2021届步步高数学大一轮复习讲义(文科)第三章 高考专题突破一 第2课时 导数与方程

合集下载

2020届【步步高】高考文科数学一轮总复习讲义

2020届【步步高】高考文科数学一轮总复习讲义
【步步高】高三文科数学总复习讲义
1.集合与元素
(1)集合中元素的三个特征:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.
(3)集合的表示法:列举法、描述法、图示法.
(4)常见数集的记法
集合 自然数集 正整数集 整数集
符号
N
N*(或 N+)
Z
有理数集 Q
实数集 R
答案 (1)C (2)0 或98
解析 (1)∵2-3 x∈Z,∴2-x 的取值有-3,-1,1,3,
又∵x∈Z,∴x 值分别为 5,3,1,-1,
故集合 A 中的元素个数为 4.
(2)若 a=0,则 A=23,符合题意; 若 a≠0,则由题意得 Δ=9-8a=0,解得 a=98.
综上,a 的值为 0 或98. 思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数
2.集合间的基本关系 关系
子集
自然语言
集合 A 中所有元素都在集合 B 中(即 若 x∈A,则 x∈B)
符号语言 A⊆B(或 B⊇A)
Venn 图
真子集 集合相等
集合 A 是集合 B 的子集,且集合 B 中至少有一个元素不在集合 A 中
集合 A,B 中的元素相同或集合 A,B 互为子集
A B(或 B A) A=B
A.{-1,1,5}
B.{-1,5}
C.{1,5}
D.{-1}
答案 A
解析 ∵A={-1,5},B={-1,1},
∴A∪B={-1,1,5}.
3.已知集合 A={x|x2-x-2≤0},集合 B 为整数集,则 A∩B 等于( )
A.{-1,0,1,2}

《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用

《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用

题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
6
7
8
9
A
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
(2,+∞)
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析

步步高大一轮复习讲义第课时PPT学习教案

步步高大一轮复习讲义第课时PPT学习教案
第15页/共49页
【高考佐证2】 (2010·全国Ⅱ·20)频率
不同的两束单色光1和2以相同的入射
角从同一点射入一厚玻璃板后,其光
路如图9所示,下列说法正确的是( )
图9
A.单色光1的波长小于单色光2的波长
B.在玻璃中单色光1的传播速度大于单色光2的传播速度
C.单色光1通过玻璃板所需的时间小于单色光2通过玻璃板
________(填“能”、“不能”或“无法确定能否”)发生全
反射.
第20页/共49页
解析 (1)如图所示,单色光照射到EF弧面
上时刚好发生全反射,由全反射的条件得
C=45°

由折射定律得
n=ssinin9C0°

联立①②式得
n= 2.
(2)能
答案 (1) 2 (2)能
第21页/共49页
题型互动探究
第19页/共49页
【高考佐证3】 (2010·山东理综·37(2))如图10
所示,一段横截面为正方形的玻璃棒,中间
部分弯成四分之一圆弧形状,一细束单色光
由MN端面的中点垂直射入,恰好能在弧面
EF上发生全反射,然后垂直PQ端面射出.
图10
(1)求该玻璃棒的折射率.
(2)若将入射光向N端平移,当第一次射到弧面EF上时
介质射向 光疏
介质.
(2)入射角 大于
临界角.
3.临界角:折射角等于90°时的入射角.设光线从 某介质
射向 空气
时的临界角为C,则sin C=n1.
第4页/共49页
五、棱镜 1.常用的棱镜是横截面为三角形或梯形的三棱镜,通常简
称为棱镜. 2.棱镜对光线的控制作用
让一束单色光从空气射向玻璃 棱镜的一个侧面,光线经过棱 镜两次折射从另一侧面射出时, 将向棱镜的底部方向偏折,如

高中数学步步高大一轮复习讲义(文科)-64省公开课获奖课件市赛课比赛一等奖课件

高中数学步步高大一轮复习讲义(文科)-64省公开课获奖课件市赛课比赛一等奖课件

练出高分
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2 解 由已知得,数列{an}的通项公式
-1,6+22-1,9+23-1,12+24 为 an=3n+2n-1=3n-1+2n,
-1,…,写出数列{an}的通项 ∴Sn=a1+a2+…+an
=(2+5+…+3n-1)+(2+22+…
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华
【例 3】 在数列{an}中,a1=1,
当 n≥2 时,其前 n 项和 Sn 满足 S2n=anSn-12.
(1)求 Sn 的表达式; (2)设 bn=2nS+n 1,求{bn}的前
n 项和 Tn.
第(1)问利用 an=Sn-Sn-1 (n≥2) 后,再同除 Sn-1·Sn 转化为S1n的 等差数列即可求 Sn.
题型分类·深度剖析
题型一
分组转化求和
思维启迪 解析 思维升华
【例 1】 已知数列{an}是 3+2
-1,6+22-1,9+23-1,12+24 先写出通项,然后对 分组后利用等差数列、等比数列
公式并求其前 n 项和 Sn.
的求和公式求解.
基础知识
题型分类
思想方法
∴S1n=1+2(n-1)=2n-1, ∴Sn=2n1-1. (2)∵bn=2nS+n 1=2n-112n+1
=122n1-1-2n1+1,
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
裂项相消法求和
思维启迪 解析 思维升华

2021届步步高数学大一轮复习讲义(文科)第六章 高考专题突破三 高考中的数列问题

2021届步步高数学大一轮复习讲义(文科)第六章 高考专题突破三 高考中的数列问题

高考专题突破三 高考中的数列问题等差数列、等比数列基本量的运算命题点1 数列与数学文化例1 (1)(2020·四川乐山模拟)《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织多少尺布?( )A.1631B.1629C.12D.815答案 B解析 由题意可知每天织布的多少构成等差数列,其中第一天为首项a 1=5,一月按30天计可得S 30=390,从第2天起每天比前一天多织的即为公差d .又S 30=30×5+30×292×d =390,解得d =1629.故选B. (2)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关, 初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为:有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天恰好到达目的地,则第三天走了( )A .192里B .48里C .24里D .96里答案 B解析 由题意可知此人每天走的步数构成公比为12的等比数列,∴ 由等比数列的求和公式可得,a 1⎣⎡⎦⎤1-⎝⎛⎭⎫1261-12=378, 解得a 1=192,∴a 3=a 1q 2=192×⎝⎛⎭⎫122=48.故选B.思维升华 对于数学文化中所涉及到的数列模型,解题时应认真审题,从问题背景中提取相关信息并分析归纳,然后构造恰当的数列模型,再根据等差或等比数列的有关公式求解作答,必要时要进行检验.跟踪训练1 (1)我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重( )A .6斤B .7斤C .9斤D .15斤答案 D解析 因为每一尺的重量构成等差数列{a n },a 1=4,a 5=2,所以a 1+a 5=6,数列的前5项和为S 5=5×a 1+a 52=5×3=15. 即金锤共重15斤,故选D.(2)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?该问题中,1斗为10升,则马主人应偿还粟( ) A.253升 B.503升 C.507升 D.1007升 答案 D解析 因为5斗=50升,设羊、马、牛的主人应偿还的量分别为a 1,a 2,a 3,由题意可知其构成了公比为2的等比数列,且S 3=50,则a 1(23-1)2-1=50,解得a 1=507, 所以马主人要偿还的量为a 2=2a 1=1007. 故选D.命题点2 等差数列、等比数列的交汇例2 记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧ a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n 2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.思维升华 等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n 项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.跟踪训练2 (2020·桂林模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 1+1,S 3,S 4成等差数列,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)若S 4,S 6,S n 成等比数列,求n 及此等比数列的公比.解 (1)设数列{a n }的公差为d .由题意可知⎩⎪⎨⎪⎧ 2S 3=S 1+1+S 4,a 22=a 1a 5,d ≠0,整理得⎩⎪⎨⎪⎧ a 1=1,d =2a 1,即⎩⎪⎨⎪⎧ a 1=1,d =2,∴a n =2n -1. (2)由(1)知a n =2n -1,∴S n =n 2,∴S 4=16,S 6=36,又S 4S n =S 26,∴n 2=36216=81, ∴n =9,公比q =S 6S 4=94. 数列的求和命题点1 分组求和与并项求和例3 已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,因为b 2=3,b 3=9,可得q =b 3b 2=3, 所以b n =b 2q n -2=3·3n -2=3n -1,又由a 1=b 1=1,a 14=b 4=27,所以d =a 14-a 114-1=2, 所以数列{a n }的通项公式为a n =a 1+(n -1)×d =1+2(n -1)=2n -1.(2)由题意知c n =a n +b n =(2n -1)+3n -1,则数列{c n }的前n 项和为[1+3+…+(2n -1)]+(1+3+9+…+3n -1)=n (1+2n -1)2+1-3n 1-3=n 2+3n -12. 命题点2 错位相减法求和例4 记等差数列{a n }的前n 项和为S n ,已知a 2+a 4=6,S 4=10.(1)求数列{a n }的通项公式;(2)令b n =a n ·2n (n ∈N *),求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,由a 2+a 4=6,S 4=10,可得⎩⎪⎨⎪⎧ 2a 1+4d =6,4a 1+4×32d =10, 即⎩⎪⎨⎪⎧a 1+2d =3,2a 1+3d =5, 解得⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =1+(n -1)=n , 故所求等差数列{a n }的通项公式为a n =n .(2)依题意,b n =a n ·2n =n ·2n ,∴T n =b 1+b 2+…+b n=1×2+2×22+3×23+…+(n -1)·2n -1+n ·2n ,又2T n =1×22+2×23+3×24+…+(n -1)·2n +n ·2n +1,两式相减得-T n =(2+22+23+…+2n -1+2n )-n ·2n +1=2(1-2n )1-2-n ·2n +1=(1-n )·2n +1-2, ∴T n =(n -1)·2n +1+2.命题点3 裂项相消法求和例5 已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n . 解 (1)因为a 1=1,且(t +1)S n =a 2n +3a n +2,所以(t +1)S 1=a 21+3a 1+2,所以t =5.所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,②①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,所以(a n +a n -1)(a n -a n -1-3)=0,因为a n >0,所以a n -a n -1=3,又因为a 1=1,所以{a n }是首项为1,公差为3的等差数列,所以a n =3n -2(n ∈N *).(2)因为b n +1-b n =a n +1,b 1=1,所以b n -b n -1=a n (n ≥2,n ∈N *),所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n 2. 又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *). 所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2, =3n 2+5n12(n +1)(n +2). 思维升华 (1)一般求数列的通项往往要构造数列,此时可从要证的结论出发,这是很重要的解题信息.(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等.跟踪训练3 (1)已知数列{a n }的前n 项和为S n ,且a 1=12,a n +1=n +12n a n(n ∈N *). ①证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列; ②求数列{a n }的通项公式与前n 项和S n .①证明 ∵a 1=12,a n +1=n +12n a n, 当n ∈N *时,a n n≠0, 又a 11=12,a n +1n +1∶a n n =12(n ∈N *)为常数, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列. ②解 由⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列, 得a n n =12·⎝⎛⎭⎫12n -1,∴a n =n ·⎝⎛⎭⎫12n . ∴S n =1·12+2·⎝⎛⎭⎫122+3·⎝⎛⎭⎫123+…+n ·⎝⎛⎭⎫12n , 12S n =1·⎝⎛⎭⎫122+2·⎝⎛⎭⎫123+…+(n -1)⎝⎛⎭⎫12n +n ·⎝⎛⎭⎫12n +1, ∴两式相减得12S n =12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=12-⎝⎛⎭⎫12n +11-12-n ·⎝⎛⎭⎫12n +1, ∴S n =2-⎝⎛⎭⎫12n -1-n ·⎝⎛⎭⎫12n =2-(n +2)·⎝⎛⎭⎫12n .综上,a n =n ·⎝⎛⎭⎫12n ,S n =2-(n +2)·⎝⎛⎭⎫12n . (2)已知数列{a n }的前n 项和S n =-a n -⎝⎛⎭⎫12n -1+2(n ∈N *),数列{b n }满足b n =2n a n . ①求证:数列{b n }是等差数列,并求数列{a n }的通项公式;②设c n =n (n +1)2n (n -a n )(n +1-a n +1),数列{c n }的前n 项和为T n ,求满足T n <12463(n ∈N *)的n 的最大值.解 ①∵S n =-a n -⎝⎛⎭⎫12n -1+2(n ∈N *),当n ≥2时,S n -1=-a n -1-⎝⎛⎭⎫12n -2+2,∴a n =S n -S n -1=-a n +a n -1+⎝⎛⎭⎫12n -1,化为2n a n =2n -1a n -1+1,∵b n =2n a n ,∴b n =b n -1+1,即当n ≥2时,b n -b n -1=1,令n =1,可得S 1=-a 1-1+2=a 1,即a 1=12. 又b 1=2a 1=1,∴数列{b n }是首项和公差均为1的等差数列.于是b n =1+(n -1)·1=n =2n a n ,∴a n =n 2n . ②由①可得c n =n (n +1)2n ⎝⎛⎭⎫n -n 2n ⎝ ⎛⎭⎪⎫n +1-n +12n +1 =2n +1(2n -1)(2n +1-1)=2⎝ ⎛⎭⎪⎫12n -1-12n +1-1, ∴T n =2⎝ ⎛⎭⎪⎫1-122-1+122-1-123-1+…+12n -1-12n +1-1 =2⎝ ⎛⎭⎪⎫1-12n +1-1, 由T n <12463可得2n +1<64=26,n <5, ∵n ∈N *,∴n 的最大值为4.例 (12分)(2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列;(2)求{a n }和{b n }的通项公式.规范解答(1)证明 ∵4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.∴4(a n +1+b n +1)=2(a n +b n ),∴a n +1+b n +1=12(a n +b n ),[2分] ∵a 1+b 1=1+0=1≠0,[3分]∴a n +1+b n +1a n +b n=12为非零常数,[4分] ∴{a n +b n }是以1为首项,12为公比的等比数列.[5分] ∵4a n +1=3a n -b n +4,4b n +1=3b n -a n -4,∴4(a n +1-b n +1)=4(a n -b n )+8,∴(a n +1-b n +1)-(a n -b n )=2为常数,[7分]又∵a 1-b 1=1-0=1,∴{a n -b n }是以1为首项,2为公差的等差数列.[8分](2)解 由(1)知,a n +b n =12n -1,a n -b n =2n -1.[10分] ∴a n =12[(a n +b n )+(a n -b n )]=12n +n -12,[11分] b n =12[(a n +b n )-(a n -b n )]=12n -n +12.[12分]第一步:根据定义法、等差(等比)中项法、通项公式法等判定数列为等差(等比)数列; 第二步:由等差(等比)数列基本知识求通项,或者由递推公式求通项;第三步:根据和的表达式或通项的特征,选择合适的方法(分组转化法、错位相减法、裂项相消法)求和;第四步:反思解题过程,检验易错点、规范解题步骤.1.在数列{a n}和{b n}中,a1=1,a n+1=a n+2,b1=3,b2=7,等比数列{c n}满足c n=b n-a n.(1)求数列{a n}和{c n}的通项公式;(2)若b6=a m,求m的值.解(1)因为a n+1-a n=2,且a1=1,所以数列{a n}是首项为1,公差为2的等差数列.所以a n=1+2(n-1)=2n-1,即a n=2n-1.因为b1=3,b2=7,且a1=1,a2=3,所以c1=b1-a1=2,c2=b2-a2=4.因为数列{c n}是等比数列,=2,且数列{c n}的公比q=c2c1所以c n=c1·q n-1=2×2n-1=2n,即c n=2n.(2)因为c n=b n-a n,a n=2n-1,c n=2n,所以b n=2n+2n-1.因为b6=a m,所以26+2×6-1=2m-1,解得m=38.2.(2019·重庆西南大学附属中学月考)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n.若a1=b1=3,a4=b2,S4-T2=12.(1)求数列{a n}与{b n}的通项公式;(2)求数列{a n+b n}的前n项和.解 (1)由a 1=b 1,a 4=b 2,则S 4-T 2=(a 1+a 2+a 3+a 4)-(b 1+b 2)=a 2+a 3=12,设等差数列{a n }的公差为d ,则a 2+a 3=2a 1+3d =6+3d =12,所以d =2.所以a n =3+2(n -1)=2n +1,设等比数列{b n }的公比为q ,由题意知b 2=a 4=9,即b 2=b 1q =3q =9,所以q =3.所以b n =3n .(2)a n +b n =(2n +1)+3n ,所以{a n +b n }的前n 项和为(a 1+a 2+…+a n )+(b 1+b 2+…+b n )=(3+5+…+2n +1)+(3+32+ (3))=(3+2n +1)n 2+3(1-3n )1-3=n (n +2)+3(3n -1)2. 3.(2019·天津市南开区模拟)数列{a n }是等差数列,S n 为其前n 项和,且a 5=3a 2,S 7=14a 2+7.(1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为2的等比数列,求数列{b n (a n +b n )}的前n 项和T n . 解 (1)设等差数列{a n }的公差是d .由a 5=3a 2得d =2a 1,①由S 7=14a 2+7得d =a 1+1,②由①②解得a 1=1,d =2.所以数列{a n }的通项公式为a n =2n -1.(2) 由数列{a n +b n }是首项为1,公比为2的等比数列,得a n +b n =2n -1,即2n -1+b n =2n -1.所以b n =2n -1-2n +1,所以b n (a n +b n )=2n -1·(2n -1-2n +1)=4n -1-2n -1(2n -1),令P n =40+41+…+4n -1=1-4n 1-4=4n -13, Q n =1·20+3·21+5·22+…+(2n -3)·2n -2+(2n -1)·2n -1,③ 则2Q n =1·21+3·22+5·23+…+(2n -3)·2n -1+(2n -1)·2n ,④ ③-④得-Q n =1·20+2·21+2·22+…+2·2n -1-(2n -1)·2n =(3-2n )2n -3, 所以Q n =(2n -3)·2n +3,所以T n =P n -Q n =4n -13-(2n -3)2n -3=4n 3-(2n -3)·2n -103.4.数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >n n +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列. (2)解 由(1)知1a n=2n -1, ∴S n =n (1+2n -1)2=n 2,1S n =1n 2>1n (n +1)=1n -1n +1. 证明:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1) =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.5.设等比数列a 1,a 2,a 3,a 4的公比为q ,等差数列b 1,b 2,b 3,b 4的公差为d ,且q ≠1,d ≠0.记c i =a i +b i (i =1,2,3,4).(1)求证:数列c 1,c 2,c 3不是等差数列;(2)设a 1=1,q =2.若数列c 1,c 2,c 3是等比数列,求b 2关于d 的函数关系式及其定义域;(3)数列c 1,c 2,c 3,c 4能否为等比数列?并说明理由.(1)证明 假设数列c 1,c 2,c 3是等差数列,则2c 2=c 1+c 3,即2()a 2+b 2=()a 1+b 1+()a 3+b 3. 因为b 1,b 2,b 3是等差数列,所以2b 2=b 1+b 3.从而2a 2=a 1+a 3.又因为a 1,a 2,a 3是等比数列,所以a 22=a 1a 3. 所以a 1=a 2=a 3,这与q ≠1矛盾,从而假设不成立. 所以数列c 1,c 2,c 3不是等差数列.(2)解 因为a 1=1,q =2,所以a n =2n -1.因为c 22=c 1c 3,所以()2+b 22=()1+b 2-d ()4+b 2+d , 即b 2=d 2+3d ,由c 2=2+b 2≠0,得d 2+3d +2≠0, 所以d ≠-1且d ≠-2.又d ≠0,所以b 2=d 2+3d ,定义域为{} |d ∈R d ≠-1,d ≠-2,d ≠0.(3)解 假设c 1,c 2,c 3,c 4成等比数列,其公比为q 1, 则⎩⎪⎨⎪⎧ a 1+b 1=c 1, ①a 1q +b 1+d =c 1q 1, ②a 1q 2+b 1+2d =c 1q 21, ③a 1q 3+b 1+3d =c 1q 31. ④将①+③-2×②得,a 1(q -1)2=c 1(q 1-1)2,⑤ 将②+④-2×③得,a 1q ()q -12=c 1q 1()q 1-12,⑥ 因为a 1≠0,q ≠1,由⑤得c 1≠0,q 1≠1. 由⑤⑥得q =q 1,从而a 1=c 1. 代入①得b 1=0.再代入②,得d =0,与d ≠0矛盾. 所以c 1,c 2,c 3,c 4不成等比数列.。

高中数学步步高大一轮复习讲义文科压轴题目突破练解析几何

高中数学步步高大一轮复习讲义文科压轴题目突破练解析几何
A组 专项基础训练
1
2
3
4
5
6
7
8
9 10
Evaluation only. eated with Aspose.Slides for .NET 3.5 Client Profile 5.2.0
Copyright 2004-2011 Aspose Pty Ltd.
练出高分
A组 专项基础训练
1
2
3
4
5
则椭圆 E 的离心率为
( A)
A.
5 3
B.23 EvaluCa.tio32n only.D.13
eated解w析ith由A题sp意os可e知.S,lid∠eFs1fPoFr2 .是N直ET角3,.5且Client Profile 5.2.0 tan∠PCFo1Fp2=yr2ig,h∴t ||2PPFF0120||=4-22,0又1|1PFA1|s+p|oPFse2| Pty Ltd.
解析 设C点opPy(xr0i,ghy0t).20依0题4意 -2得01,1焦A点spFo(2s,e0),Pty Ltd.
x0+2=5, y20=8x0,
于是有 x0=3,y20=24;
a2+b2=4, a92-2b42=1, 由此解得 a2=1,b2=3, 因此该双曲线的渐近线方程是 y=±bax=± 3x.
0 的距离等于 1,则半径 r 的取值范围是
(A )
A.(4,6)
B.[4,6)
C.(4,6]
D.[4,6]
解 析 因 为 圆 心 (3E,va-lu5)a到tio直n线on4lxy-. 3y - 2 = 0 的 距 离 为 eated|4×w3it-hC34oA×2+pspy-3ro2i5gs-eh.t2S|2l=i0d50e,4s -f2o0r1.N1EATsp3o.5seClPietyntLtPdr.ofile 5.2.0

《新步步高》北师大版数学(文)大一轮复习文档:高考专题突破一.doc

《新步步高》北师大版数学(文)大一轮复习文档:高考专题突破一.doc

高考中的导数应用问题u 考点自测 1 •若函数心)在R 上可导,月•满足■代Q_xf (x)>0,贝%A.3Al)</(3)C.3A1)=A3) 答案B解析 由于./W>h ⑴,则[竽]丄 Qfr/(0<0恒成立,因此学在R 上是单调递减函数, ・・・警坪,即3/(1)>/(3).故选B.2. 若函数Av)=^-lnx 在区间(1, +<-)上单调递增,则k 的取值范围是()A.(——2] C.[2, +oo ) 答案D解析 由于/' (x)=k —^ Xx)=hr —lnx 在区间(1, +°°)上单调递增0广(x)=£—0在(1, A A+ oo)上恒成立.由于k£,而0<,1,所以即A 的取值范围为[1, +8).3. 函数Av)=3x 2 + lnx-2x 的极值点的个数是()A.OB.lC.2D.无数个答案A解析函数定义域为(0, +8),由于 x>0, g(x) = 6,—2x+1 中力=一20<0,所以g(x)>0恒成立,故.广(兀)>0恒成立, 即./(X )在定义域上单调递增,无极值点.4. (2015•课标全国I)已知函数J(x)=ax 3+x+l 的图像在点(1,如))处的切线过点(2,7),则答案1解析 f (x)=3tzx 2+l, / (l)=l + 3a, ./(1)=仇+2.(1, ./(I))处的切线方程为 y-(a+2)=(\+3a)(x-\).将(2,7)代入切线方程,得7 — (a + 2)=l+3a,解得Q=l.快速解答自查自纠D :A1)=A3)B ・(一— 1]D.[l, +oo)5. _____________________ 设函数./(x)=e [+ 1, g(x)=/,对任意X ],也丘(0, +°°),不等式赵尹W 誓恒成立,则 正数k 的取值范围是 ・答案[1, +8)解析 因为对任意Xi ,X 2e (0, +°°),不等式嚳誥裁成立,所以治储e 2x因为 g(x)=H ,所以 g ,(x)=e 2_x (l —x).当 0<*1 时,g‘ (x)>0;当 x>l 时,g f(x)<0,所以g(x)在(0,1]上单调递增,在[1, +<-)上单调递减.所以当兀=1时,g(X )取到最大值,即g(Qnax=g(l) = C.又,A X )=e 2x+丄 M 2c(x>0).X 当且仅当e 2x=^即兀=右时取等号,故,/«min =2e.Ji c所以血1)沁=2=丄应有—丄旳以心2皿2e 2'女竇+1"2'又Q0,所以k^\.题型分类题型一利用导数研究函数性质 例1 (2015-课标全国II)已知函数.心)=1眦+°(1—兀).⑴讨论/(X )的单调性;(2)当/(X )有最大值,且最大值大于2°—2时,求Q 的取值范围. 解(l)/(x)的定义域为(0, +8), f (x)=\~a.若Q WO,则/ (x)>0,所以./(x)在(0, +8)上单调递增.若a>0,则当泻(0, £)时,/ (x)>0;当xwg, +町时,f (x)<0.所以夬兀)在(0, £)上单对接高考深度剖析调递增,在e ,+8)上单调递减.⑵由⑴知,当QWO 时,Xx)在(0, +8)无最大值;当a>0时,夬对在x=+取得最大值,最大值为yQ) = l£+a(l —+)=—lna+Q —l. 因此匍>2a~2等价于 血+。

2021届步步高数学大一轮复习讲义(理科)第三章 高考专题突破一 第1课时 导数与不等式

2021届步步高数学大一轮复习讲义(理科)第三章 高考专题突破一 第1课时 导数与不等式

∴ln x0=21x0-32, ∴当x∈(0,x0)时,g′(x)<0; 当x∈(x0,+∞)时,g′(x)>0, ∴g(x)的单调递减区间为(0,x0),单调递增区间为(x0,+∞), ∴g(x)min=g(x0)=(2x0-1)ln x0+x0 =(2x0-1)21x0-32+x0 =52-2x0-21x0, 令 m(x)=25-2x-21x,x∈12,1
故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 从而 h(x)在(0,+∞)上的最大值为 h(1)=-1e. 因为 g(x)min=g1e=h(1)=h(x)max, 所以当x>0时,g(x)>h(x),即f(x)>1.
题型二 师生共研 不等式恒成立或有解问题
例3
已知函数
f
(x)=1+xln
证明 由①知,f(x)在x=1处取得极大值也为最大值,最大值为f(1)=0.
所以当x≠1时,ln x<x-1.
故当 x∈(1,+∞)时,ln x<x-1,ln 1x<1x-1,

x-1 1< ln x <x.
(2)已知函数 f(x)=exln x+2xex-1,证明:f(x)>1.
证明 函数f(x)的定义域为(0,+∞). f(x)>1 等价于 xln x>xe-x-2e. 设函数g(x)=xln x,则g′(x)=1+ln x,
解 f′(x)=xe-a(x>0). ①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增; ②若 a>0,则当 0<x<ae时,f′(x)>0,当 x>ae时,f′(x)<0, 故 f(x)在0,ae上单调递增,在ae,+∞上单调递减.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 导数与方程求函数零点个数例1 设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,当m ≥1时,讨论f (x )与g (x )图象的交点个数. 解 令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数. F ′(x )=-(x -1)(x -m )x,当m =1时,F ′(x )≤0,函数F (x )为减函数, 注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,若0<x <1或x >m ,则F ′(x )<0; 若1<x <m ,则F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增, 注意到F (x )的极小值F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点.将本例条件“m ≥1”改为“m ≥0”,讨论f (x )与g (x )图象的交点个数.解 由例题解法知m ≥1时,两函数图象有一个交点; 当m =0时,F (x )=-12x 2+x ,x >0有唯一零点;当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (x )的极小值F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0, 所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点.思维升华 (1)可以通过构造函数,将两函数图象的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.跟踪训练1 设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x3的零点的个数.解 由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知 ①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.根据函数零点情况求参数范围例2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:x⎝⎛⎭⎫1e ,11(1,e)又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e <0. 所以在⎣⎡⎦⎤1e ,e 上,h (x )min =h (1)=4, h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2,若方程在⎣⎡⎦⎤1e ,e 上有两个不等实根,则4<a ≤e +2+3e , 所以实数a 的取值范围为⎝⎛⎦⎤4,e +2+3e . 思维升华 方程根或函数零点的个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数g (x )=14x 2-32x +ln x -b 在[1,4]上有两个不同的零点,求实数b 的取值范围.解 g (x )=14x 2-32x +ln x -b (x >0),则g ′(x )=(x -2)(x -1)2x.在[1,4]上,当x 变化时,g ′(x ),g (x )的变化情况如下:g (x )极小值=g (2)=ln 2-b -2, 又g (4)=2ln 2-b -2,g (1)=-54-b .若方程g (x )=0在[1,4]上恰有两个不相等的实数根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln 2-2<b ≤-54.故实数b 的取值范围是⎝⎛⎦⎤ln 2-2,-54.1.已知函数f (x )=a +x ln x (a ∈R ). (1)求f (x )的单调区间; (2)判断f (x )的零点个数.解 (1)函数f (x )的定义域是(0,+∞), f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2, 所以f (x )的单调减区间为(0,e -2),单调增区间为(e -2,+∞). (2)由(1)得f (x )min =f (e -2)=a -2e ,若a >2e ,则f (x )min >0,f (x )无零点;若a =2e ,则f (x )min =0,f (x )有一个零点;若a <2e,则f (x )min <0,f (x )在(0,e -2]上单调递减,在[e -2,+∞)上单调递增, 当a ≤0时,在(0,e -2]上有f (x )=a +x ln x <a ≤0,∴f (x )在区间(0,e -2]上无零点,在[e -2,+∞)上有f (e -2a )=a (1-2e -a )≥0,f (x )在区间[e -2,+∞)上有一个零点;当0<a <2e时,有0<4e a -<e -2,424e ,e a af a a -⎛⎫=- ⎪⎝⎭易证当x >0时,e x >x 2成立,∴4e a f -⎛⎫ ⎪⎝⎭>a -4a ⎝⎛⎭⎫2a 2=0,又f (e -2)<0,f (1)=a >0,∴f (x )在(0,e -2]上有一个零点,在(e -2,+∞)上有一个零点. 综上,当a >2e 时,f (x )无零点,当a ≤0或a =2e 时,f (x )有一个零点,当0<a <2e 时,f (x )有2个零点.2.已知函数f (x )=13x 3-12x 2-2x +c 有三个零点,求实数c 的取值范围.解 f ′(x )=x 2-x -2=(x +1)(x -2), 由f ′(x )>0可得x >2或x <-1, 由f ′(x )<0可得-1<x <2,所以函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎨⎧76+c >0,c -103<0,解得-76<c <103,所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝⎛⎭⎫-76,103. 3.已知函数f (x )=12x 2-a ln x ,a ∈R .(1)讨论函数f (x )的单调性;(2)若a >0,函数f (x )在区间(1,e)上恰有两个零点,求a 的取值范围. 解 (1)f (x )=12x 2-a ln x 的定义域为(0,+∞),f ′(x )=x -a x =x 2-ax.①a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增; ②a >0时,由f ′(x )>0,得x >a , f ′(x )<0,得0<x <a .即f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增.(2)当a >0时,由(1)知f (x )在(0,a )上单调递减, 在(a ,+∞)上单调递增, ①若a ≤1,即0<a ≤1时,f (x )在(1,e)上单调递增, f (1)=12,f (x )在区间(1,e)上无零点.②若1<a <e ,即1<a <e 2时,f (x )在(1,a )上单调递减,在(a ,e)上单调递增, f (x )min =f (a )=12a (1-ln a ).∵f (x )在区间(1,e)上恰有两个零点,∴⎩⎪⎨⎪⎧f (1)=12>0,f (a )=12a (1-ln a )<0,f (e )=12e 2-a >0,∴e<a <12e 2.③若a ≥e ,即a ≥e 2时,f (x )在(1,e)上单调递减,f (1)=12>0,f (e)=12e 2-a <0,f (x )在区间(1,e)上有一个零点.综上,f (x )在区间(1,e)上恰有两个零点时,a 的取值范围是⎝⎛⎭⎫e ,12e 2.4.已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R ). (1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在⎝⎛⎭⎫0,13上无零点,求a 的取值范围. 解 (1)当a =1时,f (x )=x -1-2ln x ,x >0, 则f ′(x )=1-2x =x -2x,由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2.故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)因为当x →0时,f (x )→+∞,所以f (x )<0在区间⎝⎛⎭⎫0,13上不可能恒成立, 故要使函数f (x )在⎝⎛⎭⎫0,13上无零点, 只要对任意的x ∈⎝⎛⎭⎫0,13,f (x )>0恒成立, 即对x ∈⎝⎛⎭⎫0,13,a >2-2ln xx -1恒成立. 令h (x )=2-2ln xx -1,x ∈⎝⎛⎦⎤0,13, 则h ′(x )=2ln x +2x-2(x -1)2,再令m (x )=2ln x +2x-2,x ∈⎝⎛⎦⎤0,13, 则m ′(x )=-2(1-x )x 2<0,故m (x )在⎝⎛⎦⎤0,13上为减函数. 于是m (x )≥m ⎝⎛⎭⎫13=4-2ln 3≥0. 从而h ′(x )≥0,于是h (x )在⎝⎛⎦⎤0,13上为增函数, 所以对x ∈⎝⎛⎭⎫0,13有h (x )<h ⎝⎛⎭⎫13=2-3ln 3, 所以a 的取值范围为[2-3ln 3,+∞).5.(2020·贵州遵义第一次统考)已知f (x )=ln x ,g (x )=-13x 3+ax -34.(1)讨论函数g (x )的单调性;(2)记max{m ,n }表示m ,n 中的最大值,若F (x )=max{f (x ),g (x )}(x >0),且函数y =F (x )恰有三个零点,求实数a 的取值范围. 解 (1)g (x )=-13x 3+ax -34的定义域为R ,g ′(x )=-x 2+a .①当a ≤0时,g ′(x )≤0,所以g (x )的单调递减区间为(-∞,+∞); ②当a >0时,令g ′(x )>0,得x ∈(-a ,a ), 令g ′(x )<0,得x ∈(-∞,-a )∪(a ,+∞),综上得,当a ≤0时,g (x )的单调递减区间为(-∞,+∞);当a >0时,g (x )的单调递减区间为(-∞,-a )和(a ,+∞),单调递增区间为(-a ,a ). (2)F (x )=max{f (x ),g (x )}(x >0), f (x )=ln x 的唯一一个零点是x =1, ∴g ′(x )=-x 2+a (x >0),由(1)可得,①当a ≤0时,g (x )的单调递减区间为(-∞,+∞), 此时y =F (x )至多有两个零点,不符合题意. ②当a >0时,令G (x )=g (x )+34, 则G (x )=-13x 3+ax 的图象关于点(0,0)对称,即g (x )的图象关于⎝⎛⎭⎫0,-34中心对称, 注意到ln x 在(1,+∞)上恒正, F (x )要有3个零点,则g (x )必须在(0,1)上取到2个零点,如图,∴极大值g (a )>0,且g (1)<0,则有⎩⎨⎧g (1)<0,g (a )>0⇒⎩⎨⎧-13+a -34<0,-13(a )3+a ·a -34>0⇒34<a <34+13, 综上,实数a 的取值范围是⎝⎛⎭⎫34,34+13.。

相关文档
最新文档