统计学之抽样与抽样分布培训课件
抽样与抽样分布

抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
统计学-抽样分布与抽样方法

保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法
统计学之抽样与抽样分布

的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
统计学 第三章抽样与抽样分布

=10
= 50 X
总体分布
n= 4
x 5
n =16
x 2.5
x 50
X
抽样分布
从非正态总体中抽样
结论:
从非正态中体中抽样,所形成 的抽样分布最终也是趋近于正态分 布的。只是样本容量需要更大些。
总结:中心极限定理
设从均值为,方差为 2的一个任意总体中抽 取容量为n的样本,当n充分大时(超过30),样本 均值的抽样分布近似服从均值为μ、方差为σ2/n的
总体
样本
参数
统计量
总体与样本的指标表示法
总体参数
样本统计量
(Parameter) (Sample Statistic)
容量 平均数 比例 方差 标准差
N
n
X
x
p
2
s2
s
小练习
某药品制造商感兴趣的是用该公司开发的某 种新药能控制高血压人群血压的比例。进行了一 项包含5000个高血压病人个体的研究。他发现用 这种药后80%的个体,他们的高血压能够被控制。 假定这5000个个体在高血压人群中具有代表性的 话,回答下列问题: 1、总体是什么? 2、样本是什么? 3、识别所关心的参数 4、识别此统计量并给出它的值 5、我们知道这个参数的值么?
正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
X
总体分布
正态分布
非正态分布
大样本 小样本 大样本 小样本
正态分布
正态分布
非正态分布
三 中心极限定理的应用
中心极限定理(Central Limit theorem) 不论总体服从何种分布,从中抽取
统计学抽样与抽样分布

一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
5
样本和统计量
统计量(statistic)。在抽样估计中,用来反映样本 总体数量特征的指标称为样本指标,也称为样本统计 量或估计量,是根据样本资料计算的、用以估计或推 断相应总体指标的综合指标。
调查的实施 缺点是估计的精度较差
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再
进行一步抽样,从选中的群中抽取出若干个单位进 行调查
群是初级抽样单位,第二阶段抽取的是最终抽样单位。 将该方法推广,使抽样的段数增多,就称为多阶段抽样
2. 具有整群抽样的优点,保证样本相对集中,节约调
4.1 抽样的基础知识
一、 几个概念 二、抽样误差 三、常用的抽样方法
1
一、几个概念
(一)全及总体与总体指标
全及总体。简称总体(Population),是指所要研究的 对象的全体,它是由所研究范围内具有某种共同性质 的全部单位所组成的集合体。总体单位总数用N表示。 (举例) 总体指标(参数)。在抽样估计中,用来反映总体数 量特征的指标称为总体指标,也叫总体参数。 研究目的一经确定,总体也唯一地确定了,所以总体 指标的数值是客观存在的、确定的,但又是未知的, 需要用样本资料去估计。
随机误差:又称偶然性误差,是指遵循随机原则 抽样,但由于样本各单位的结构不足以代表总体 各单位的结构而引起的样本估计量与总体参数之 间的误差。这就是抽样估计中所谓的抽样误差 。
统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
(04)第4章+抽样与抽样分布

4-6
统计学
STATISTICS
例题分析
♦ 假定我们刚刚已取了飞机制造所用的铆钉的25个 假定我们刚刚已取了飞机制造所用的铆钉的25个
一组的样本。检测铆钉的抗剪强度,破坏每个铆 钉所需的力是响应变量。对这组样本,可以求得 各种描述性的测量(均值、方差等)。 ♦ 然而,我们的感兴趣的是总体,并不是样本自身。 被测试的铆钉在测试时已被破坏,不能再用在飞 机的制造上,所以我们肯定不能测试所有的铆钉。 我们必须从这组样本或几组这样的样本来决定总 体的某些特性。 ♦ 因此,我们必须设法推断信息,也即基于样本的 观测结果作出总体的推断
(例题分析) 例题分析)
计算出各样本的均值,如下表。 计算出各样本的均值,如下表。并给出样本均 值的抽样分布
4 - 32
样本均值的抽样分布
统计学
STATISTICS
(例题分析) 例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 设一个总体,含有4个元素(个体) 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 个个体分别为x 体的均值、 体的均值、方差及分布如下 总体分布
4 - 17
统计学
STATISTICS
分层抽样
分层抽样
统计学
STATISTICS
(stratified sampling) sampling)
♦ 分层抽样:在抽样之前先将总体的单位按 分层抽样:
某种特征或某种规则划分为若干层(类), 然后从不同的层中独立、随机地抽取一定 数量的单位组成一个样本,也称分类抽样 数量的单位组成一个样本,也称分类抽样 sampling) (stratified sampling) ♦ 在分层或分类时,应使层内各单位的差异 尽可能小,而使层与层之间的差异尽可能 大
《统计学》第9章 抽样与抽样分布

二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 重置抽样下的抽样分布
【例】某次考试的平均分为 80 分,总体标
准差为 20 分,现用重置抽样方法抽取样本容 量为 100 的样本,求样本平均数的期望和抽样 平均误差。
2. 计算每个样本的样本统计量的取值; 3. 根据样本统计量的所有取值计算相应
的概率; 4. 样本统计量的概率分布 — 抽样分布。
•2020/4/29
•第四章 抽样和抽样分布
3.2 重置抽样下的抽样分布
总体变量的分布:
•X
•P ( X )
•1 / 5
•X •80 90 100 110 120
•X
•2020/4/29
•x
•n •( x11 … x1n ) •x1
•X
•……
•……
•X1
•( x21 … x2n ) •x2
•X3•X2
•…
•XN
•(xm1 …xmn ) •xm
•2020/4/29
•第四章 抽样和抽样分布
3.2 重置抽样下的抽样分布
•x
•X
•2020/4/29
•X
•第四章 抽样和抽样分布
3.2 重置抽样下的抽样分布
•第四章 抽样和抽样分布
2.2 离散型随机变量概率分布
2.概率分布函数:
•概率分布函数的性质:
•X
•x1
•2020/4/29
•X•X
•x2
•第四章 抽样和抽样分布
2.1 离散型随机变量概率分布
在统计中,通常要求 X 落入[ x1 , x2 )的概率。 对于离散型随机变量:
• 由于连续型随机变量在某点处的概率等于零 。
•样本平均日工资计算表
•变量/
元
•80
•90
•100 •110 •120
•80
•80
•85
•90
•95
•100
•90
•85
•90
•95
•100 •105
•100
•90
•95
•100 •105 •110
•110
•95
•100 •105 •110 •115
•120 •100 •105 •110 •115 •120
•第四章 抽样和抽样分布
3.2 重置抽样下的•抽52 =样25分布
•x
x•n = 2
பைடு நூலகம்
•(80,120)
•
•(90,100)
•x1=100 •x2=95
•80
•(100,80) •x3=100
•…… •……
•90 •100
•110
•120
•( 120,90) •( 80 ,80)
•x24=105 •x25=80
基本问题
❖ 抽样 ❖ 样本(样本点) ❖ 样本空间 ❖ 随机原则 ❖ 随机抽样 ❖ 重置抽样 ❖ 不重置抽样
•2020/4/29
•第四章 抽样和抽样分布
基本问题
样本点个数
设:总体单位数 N ,样本容量 n : 样本空间的样本点数为:
•不 重 置
•重 置
•讲 ••序不 顺 讲 •序顺
•2020/4/29
样本平均数的分布: 1. 样本平均数的期望(平均数) 等于总体平均数。
•2020/4/29
•第四章 抽样和抽样分布
3.2 重置抽样下的抽样分布 抽样平均(标准)误差
— 抽样平均数的标准差。 2. 重置抽样的抽样平均误差等于 总体标准差除以样本单位数的平方根 .
•2020/4/29
•第四章 抽样和抽样分布
•第四章 概率基础和抽样分布
3.1 抽样及抽样分布的含义
抽样分布
— 样本统计量的概率分布。
样本统计量
— 指样本指标,是样本空间的样 本随机变量的函数。
•2020/4/29
•第四章 抽样和抽样分布
3.1 抽样及抽样分布的含义
抽样分布的计算:
1. 从总体中抽取样本容量相同的所有样 本 — 样本空间;
统计学之抽样与抽样分 布培训课件
2020年4月29日星期三
•第四章 概率基础与抽样分布
第二节
•随机变量的概率分布
• 2.1 离散型随机变量概率分布 • 2.2 连续型随机变量概率分布 • 2.3 随机变量的数字特征
2.1 离散型随机变量概率分布
1.离散型随机变量的概率分布: X 的概率分布表
•2020/4/29
•2020/4/29
•第四章 抽样和抽样分布
2.3 随机变量的数字特征
概 数学期望 率 论
方差
平均 数 统
计
学
方差
•2020/4/29
•第四章 抽样和抽样分布
2.3 随机变量的数字特征
连续型随机变量的数值特征:
•2020/4/29
•第四章 抽样和抽样分布
第四章 抽样与抽样分布
第三节 抽样分布
• 3.1 抽样及抽样分布的含义 • 3.2 重置抽样下的抽样分布 • 3.3 不重置抽样下的抽样分布
2.2 连续型随机变量概率分布
连续型随机变量的概率分布
X 的概率分布函数
• X 的概率密度函数
•2020/4/29
•第四章 抽样和抽样分布
2.2 连续型随机变量概率分布
•f ( x )
•S
•0 •x 1
•x2
•x
•2020/4/29
•第四章 抽样和抽样分布
2.3 随机变量的数字特征 离散型随机变量的数值特征:
• 对于连续性随机变量:
•2020/4/29
•第四章 抽样和抽样分布
2.2 离散型随机变量概率分布
•2020/4/29
•第四章 抽样和抽样分布
2.1 离散型随机变量概率分布
•X 的概率分布图:
•2020/4/29
•第四章 抽样和抽样分布
2.1 离散型随机变量概率分布
•2020/4/29
•第四章 抽样和抽样分布
•2020/4/29
•第四章 抽样和抽样分布
3.2 重置抽样下的抽样分布
•总体变量分布表
总体变量 X 80 90 100 110 120
合计
频数 N 1 1 1 1 1 5
频率 N/ΣN 1/5 1/5 1/5 1/5 1/5 1.00
•2020/4/29
•第四章 抽样和抽样分布
3.2 重置抽样下的抽样分布
3.2 重置抽样下的抽样分布
•f
• 分布图
•5
•5/2
5
•4
•4/2
5
•3
•3/2
5
•2
•2/2
5
•1
•1/2
•0
5 •x
•f •80 85 90 95 100 105 110 115 120
•1
•X
•1 /
•
0
•80
5
90
100
110
120 •X
•2020/4/29
•第四章 抽样和抽样分布
3.2 重置抽样下的•N抽n =样m 分布
•2020/4/29
•第四章 抽样和抽样分布
•样本日平均工资分布表
3.2 重置抽样下的抽样分布
样本平均数
80 85 90 95 100 105 110 115 120 合计
频数 f 1 2 3 4 5 4 3 2 1 25
•2020/4/29
•第四章 抽样和抽样分布
频率 f / Σf 1 / 25 2 / 25 3 / 25 4 / 25 5 / 25 4 / 25 3 / 25 2 / 25 1 / 25 1.00