大学物理上1-2
大学物理答案第1~2章

大学物理答案第1~2章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 质点的运动1-1已知质点运动方程为t R x ω-=sin ,)cos 1(t R y ω-=,式中R ,ω为常量,试求质点作什么运动,并求其速度和加速度。
解:22cos ,sin x y x y dx dy v Rw wt v Rw wtdt dt v v v Rw==-==-∴=+=22222sin ,cos y x x y x y dv dv a Rw wt a Rw wtdt dt a a a Rw ====∴=+=sin ,(1cos )x R wt y R wt ==- 222()x y R R ∴+-=轨迹方程为质点轨迹方程以R 为半径,圆心位于(0,R )点的圆的方程,即质点作匀速率圆周运动,角速度为ω;速度v = R ω;加速度 a = R ω21-2竖直上抛运动的物体上升到高度h 处所需时间为t 1,自抛出经最高点再回到同一高度h 处所需时间为t 2,求证:h =gt 1 t 2/2解:设抛出点的速度为v 0,从高度h 到最高点的时间为t 3,则012132012221201112()0,2()/2()1122212v g t t t t t v g t t t t h v t gt g t gt gt t -+=+=∴=++∴=-=-= 1-3一艘正以v 0匀速直线行驶的汽艇,关闭发动机后,得到一个与船速反向大小与船速平方成正比的加速度,即a =kv 2,k 为一常数,求证船在行驶距离x 时的速率为v=v 0e kx .解:取汽艇行驶的方向为正方向,则0200,,ln v xv kxdv dx a kv v dt dt dv dv kvdt kdx v v dv kdx v vkx v v v e -==-=∴=-=-∴=-=-∴=⎰⎰ 1-4行人身高为h ,若人以匀速v 0用绳拉一小车行走,而小车放在距地面高为H 的光滑平台上,求小车移动的速度和加速度。
大学物理基础教程答案1-2力-2

r α x = ±h tan θ = ±h tan ωt X ωt dx 2 2 h v= = ±hsec ωt ⋅ ω = ±hω / cos ωt dt π 0 0 2π t= 当α = 60 , ωt = θ = 30 , 60 6 3 2π v = ±5×10 / cos2 300 = ±698(m⋅ s−1 ) 60 2 sin ωt −2 & = ±2hω & a=x |α=600 = ±84.4(m⋅ s ) 3 4 cos ωt
r
r vθ
ωt
r v
r v
o
r
& = rωtan ωt, && = rω2 tan2 ωt + rω2tg2ωt Qr r & θ = ω, && = 0, θ && ∴ar = 2rω tan ωt, a0 = 2rθ = 2rω2 tan ωt
2 2
sinωt a = a + a = 2hω 2 cos ωt 注意: ωr = vθ ≠ v
&& = 2, && = 2 && + && = 2 2 (m/ s2 ) (3) Qx y ∴a = x y dv 16 t − 8 t = 2s aτ = = = 2 (m⋅ s-2 ) dt 2 8 t 2 − 8 t + 4
∴an = a − a = 2 (m/ s )
2 2 τ 2
9
一质点沿一圆周按下述规律运动: 式中s 2-10 一质点沿一圆周按下述规律运动:s=t3+2t2,式中s是沿圆周测 得的路程,以米为单位, 以秒为单位,如果当t=2 t=2秒时质点的加 得的路程,以米为单位,t 以秒为单位,如果当t=2秒时质点的加 求圆的半径。 速度为 16 2 米/秒2,求圆的半径。
大学物理第一章-质点运动学和第二章-质点动力学基础

i
k
j
这样:A B ( Ax i Ay j Az k ) ( Bx i B y j Bz k )
矢量的数积(数乘): mA mAx i mAy j mAz k
z
Δr r ( A)
o
A
B
r ( B) y
x rA x Ai y A j rB xB i yB j 位移 r rB rA ( x x )i ( y y ) j B A B A 三维空间
r ( xB x A )i ( yB y A ) j ( zB z A )k 2 2 2 r x y z 位移的大小为
瞬时加速度 与瞬时速度的定义相类似,瞬时加速速度是一个 极限值 2 v
a lim
t 0
d r d v dt dt2 t
瞬时加速度简称加速度,它是矢量,在直角坐 标系中用分量表示:
2 d vx d x ax 2 dt dt d vy d2 y ay dt dt2 d vz d 2 z az dt dt2
§1-1
参考系与坐标系
时间
要定量描述物体的位臵与运动情况,就要运用 数学手段,采用固定在参考系上的坐标系。
常用的坐标系有直角坐标系 (x,y,z) ,极坐标系 (,),球坐标系(R,, ),柱坐标系(R, ,z )。 z z
z y x o x
o
R y R
参考方向
2. 空间和时间
切向单位矢量
法向单位矢量 n
et
显然,轨迹上各点处,自然坐标轴的方位不断变化。
大学物理学上册(XXX)第2章习题解答

大学物理学上册(XXX)第2章习题解答2.1选择题1)一质量为M的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上。
如果此后木块能静止于斜面上,则斜面将保持静止。
5)质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动。
如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA和aB分别为aA<0,aB=0.3)对功的概念有以下几种说法:①保守力作正功时,系统内相应的势能增加。
②质点运动经一闭合路径,保守力对质点作的功为零。
③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。
在上述说法中,只有②是正确的。
2.2填空题1)某质点在力F= (4+5x)i (SI)的作用下沿x轴作直线运动。
在从x=0移动到x=10m的过程中,力F所做功为290J。
2)质量为m的物体在水平面上作直线运动,当速度为v时仅在摩擦力作用下开始作匀减速运动,经过距离s后速度减为零。
则物体加速度的大小为v^2/(2s),物体与水平面间的摩擦系数为v^2/(2gs)。
3)在光滑的水平面内有两个物体A和B,已知m_A=2m_B。
a)物体A以一定的动能Ek与静止的物体B发生完全弹性碰撞,则碰撞后两物体的总动能为Ek。
b)物体A以一定的动能Ek与静止的物体B发生完全非弹性碰撞,则碰撞后两物体的总动能为2Ek/3.2.3在下列情况下,说明质点所受合力的特点:1)质点作匀速直线运动,所受合力为零;2)质点作匀减速直线运动,所受合力为大小、方向均保持不变的力,其方向与运动方向相反;3)质点作匀速圆周运动,所受合力为向心力;4)质点作匀加速圆周运动,所受合力为向心力和切向力的合力。
2.4举例说明以下两种说法是不正确的:1) 物体受到的摩擦力的方向总是与物体的运动方向相反;2) 摩擦力总是阻碍物体运动的。
解:(1) 例如,人走路时,所受地面的摩擦力与人的运动方向相同;2) 当车作加速运动时,放在车上的物体受到车子对它的摩擦力,该摩擦力是引起物体相对地面运动的原因。
大学物理学(课后答案解析)第1章

第1章 质点运动学习 题一 选择题1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零(C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率sv t∆=∆,而平均速度t∆∆rv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ] (A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为大于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-⎰⎰,得到20112kt v v =+,故答案选B 。
大学物理1-2角量

dt t 1.5s
2s
0s
1s
1.5s
例3
一质点沿x轴作直线运动,其方程为:
x4.5t22t3
求:质点在第2秒内所经过的路程。
解: S x x x x
1 .5
1
2
1 .5
2.25 m
2s
0s
1s
1.5s
例4
在离水面高度为h的岸边,一人以匀速率0 拉绳使船靠岸,试求:船距岸边x时的速度 及加速度。
初始条件为t=0,v0=0,x0=10,求:质点 的速度,位移方程。
解: 2t2
dx 2t2
dt
x
t
dx 2t 2dt
x0
0
x 10 2 t3 3
解:
a3x2
a dv vdv dt dx
例2
已知质点的加速度 与位移的关系式 a=3x+2,t=0时 v0=0,x0=0,试确 定v与x的关系式
q
dq dt
q0
0
基本公式(一)
在直角坐标系下
aa(t) a d dt
以一维运动为例
d
t
a(t)dt
0
t0
aa() a d dt
1
d
t
dt
0 a()
t0
aa(x) ad d dt dx
x a(x)dx d
x0
0
基本公式(二)
在直角坐标系下
以一维运动为例
(t) dx dt
v vdv
x3x2dx
o
0
v23x24x
例3
质点沿x轴运动,加速度与速度关系为a=-kv (k为常数),初始位置为x0,速度为v0,
(完整版)大学物理上第1章习题解答

第一章 质点运动学1-1 在一艘内河轮船中,两个旅客有这样的对话:甲:我静静地坐在这里好半天了,我一点也没有运动。
乙:不对,你看看窗外,河岸上的物体都飞快地向后掠去,船在飞快前进,你也在很快地运动。
试把他们讲话的含意阐述得确切一些,究竟旅客甲是运动,还是静止?你如何理解运动和静止这两个概念的。
答:①如果以轮船为参考系,则甲、乙旅客都是静止的,而河岸上的物体都在向后运动; 如果以河岸为参考系,则轮船及甲、乙旅客都是运动的。
②运动是绝对的,而静止是相对的。
描述物体的运动情况时,首先要选定参考系,选取的参考系不同,对物体运动的描述也就不同。
1-2 有人说:“分子很小,可将其当作质点;地球很大,不能当作质点”,对吗? 答:这种说法不对。
“质点”是经过科学抽象而形成的物理模型。
物体能否当作质点是有条件的,相对的。
当研究某物体的运动,可以忽略某大小和形状,或者只考虑其平动,那么就可把物体当作质点.。
例如,分子虽小,但如研究分子内部结构时,不能当作质点;地球虽大,但如研究地球自转现象时,也不能当作质点,而当研究地球绕太阳的公转时,就可当作质点。
1-3 已知质点的运动方程为()()r x t i y t j =+,有人说其速度和加速度分别为22d d ,d d r r v a t t==其中r =,你说对吗?答:题中说法不对。
根据定义22d d d . d d d r v r v a t t t ===,所以,由()()r x t i y t j =+ 可得如下结论:22)()(dt dy dt dx j dt dy i dt dx v v +=+== ,2222d d d d d d d d d d y x t y y tx xt y x t r t r ++=+== 显然,d d r v t ≠,2222222d d d d d d d d v x y x a i j t t t t ⎛⎫==+= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛==222222d d d d d d d d d d d d d d y x t y y t x x t t r t t r t r ,显然,22d d t r a ≠ 。
大学物理第1-2章-习题演练

v0=10m/s 竖直上抛,若不计空气的阻力,求(1)物体
从上抛到上升到最高点过程中,重力的所做的功;(2
)物体从上抛到上升到最高点,又自由降落到O点过
程中,重力的所做的功;(3)讨论在物体上抛运动中
动能和势能的关系;(4)物体的最大势能(要求用动
C. 变加速直线运动,加速度沿x 轴正方向.
D. 变加速直线运动,加速度沿x 轴负方向. 答案是D。
3 3
4:一物体从某一确定高度以v0的初速度水平抛出,已 知它落地时的速度为vt,那么它的运动时间是:( A. 答案是C。 提示: B. C. D. )
4 4
5:在做自由落体运动的升降机内,某人竖直上抛一弹 性球,此人会观察到:( )
14 14
滑动摩擦力的概念:
当一个物体在另一个物体的表面上相对运动时,受到的阻碍相对运动的力,叫滑动
摩擦力。 滑动摩擦力产生条件: ①接触面粗糙; ②相互接触的物体间有弹力; ③接触面间有相对运动。 说明:三个条件缺一不可,特别要注意“相对”的理解。 滑动摩擦力的方向: 总跟接触面相切,并与相对运动方向相反。 “与相对运动方向相反”不能等同于“ 与运动方向相反”。滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,
16 16
二 :计算题 (40分,每题10分)。
1、一质点运动的加速度为 ,初始速
度与初始位移均为零,求质点的运动方程和2秒时该质
点的速度。10分
17 17
2、两辆车A 和B,在笔直的公路上同向行驶,它们从
同一起始线上同时出发,并且由出发点开始计时,行
驶的距离 x 与行驶时间 t 的函数关系式:
(3)物体在上抛运动中机械能守恒 在物体上抛运动中,动能和势能不断转换,其和不变 (4)物体的最大势能为:在上抛的最高点,势能最大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d a a a dt
2 t 2 n
2
R
2 2
例题:
讨论下列情况时,质点各作什么运动:
(1)
(2)
(3) (4)
at = 0 an = 0 at 0 an = 0 at = 0 an 0
匀速直线运动. 变速直线运动. 匀速曲线运动. 一般曲线运动.
圆周运动既可以用速度、加速度描述,也可以用角速度、 角加速度描述,二者应有一定的对应关系。
ds Rd
t+ t
ds d R R dt dt d d at R R dt dt
B
R O
ds
A t x
+d
an
2
R
R 2
2 at Ret an R en
R
例1 一质点沿半径为R的圆周按规律 s 0t bt / 2 运动,υ0、b都是正的常量。求:(1)t时刻质点的总加速度 的大小;
2
解:
ds 速率 0 bt dt d 切向加速度 a t b dt 2 ( 0 bt ) 2 法向加速度 a n R R
(t) 0
at
0 t
1 2 0 0 t t 2
2 2 ( 0 ) 2 0
1 2 x ( t ) x0 0 t at 2 2 2 2a系
et
et
et 的增量
d et d en
o en
d ds
P
det d Rd 1 ds en en en en dt dt Rdt R dt R 2 d a et en dt R
切向加速度
et d et d et
o
r
en
A
x
et en
et
e t en
切向单位矢量 法向单位矢量
二.自然坐标系下的加速度
由于质点速度的方向一定沿着轨迹的切向,因此,自然 坐标系中可将速度表示为: e
t
由加速度的定义有
d (et ) d d det a et dt dt dt dt
§1-2 圆周运动
一. 平面极坐标和自然坐标系
1.平面极坐标
以 ( r , )为坐标的参考系
变换关系:
y
x r cos y r si n
2.自然坐标系
在运动轨道上任一点建立正 交坐标系 , 其一根坐标轴沿轨道 切线方向 , 正方向为运动的前进 方向;一根沿轨道法线方向,正 方向指向轨道内凹的一侧。 自然坐标轴的方位不断变化
a a a
2 t 2 n
1 R 2b 2 ( 0 bt )4 R
(2)t为何值时,切向加速度与法向加速度的大小相等?
( 0 bt ) 2 b R
t ( 0 bR ) / b
作业 : P22. 1-14,17,23,24
at 0 an 0
三、圆周运动的角量描述
前述用位矢、速度、加速度描写 圆周运动的方法,称线量描述法; 由于做圆周运动的质点与圆心的距 离不变,因此可用一个角度来确定其位 置,称为角量描述法。 以ox轴为参考方向,则质点的 角坐标: 角位移: 平均角速度: 规定逆时针为正
y
B:t+t A:t
o
x
t
d 角速度: lim t 0 t dt d d 2 角加速度: 2 dt dt
讨论
(1) 角加速度对运动的影响: 等于零, 匀速率圆周运动; 不等于零但为常数, 匀变速率圆周运动; 随时间变化,一般的圆周运动。
(2)质点作匀变速圆周运动 时,其角量的变化规律与匀 变速直线运动中线量的变化规律相似,表示如下:
P
法向加速度
2 d a et en dt R
即圆周运动的加速度可分解为两 个正交分量:
at d dt
2 an R
o en an
P
at
et
切向加速度at :表示质点速度大小变化的快慢; 法向加速度an:表示质点速度方向变化的快慢。
加速度 a 的大小: