横坐标之和为4,故选C.9.D 由题可得T=(-)×2=⇒ω=3,代入点(,0),得sin(+ϕ)=0,所以+ϕ=kπ,k∈Z,因为-π<ϕ<0,所以ϕ=-,所以f(x)=2sin(3x-),所以将g(x)=2sin 3x的图象向右平移个单位即可得到f(x)=2sin[3(x-)]=2sin(3x-)的图象.选D.10.D 本题考查古典概型的概率计算.事件“富强福或友善福被选到”的对立事件是“富强福和友善福都未被选到”,从富强福、和谐福、友善福、爱国福、敬业福五福中随机选三福的基本事件有(富强福、和谐福、友善福),(富强福、和谐福、爱国福),(富强福、和谐福、敬业福),(富强福、友善福、爱国福),(富强福、友善福、敬业福),(富强福、爱国福、敬业福),(和谐福、友善福、爱国福),(和谐福、、友善福、敬业福),(和谐福、爱国福、敬业福),(友善福、爱国福、敬业福),共10种情况,“富强福和友善福都未被选到”只有1种情况,根据古典概型概率和对立事件的概率公式可得,富强福和友善福中至少有一个被选到的概率P=1-=.11.B 在△ABC中,角A,B,C所对的边分别是a=4,b=5,c=6,由余弦定理,得cos C===,所以sin C===,所以△ABC的面积为S△ABC=absin C=×4×5×=,故选B.12.D 因为|PF1|∶|F1F2|∶|PF2|=4∶3∶2,所以设|PF1|=4x,|F1F2|=3x, |PF2|=2x,x>0.若曲线C为椭圆,则有|PF1|+|PF2|=4x+2x=6x=2a,|F1F2|=3x=2c,所以椭圆的离心率为==.若曲线C为双曲线,则有|PF1|-|PF2|=4x-2x=2x=2a,|F1F2|=3x=2c,所以双曲线的离心率为==.故选D.13.解析:观察不等式的规律知1>,1++>1=,1+++…+>,1+++…+>,1+++…+>,…, 由此猜测第6个不等式为1+++…+>.答案:1+++…+>14.-15.解析:设g(x)=f(x)-x,g′(x)=f′(x)-<0,g(1)=f(1)-=,不等式f(2cos x)<2cos2-可化为f(2cos x)-cos x<,即g(2cos x)<g(1),所以由g(x)单调递减,得2cos x>1,即cos x>,所以x∈[0,)∪(,2π].答案:[0,)∪(,2π]16.解析:如图,可见+=-=,所以①正确.设A(x 1,y1),B(x2,y2),则C(-,y1),D(-,y2),“存在λ∈R,使得=λ成立”等价于“D,O,A三点共线”,等价于“=”,等价于“y1y2=-p2”.又因为F(,0),直线AB可设为x=my+,与y2=2px联立,消去x即得y2-2pmy-p2=0,于是,y1y2=-p2成立,所以②正确.“·=0”,等价于“p2+y1y2=0”,据y1y2=-p2成立知③正确.据抛物线定义知|AB|=|AC|+|BD|,所以,以AB为直径的圆半径长与梯形ACDB中位线长相等,所以该圆与CD相切,设切点M,则AM⊥BM,所以·=0.④不正确.答案:①②③客观题提速练九1.D2.C3.C 本题属于几何概型求概率问题,设矩形长为a,宽为b,则点取自△ABE内部的概率P===.故选C.4.C 双曲线的离心率e==,由·=0可得⊥,则△PF1F2的面积为||||=9,即||||=18,又在直角△PF1F2中,4c2=||2+||2=+2||||=4a2+36,解得a=4,c=5,b=3,所以a+b=7.故选C.5.B6.A 在三角形OAB中,cos∠AOB==-,所以∠AOB=,所以·=||·||cos∠AOB=1×1×(-)=-,故选A.7.A 当x>0时,f(x)=2x>1,当x≤0时f(x)=x+1≤1,又f(1)=2,所以f(a)=-2=a+1,所以a=-3.故选A.8.B 因为数列{a n}为等差数列,所以2a7=a3+a11.因为2a 3-+2a11=0,所以4a 7-=0.因为b7=a7≠0,所以a7=4.因为数列{b n}是等比数列,所以b 6b8===16,所以log2(b6b8)=log216=4.故选B.9.D 如图,设正方体棱长为2,四面体为ABCD,则正视图、俯视图分别为图④,图②.故选D.10.D 函数f(x)的导函数f′(x)=x2+2bx+(a2+c2-ac),若函数有极值点,则Δ=(2b)2-4(a2+c2-ac)>0,得a2+c2-b2<ac,在△ABC中,由余弦定理,得cos B=<,则B>,故选D.11.C 直线l:y=-x+a与渐近线l1:bx-ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),所以=(,),=(,-),因为=,所以=,得b=2a,所以c2-a2=4a2,所以e2==5,所以e=.故选C.12.C 令y1=x2+,y2=aln x(a>0),y′1=2x-=,y′2=(a>0,x>0),在(0,1)上y1为减函数,在(1,+∞)上y1为增函数,所以y1为凹函数,而y2为凸函数.因为函数f(x)=x2+-aln x(a>0)有唯一零点x0,所以y1,y2有公切点(x0,y0),则⇒+-2(-)ln x0=0,构造函数g(x)=x2+-2(x2-)·ln x(x>0),g(1)=3,g(2)=4+1-2(4-)ln 2=5-7ln 2.欲比较5与7ln 2大小,可比较e5与27大小.因为e5>27,所以g(2)>0,g(e)=e2+-2(e2-)=-e2+<0,所以x0∈(2,e).所以m=2,n=3,所以m+n=5.故选C.13.14.解析:由频率分布直方图可得[2 500,3 000)(元)月收入段共有10 000×0.000 5×500=2 500(人),按分层抽样应抽出2 500×=25(人).答案:2515.解析:设P(m,n),因为||=,·=15,所以解得所以P(3,1),所以A=1,ω===.把点P(3,1)代入函数y=sin(x+ϕ),得1=sin(×3+ϕ).因为-π<ϕ<π,所以ϕ=-,所以函数的解析式为y=sin(x-).答案:y=sin(x-)16.解析:当x=0时,S为矩形,其最大面积为1×=,所以①错误;当x=y=时,截面如图所示,所以②正确;当x=,y=时,截面如图,所以③错误;当x=,y∈(,1)时,如图,设截面S与棱C1D1的交点为R,延长DD1,使DD1∩QR=N,连接AN交A1D1于F,连接FR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R∶D1R=C1Q∶D1N,可得RD1=2-,所以④正确.综上可知正确的命题序号应为②④.答案:②④客观题提速练十1.B2.C 因为a=ln 2>ln >,b====<,c=sin 30° =,所以b<c<a.故选C.3.A4.C 由题可得sin(+α)=,sin(-)=,因为α+=(α+)-(-),所以cos(α+)=cos[(α+)-(-)]=cos(α+)cos(-)+sin(α+)sin(-)=×+×==.故选C.5.D ①应是系统抽样,即①为假命题;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②为真命题;在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.4个单位,故③为真命题;对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越小,故④为假命题.故真命题为②③.6.A 先后掷两次骰子,共有6×6=36种结果,满足条件的事件是以(x,y)为坐标的点落在直线2x-y=1上,x=1时,y=1;x=2时,y=3;x=3时,y=5,共有3种结果,所以根据古典概型的概率公式得到以(x,y)为坐标的点落在直线2x-y=1上的概率P==.故选A.7.A 因为在△ABC中,==2,所以由正弦定理可得==2,即c=2 b.因为a2-b2=bc,所以a2-b2=b×2b,解得a2=7b2,所以由余弦定理可得cos A===,因为A∈(0,π),所以A=.故选A.8.B 由已知不妨设c=xa+yb,由|c|=1,得x2+y2=1.则(a+b+c)·(a+c)=[(x+1)a+(y+1)b]·[(x+1)a+yb]=(x+1)2a2+(y+1)yb2=2x+y+2,设z=2x+y+2,则y=-2x+z-2,代入x2+y2=1可得x2+(-2x+z-2)2=1,整理得5x2-4(z-2)x+[(z-2)2-1]=0,故Δ=16(z-2)2-4×5[(z-2)2-1]≥0,整理得(z-2)2≤5,解得2-≤z≤2+.故z的最大值为2+.故选B.9.B 由题可知f(x)在各段上分别单调递增, 若f(a)=f(b)且a>b≥0,则必有a≥1,0≤b<1,因为f(1)=,f(b)=时b=,所以≤b<1,≤f(a)<2,得b·f(a)∈[,2).故选B.10.D 由题意,当此四棱锥体积取得最大值时,四棱锥为正四棱锥, 因为该四棱锥的表面积等于16+16,设球O的半径为R,则AC=2R,SO=R,所以该四棱锥的底面边长为AB=R,则有(R)2+4××R×=16+16,解得R=2.所以球O的体积是πR3=π.故选D.11.A 因为直线l的方程为+=1,c2=a2+b2,所以原点到直线l的距离为=c,所以4ab=c2,所以16a2b2=3c4,所以16a2(c2-a2)=3c4,所以16a2c2-16a4=3c4,所以3e4-16e2+16=0,解得e=或e=2,因为0<a<b,所以e=2.故选A.12.C 转化为:如图,g(x)=+1与h(x)=|x-a|+a的交点情况.h(x)=|x-a|+a的顶点在y=x上,而y=x与g(x)=+1的交点为(2,2),(-1,-1),当a≤-1时,f(x)=1有明显的两根-1和2,第三根应为-4,解方程组得a=-;当2≥a>-1时,f(x)=1有明显的根2,设另两根为2-d,2-2d,则点A(2-d,+1),B(2-2d,+1)连线斜率为-1,解得d=.则可得AB的方程为y-=-(x-)与y=x联立解得a=.当a>2时,方程只有一根.故选C.13.解析:观察规律知,左边为n项的积,最小项和最大项依次为(n+1),(n+n),右边为连续奇数之积乘以2n,则第n个等式为:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1).答案:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)14.解析:由三视图可知,该几何体是大圆柱的四分之一去掉小圆柱的四分之一,其中大圆柱的半径为4,高为4,小圆柱的半径为2,高为4,则大圆柱体积的四分之一为4×π×42=16π,小圆柱体积的四分之一为4×π×22=4π,则几何体的体积为16π-4π=12π.答案:12π15.解析:M在椭圆+=1上,可设M(6cos α,3sin α)(0≤α<2π),则·=·(-)=-·=,由K(2,0),可得=||2=(6cos α-2)2+(3sin α)2=27cos2α-24cos α+13=27(cos α-)2+,当cos α=时,取得最小值.答案:16.解析:当x≥0时,令f(x)=0,得|x-2|=1,即x=1或3. 因为f(x)是偶函数,则f(x)的零点为x=±1和±3.令f[f(x)]=0,则f(x)=±1或f(x)=±3.因为函数y=f[f(x)]有10个零点,则函数y=f(x)的图象与直线y=±1和y=±3共有10个交点.由图可知,1<a<3.答案:(1,3)客观题提速练十一1.D2.A sin 2α====(设t=tan α,t>0),log2tan α>1⇔tan α>2.若t>2,则t+>,所以0<sin 2α<.若0<sin 2α<,则t+>,又t>0,所以t>2或0<t<.故选A.3.B4.B 由三视图知几何体是一个四棱锥,四棱锥有一条侧棱与底面垂直,且侧棱长为1,所以四棱锥的体积是×1×1×1=.故选B.5.A 三支队用1,2,3表示,则甲、乙参加表演队的基本事件为11,12,13,21,22,23,31,32,33. 基本事件总数为9,这两位志愿者参加同一支表演队包含的基本事件个数为3,所以这两位志愿者参加同一支表演队的概率为P==.故选A.6.C7.A 首先由f(x)为奇函数,得图象关于原点对称,排除C,D,又当0<x<π时,f(x)>0,故选A.8.D 由f′(x)=12x2-2ax-2b,f(x)在x=1处有极值,则有a+b=6,又a>0,b>0,所以ab≤()2=9当且仅当a=b=3时“=”成立.故选D.9.B 由= a得=sin C,即3cos C=sin C⇒tan C=,故cos C=,所以c2=b2-2b+12=(b-)2+9,因为b∈[1,3],。

高考数学二轮复习大题规范天天练 星期四 第四周 Word版含解析

高考数学二轮复习大题规范天天练 星期四 第四周 Word版含解析

星期四(函数与导数) 年月日
函数与导数知识(命题意图:考查函数的极值点及函数的零点(或方程根)的问题) (本小题满分分)已知函数()=,()=-.
()求()的单调区间和极值点;
()是否存在实数,使得函数()=
++()有三个不同的零点?若存在,求出的取值范围;若不存在,请说明理由. 解()′()=+(>),
由′()>得>,′()<得<<,
∴()在上单调递减,在上单调递增,
()的极小值点为=.
()假设存在实数,使得函数()=++()有三个不同的零点,
即方程++-=有三个不等实根,
令φ()=++-,
φ′()=+-==,
由φ′()>得<<或>,
由φ′()<得<<,
∴φ()在(,)上单调递增,(,)上单调递减,(,+∞)上单调递增,
所以φ()的极大值为φ()=-+,φ()的极小值为φ()=-++.要使方程++-=有三个不等实根,则函数φ()的图象与轴要有三个交点,
根据φ()的图象可知必须满足+<,))解得<<-,
∴存在实数,使得方程++()=有三个不等实根,
实数的取值范围是<<- .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

星期四(函数与导数)年月日
函数与导数(命题意图:考查函数单调性与导数的关系、不等式恒成立问题,考查推理论证能力,运算求解能力、分类讨论思想、等价转化思想等)
(本小题满分分)已知函数()=-+(≠),
()=(-)+-.
()求函数()的单调区间;
()若=时,关于的不等式()≤()恒成立,求整数的最小值.
解()′()=-+=-
=-(>),当>时,由′()>,得<<,由′()<,得>,所以()的单调递增区间为(,),单调递减区
间为(,+∞);当<时,由′()>,得<<-,由′()<,得>-,所以()的单调递增区间为,单调递减
区间为.
()令()=()-()=-+(-)+(>),
′()=-+-==-.
当≤时,′()>,所以函数()在(,+∞)上单调递增,而()=-×+(-)+=-+>,所以关于的不等式()≤()不恒成立;当>时,若<<,′()>;若>,′()<,所以函数()在上单调递增,在
上单调递减,所以()==-+(-)×+=-().
令()=-(),因为=,()=- <.
又()在(,+∞)上是减函数,所以当≥时,()<,
故整数的最小值为.。

相关文档
最新文档