《因式分解》单元测试【A4】
北师大版初二数学下册第4章《因式分解》单元测试卷 (含答案)

北师大版八年级数学下册第4章《因式分解》单元测试题一.选择题(共8小题,满分24分,每小题3分)1.将多项式x﹣x3因式分解正确的是()A.x(1﹣x2)B.x(x2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)2.多项式a2﹣25与a2﹣5a的公因式是()A.a+5B.a﹣5C.a+25D.a﹣253.下列各式中,不能用平方差公式因式分解的是()A.﹣a2﹣4b2B.﹣1+25a2C.﹣9a2D.1﹣a44.下列各式中,能用完全平方公式分解因式的个数是()(1)x2﹣4;(2)x2+6x+9;(3)4x4﹣2x2+;(4)x2+4xy+2y2A.1个B.2个C.3个D.4个5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x6.将对x2+mx+n分解成(x﹣7)(x+2),则m,n的值为()A.5,﹣14B.﹣5,14C.5,14D.﹣5,﹣14 7.如果(x+4)(x﹣3)是x2﹣mx﹣12的因式,那么m是()A.7B.﹣7C.1D.﹣18.计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299二.填空题(共7小题,满分28分,每小题4分)9.把多项式m3﹣81m分解因式的结果是.10.在实数范围内分解因式:m4﹣2m2=.11.分解因式:a2﹣9b2+2a﹣6b=.12.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.13.已知a、b满足a+b=5,ab2+a2b=10,则ab的值是.14.若x2+x﹣1=0,那么代数式x3+2x2﹣7的值是.15.232﹣1可以被10和20之间某两个整数整除,则这两个数是.三.解答题(共7小题,满分48分)16.把下列多项式分解因式:(1)x3﹣9x;(2)2a2+4ab+2b217.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4918.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.19.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.20.待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式.21.阅读以下材料,根据阅读材料提供的方法解决问题【阅读材料】对于多项式x3﹣5x2+x+10,我们把x=2代入多项式,发现x=2能使多项式的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后代入,就可以把多项式x3﹣5x2+x+10因式分解.【解决问题】(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.22.拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)则图③可以解释为等式:.(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a2+7ab+2b2,并通过拼图对多项式3a2+7ab+2b2因式分解:3a2+7ab+2b2=.(拼图图形画在方框内)(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),结合图案,指出以下关系式:①xy=;②x+y=m;③x2﹣y2=m•n;④x2+y2=其中正确的关系式为.(4)试着用剪拼图形的方法由几何图形的面积来证明:a2﹣b2=(a+b)(a﹣b).参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:C.2.解:多项式a2﹣25=(a+5)(a﹣5)与a2﹣5a=a(a﹣5)的公因式是:a﹣5.故选:B.3.解:不能用平方差公式分解的是﹣a2﹣4b2.故选:A.4.解:(1)x2﹣1是两项,不能用完全平方公式,故此选项不符合题意;(2)x2+6x+9,符合完全平方公式;故此选项符合题意.(3)4x4﹣2x2+符合完全平方公式;故此选项符合题意;(4)x2+4xy+2y2不符合完全平方公式;故此选项不符合题意.故选:B.5.解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.6.解:∵将对x2+mx+n分解成(x﹣7)(x+2),∴m=﹣7+2=﹣5,n=﹣7×2=﹣14,故选:D.7.解:∵(x+4)(x﹣3)是x2﹣mx﹣12的因式,∴(x+4)(x﹣3)=x2﹣mx﹣12=x2+x﹣12,故﹣m=1,解得:m=﹣1.故选:D.8.解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.二.填空题(共7小题,满分28分,每小题4分)9.解:m3﹣81m=m(m2﹣81)=m(m+9)(m﹣9).故答案为:m(m+9)(m﹣9).10.解:m4﹣2m2=m2(m2﹣2)=m2(m+)(m﹣).故答案为:m2(m+)(m﹣).11.解:a2﹣9b2+2a﹣6b,=(a2﹣9b2)+(2a﹣6b),=(a+3b)(a﹣3b)+2(a﹣3b),=(a﹣3b)(a+3b+2).12.解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.13.解:∵ab2+a2b=10,∴ab(b+a)=10,∵a+b=5,∴ab=2,故答案为:2.14.解:∵x2+x﹣1=0,∴x2+x=1∴x3+2x2﹣7=x(x2+x)+x2﹣7=x+x2﹣7=1﹣7=﹣6故答案为:﹣6.15.解:原式=(216+1)(216﹣1)=(216+1)(28+1)(24+1)(24﹣1)=(216+1)(28+1)×17×15.则这两个数是15和17.故答案是:15和17.三.解答题(共7小题)16.解:(1)x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3);(2)2a2+4ab+2b2=2(a2+2ab+b2)=2(a+b)2.17.解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.18.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=,ab=﹣,∴原式=ab(a+b)2=﹣×()2=﹣3,即代数式a3b+2a2b2+ab3的值是﹣3.19.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.20.解:(1)∵x2+2x+3=x2+(3﹣a)x+3,∴3﹣a=2,a=1;故答案为:1;(2)设x3+2x+3=(x+1)(x2+ax+3)=x3+(a+1)x2+(a+3)x+3,a+1=0,解得a=﹣1,多项式的另一因式是x2﹣x+3.21.解:(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5;(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4)=(x+1)(x+2)2.22.解:(1)图③可以解释为等式:(a+2b)(2a+b)=2a2+ab+4ab+2b2=2a2+5ab+2b2故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.(2)拼图如图⑤所示:3a2+7ab+2b2=(3a+b)(a+2b);故答案为:(3a+b)(a+2b);(3)∵m2﹣n2=4xy∴①正确;∵x+y=m∴②正确;∵x+y=m,x﹣y=n∴(x+y)(x﹣y)=mn,即x2﹣y2=mn,∴③正确;∵m2+n2=(x+y)2+(x﹣y)2=2x2+2y2=2(x2+y2);∴④正确.故答案为:①②③④.(4)剪拼图形如图⑥、⑦;把图⑥中的阴影沿虚线三次剪下来,拼成如图⑦所示的梯形,∴这个梯形的上底长为2b,下底长为2a,高为(a﹣b),∴S阴影(梯形)=(2a+2b)(a﹣b)=(a+b)(a﹣b),∵图⑥中的S阴影=a2﹣b2,∴a2﹣b2=(a+b)(a﹣b).。
(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试题(含答案解析)(4)

一、选择题1.下列各式中,从左到右变形是因式分解的是( )A .()()22224a b a b a b +--=B .()()2633m m m -=+- C .()22542x x x x ++=++D .()()2933a a a -=+- 2.下列因式分解正确的是A .4m 2-4m +1=4m (m -1)B .a 3b 2-a 2b +a 2=a 2(ab 2-b )C .x 2-7x -10=(x -2)(x -5)D .10x 2y -5xy 2=5xy (2x -y ) 3.若x -y +3=0,则x (x -4y )+y (2x +y )的值为( ) A .9B .-9C .3D .-3 4.已知x -y =12,xy =43,则xy 2-x 2y 的值是 A .1B .-23C .116D .23 5.多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),则m 的值是( ) A .4 B .﹣4 C .10D .﹣10 6.已知三角形的三边a ,b ,c 满足2223()()b a b c ba a -+=-,则△ABC 是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .等腰三角形或直角三角形 7.下列各式由左到右的变形中,属于因式分解的是( )A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 8.下列等式从左到右的变形是因式分解的是( ) A .12a 2b 2=3a •4ab 2B .(x +4)(x ﹣4)=x 2﹣16C .am +an =a (m +n )D .x ﹣1=x (1﹣1x) 9.下列各多项式从左到右变形是因式分解,并分解正确的是( )A .2()()()(1)a b b a a b a b ---=--+B .2(2)(3)56x x x x ++=++C .2249(49)(49)a b a b a b -=-+D .222()()2m n m n m n -+=+-+10.下列因式分解错误的是( )A .a 2﹣a +1=a (a ﹣1)+1B .a 2﹣b 2=(a +b )(a ﹣b )C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b )D .a 2﹣4ab +4b 2=(a ﹣2b )211.下列因式分解正确的是( )A .()()()()a a b b a b a b a b ---=-+B .2229(3)a b a b -=-C .22244(2)a ab b a b ++=+D .2()a ab a a a b -+=-12.下列各项分解因式正确的是( )A .22(1)1a a -=-B .2242(2)a a a -+=-C .22()()b a a b a b -+=+-D .223(1)(3)x x x x --=-+二、填空题13.因式分解:316m m -=________.14.利用1个a×a 的正方形,1个b×b 的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.15.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________. 16.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.17.因式分解:33327xy x y -=______.18.已知为等腰三角形ABC ,其中两边,a b 满足,244|3|0a a b -++-=,则ABC ∆的周长为_______________________19.分解因式:4232x -=_________.20.若a 2-b 2=8,a-b=2,则a+b 的值为_________.三、解答题21.如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m 的大正方形,两块是边长都为n 的小正五形,五块是长为m ,宽为n 的全等小长方形.且m n >.(以上长度单位:cm )(1)观察图形,可以发现代数式22252m mn n ++可以因式分解为________.(2)若每块小长方块的面积为220cm ,四个正方形的面积和为2162cm .①试求图中所有裁剪线(虚线部分)长度之和;②求2()m n -的值.22.分解因式(1)()()()()a b x y b a x y ----+(2)4+12(x -y )+9(x -y )2(3)22369xy x y y -- (4)()228a b ab -+23.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下: ()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.24.先阅读下列材料,再解答问题:常用的分解因式的方法有提取公因式法和公式法,但有的多项式只用上述一种方法无法分解,例如多项式244x xy x y -+-和2222a b c bc --+.经过细心观察可以发现,若将多项式进行合理分组后,先将每一组进行分解,分别分解后再用提公因式法或公式法就可以完整分解了.解答过程如下:()()()()()()22(1)444444x xy x yx xy x y x x y x y x y x -+-=-+-=-+-=-+()()()()22222222(2)22a b c bca b c bc a b c a b c a b c --+=-+-=--=+--+这种方法叫分组分解法,对于超过三项的多项式往往考虑这种方法.利用上述思想方法,把下列各式分解因式:(1)32236m m m --+(2)2229x xy y --+25.分解因式:(1)222ax axy ay ++;(2)4161y -26.(1)分解因式:()()22 4?a x yb x y ---; (2)计算:()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据因式分解的定义逐项判断即可得.【详解】A 、()()22224a b a b a b +--=是整式的乘法,此项不符题意; B 、()()2933m m m -=+-,则等式左右两边不相等,此项不符题意; C 、()22542x x x x ++=++没有将一个多项式转化成几个整式的乘积的形式,此项不符题意;D 、()()2933a a a -=+-,此项符合题意; 故选:D .【点睛】本题考查了因式分解的定义,掌握理解定义是解题关键.2.D解析:D【分析】A 、利用完全平方公式分解;B 、利用提取公因式a 2进行因式分解;C 、利用十字相乘法进行因式分解;D 、利用提取公因式5xy 进行因式分解.【详解】A 、4m 2-4m+1=(2m-1)2,故本选项错误;B 、a 3b 2-a 2b+a 2=a 2(ab 2-b+1),故本选项错误;C 、(x-2)(x-5)=x 2-7x+10,故本选项错误;D 、10x 2y-5xy 2=xy (10x-5y )=5xy (2x-y ),故本选项正确;故选D .【点睛】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.3.A解析:A【解析】解:∵x -y +3=0,∴x -y =-3.原式=2242x xy xy y -++=2()x y -=2(3)-=9.故选A .4.B解析:B【解析】因为x -y =12,xy =43,所以xy 2-x 2y =xy (y -x )=12×43⎛⎫- ⎪⎝⎭=-23,故选B . 5.B解析:B【分析】直接利用因式分解法得出m 与3,-7的关系.【详解】解:∵多项式x 2+mx ﹣21因式分解的结果为(x +3)(x ﹣7),∴m =﹣7+3=﹣4.故选:B .【点睛】此题主要考查了因式分解法分解因式,正确掌握常数项与一次项系数的关系是解题关键. 6.D解析:D【分析】先将原式分解因式得(b-a )(b 2+c 2-a 2)=0,从而得b ﹣a =0或c 2+b 2﹣a 2=0,根据等腰三角形的判定和勾股定理的逆定理判断即可.【详解】解:∵2223()()b a b c ba a -+=-,∴(b-a )(b 2+c 2-a 2)=0.∴b ﹣a =0或c 2+b 2﹣a 2=0,则a=b 或c 2+b 2=a 2.∴△ABC 是等腰三角形或直角三角形.故选D .【点睛】此题综合运用了因式分解的知识、勾股定理的逆定理.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.7.A解析:A【分析】根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.【详解】解:A 、10x 2-5x=5x(2x-1)是因式分解,故本选项正确;B 、右边不是整式积的形式,故本选项错误;C 、是整式的乘法,不是因式分解,故本选项错误;D 、右边不是整式积的形式,故本选项错误.故选A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.8.C解析:C【分析】因式分解就是把一个多项式化为几个整式的积的形式.要确定从左到右的变形中是否为因式分解,只需根据定义来确定.【详解】A 、左边不是多项式的形式,不是因式分解,故此选项不符合题意;B 、是整式的乘法,不是因式分解,故此选项不符合题意;C 、am+an =a (m+n )是因式分解,故此选项符合题意;D 、右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意.故选:C .【点睛】本题考查了因式分解的意义,解决问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.9.A解析:A【分析】直接利用因式分解的定义进而分析得出答案.【详解】解:A 、2()()()(1)a b b a a b a b ---=--+,是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2-9b 2=(2a-3b )(2a+3b ),故此选项错误;D 、m 2-n 2+2=(m+n )(m-n )+2,不符合因式分解的定义,故此选项错误.故选:A .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.10.A解析:A【分析】直接利用公式法以及提取公因式法分解因式得出答案.【详解】A .a 2﹣a +1=a (a ﹣1)+1,不符合因式分解的定义,故此选项正确;B .a 2﹣b 2=(a +b )(a ﹣b ),正确,不符合题意;C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b ),正确,不合题意;D .a 2﹣4ab +4b 2=(a ﹣2b )2,正确,不合题意.故选:A .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 11.C解析:C【分析】利用提公因式法分解因式和平方差公式以及完全平方公式进行分解即可得到答案.【详解】A 、2()()()()()a a b b a b a b a b a b ---=--=-,故此选项错误;B 、229(3)(3)a b a b a b -=+-,故此选项错误;C 、22244(2)a ab b a b ++=+,故此选项正确;D 、2(+1)a ab a a a b -+=-,故此选项错误.故选:C .【点睛】此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.12.C解析:C【分析】利用平方差公式对A 、C 进行判断;根据完全平方公式对B 进行判断;利用十字相乘法对D 进行判断.【详解】解:A 、a 2−1=(a +1)(a−1),所以A 选项错误;B 、a 2−4a +2在实数范围内不能因式分解;C 、−b 2+a 2=a 2−b 2=(a +b )(a−b ),所以C 选项正确;D 、x 2−2x−3=(x−3)(x +1),所以D 选项错误.故选:C .【点睛】本题考查了因式分解−十字相乘法:借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.也考查了公式法因式分解.二、填空题13.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.14.a2+2ab+b2=(a+b )2【解析】试题分析:两个正方形的面积分别为a2b2两个长方形的面积都为ab 组成的正方形的边长为a +b 面积为(a +b)2所以a2+2ab +b2=(a +b)2点睛:本题考查解析:a 2+2ab+b 2=(a+b )2【解析】试题分析:两个正方形的面积分别为a 2,b 2,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b )2,所以a 2+2ab +b 2=(a +b )2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.15.290【分析】根据题意可知m +n =7mn =10再由因式分解法将多项式进行分解后可求出答案【详解】解:由题意可知:m +n =7mn =10原式=mn (m2+n2)=mn(m+n)2-2mn=10×(72-解析:290【分析】根据题意可知m +n =7,mn =10,再由因式分解法将多项式进行分解后,可求出答案.【详解】解:由题意可知:m +n =7,mn =10,原式=mn (m 2+n 2)=mn[(m+n)2-2mn]=10×(72-2×10)=10×29=290故答案为:290.【点睛】本题考查代数式求值,解题的关键是熟练运用因式分解法以及完全平方公式的变形公式. 16.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.17.【分析】根据因式分解的提公因式法找出公因式为然后再根据平方差公式求解即可;【详解】原式=故答案为:【点睛】本题考查了因式分解的提公因式法平方差公式找出公因式是是解题的关键解析:()()333xy y x y x +-【分析】根据因式分解的提公因式法,找出公因式为3xy ,然后再根据平方差公式求解即可;【详解】原式=()()()2239333xy y x xy y x y x -=+-,故答案为:()()333xy y x y x +-.【点睛】本题考查了因式分解的提公因式法、平方差公式,找出公因式是3xy 是解题的关键. 18.7或8【分析】先运用平方差公式将等式的前三项因式分解得再根据非负性求出的值再代入求值即可【详解】解:当腰为3时等腰三角形的周长为当腰为2时等腰三角形的周长为故答案为:7或8【点睛】此题考查了配方法的 解析:7或8【分析】先运用平方差公式将等式的前三项因式分解得2(2)|3|0a b -+-=,再根据非负性求出a ,b 的值,再代入求值即可.【详解】解:244|3|0a a b -++-=,2(2)|3|0a b ∴-+-=,2a ∴=,3b =,∴当腰为3时,等腰三角形的周长为3328++=,当腰为2时,等腰三角形的周长为3227++=.故答案为:7或8.【点睛】此题考查了配方法的应用,三角形三边关系及等腰三角形的性质,解题的关键熟练掌握完全平方公式.19.2(x2+4)(x+2)(x -2)【分析】首先提取公因式2然后利用平方差公式继续分解直到不能分解为止即可求得答案【详解】解:2x4﹣32=2(x4﹣16)=2(x2+4)(x2﹣4)=2(x2+4)解析:2(x 2+4)(x +2)(x -2)【分析】首先提取公因式2,然后利用平方差公式继续分解,直到不能分解为止,即可求得答案.【详解】解:2x 4﹣32=2(x 4﹣16)=2(x 2+4)(x 2﹣4)=2(x 2+4)(x +2)(x -2).故答案为:2(x 2+4)(x +2)(x -2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 20.4【分析】先对a2-b2=8左侧因式分解然后将a-b=2代入求解即可【详解】解:∵a2-b2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4故答案为4【点睛】本题考查了代数式求值和因式分解析:4【分析】先对a 2-b 2=8左侧因式分解,然后将a-b=2代入求解即可.【详解】解:∵a 2-b 2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4.故答案为4.【点睛】本题考查了代数式求值和因式分解,灵活运用因式分解是正确解答本题的关键.三、解答题21.(1)(2m+n )(m+2n );(2)①66cm ;②41【分析】(1)根据图中的面积关系,两个大正方形、两个小正方形和5个长方形的面积之和等于大长方形的面积,据此可解;(2)①根据题意可得mn ,2m 2+2n 2,从而可得从而m 2+n 2,进而可求得m+n ,结合图形可得答案.②根据m 2+n 2以及mn 的值,结合完全平方公式计算即可.【详解】解:(1)观察图形,发现代数式:2m 2+5mn+2n 2表示大长方形的面积,则2m 2+5mn+2n 2=(2m+n )(m+2n );故答案为:(2m+n )(m+2n );(2)①若每块小矩形的面积为20cm 2,四个正方形的面积和为162cm 2,则mn=20cm 2,2m 2+2n 2=162cm 2,∴m 2+n 2=81,∴(m+n )2=81+20×2=121,∴m+n=11,∴图中所有裁剪线(虚线部分)长之和为6m+6n=6(m+n )=66(cm );②(m-n )2= m 2+n 2-2mn=81-2×20=41.【点睛】本题考查了因式分解在几何图形问题中的应用,数形结合,并熟练掌握相关计算法则,是解题的关键.22.(1)()2x a b -;(2)2(233)x y +- ;(3)()23y x y --;(4)()22a b + 【分析】(1)先将原式变形,然后提取公因式进行因式分解;(2)利用完全平方公式进行因式分解;(3)先提取公因式,然后利用完全平方公式进行因式分解;(4)先将原式进行整式的混合计算化简,然后利用完全平方公式进行因式分解.【详解】解:(1)()()()()a b x y b a x y ----+=()()+()()a b x y a b x y ---+=()()a b x y x y --++=()2x a b -(2)4+12(x -y )+9(x -y )2=22+2×2×3(x -y )+[3(x -y )]2=[2+3(x -y )]2=2(233)x y +-(3)22369xy x y y -- =()2269y y xy x--+=()23y x y -- (4)()228a b ab -+=22448a ab b ab -++=224+4a ab b +=()22a b +【点睛】本题考查综合提公因式法和公式法进行因式分解,掌握提取公因式的技巧和乘法公式的公式结构正确计算是解题关键.23.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24.(1)2(2)(3)m m --;(2)()()33x y x y -+--【分析】(1)将1、2项,3、4项分别结合分别分解因式,再进行组间的公因式提取便可达目的;(2)原式分成222x xy y -+和-9两组,前一组利用完全平方公式分解,然后再利用平方差公式继续分解即可.【详解】解:(1)32236m m m --+2(2)3(2)m m m =---2(2)(3)m m =--;(2)2229x xy y --+2229x xy y =-+-()223x y =-- ()()33x y x y =-+--.【点睛】本题考查了分组分解法,关键要明确分组的目的,是分组分解后仍能继续分解,还是分组后利用各组本身的特点进行解题.25.(1)2()a x y +;(2)2(41)(21)(21)y y y ++-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可得出结果;(2)先利用平方差公式分解可得22(41)(41)y y +-,再次利用平方差公式对2(41)y -进行分解,即可完成.【详解】解:(1)原式22(2)a x xy y =++2()a x y =+,(2)原式22(41)(41)y y =+-2(41)(21)(21)y y y =++-.【点睛】本题考查了因式分解,掌握因式分解的基本方法,并能根据多项式的特点准确选择分解方法是解题的关键.26.(1)()()()22x y a b a b -+-;(2)1ab -. 【分析】(1)提取公因式()x y -后,再利用平方差公式分解即可; (2)中括号内先利用单项式乘多项式展开,再合并同类项,然后利用多项式除以单项式法则计算即可.【详解】(1)()()224?a x y b x y --- ()()22 4x y a b =-- ()()() 2?2x y a b a b =-+-;(2)()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦ ()3222322 2a b a b a b a b a b =--+÷()32222?2?2a b a b a b =-÷ 1?ab =-.【点睛】本题考查了因式分解以及整式的混合运算,涉及的知识有:平方差公式,单项式乘多项式法则,多项式除以单项式法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.。
新北师大版八年级数学第四章因式分解单元测试及答案

密 封 线学校 班级 姓名 座号 八年级单元测试 因式分解题 号 一 二 三 四 总 分分 数(考试时间:45分钟 满分:100分) 一、选择题(每小题3分,共15分)1.下列各式从左到右的变形中,是因式分解的为( )A. bx ax b a x -=-)(B. 222)1)(1(1y x x y x ++-=+-C. )1)(1(12-+=-x x xD. c b a x c bx ax ++=++)(2.下列多项式中能用平方差公式分解因式的是( )A. 22)(b a -+B. mn m 2052-C. 22y x --D.92+-x3.如果2592++kx x 是一个完全平方式,那么k 的值是( )A. ±30B. 30C. 15D.±54.下列各式从左到右的变形错误的是( )A.22)()(y x x y -=-B.)(b a b a +-=--C.33)()(a b b a --=-D.)(n m n m +-=+-5.下列各式中,与相等的是( )A. B. C.D.二、填空题(每小题4分,共20分)6.3223129y x y x +中各项的公因式是_______ ___.7.m bm am =+( );-=--1x ( );-=+-a c b a ( )。
8.因式分解:__________________________2733=-x x 。
9.利用因式分解计算:=-22199201 .10.若()()2310x x x a x b --=++,则__________=+b a ,__________=ab 。
三、分解因式(每小题6分,共24分)11.(1)x x 422- (2)222y y x -(3)3632+-a a (4)()()x y y y x x -+-四、解答题(共41分)12.先化简,后求值,其中21==-xy y x ,(12分)(1)32232xy y x y x +- (2)22y x +13.利用分解因式方法计算:31414.04.314.514.332⨯+⨯+⨯ (7分)14.在三个整式xy x 22+,xy y 22+,2x 中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解。
(完整版)因式分解单元测试题及答案,推荐文档

8、6,9 9、4.03
10、 n n 2 n 12 1 (n≥2 的整数)
4
三、解答题
1、(1) a a b2 (2) 3a 2a2 15b2 3c2
(3) m 1m 22
(4) x 22 x 22
2、(1)0
(2) 59
3、1000
4、(1)
1993 199 199 1992 1 199 199 1
0.52 0.22
7.8
3.14 0.21 5.14 (吨)
四、(用解法二的方法求解),设 x4 mx3 nx 16 A x 1x 2( A 为整式),
取 x =1,得 m n 15
①,取 x =2,得 4m n 0 ②,由①、②得:
m =-5, n =20。
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
3、若 x2 3x 10 x ax b,则 a =________, b =________。
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
4、若 x y 5, xy 6 则 x2 y xy2 =_________, 2x2 2 y2 =__________。
199 1 199198 200
(2) n3 n n n2 1 n n 1n 1因为 n 为正整数,n-1,n,n+1 为三个连
续的整数,必有 2 的倍数和 3 的倍数,所以 n n 1n 1必有 6 的倍数。
5、3
6、四根钢立柱的总质量为
7.8
D 2
2
d 2
2
h
7.8
3.14
6、已知两个正方形的周长差是 96cm,面积差是 960 cm2 ,则这两个正方形的边 长分别是_______________cm。
浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(较易)(含答案解析)

浙教版初中数学七年级下册第四单元《因式分解》单元测试卷(较易)(含答案解析)考试范围:第四单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 要使式子−7ab−14abx+49aby=−7ab成立,则“”内应填的式子是( )A. −1+2x+7yB. −1−2x+7yC. 1−2x−7yD. 1+2x−7y2. 下列等式从左到右的变形,属于因式分解的是( )A. a(x−y)=ax−ayB. x3−x=x(x+1)(x−1)C. (x+1)(x+3)=x2+4x+3D. x2+2x+1=x(x+2)+13. 如果多项式x2−mx−35分解因式为(x−5)(x+7),那么m的值为( )A. −2B. 2C. 12D. −124. 对于 ①x−3xy=x(1−3y), ②(x+3)(x−1)=x2+2x−3,从左到右的变形中表述正确的是( )A. 都是因式分解B. 都是整式的乘法C. ①是乘法运算, ②是因式分解D. ①是因式分解, ②是整式的乘法5. 将多项式a2b−2b利用提公因式法分解因式,则提取的公因式为( )A. a2bB. abC. aD. b6. 多项式(2a+1)x2+3x,其中a为整数.下列说法正确的是( )A. 若公因式为3x,则a=1B. 若公因式为5x,则a=2C. 若公因式为3x,则a=3k+1(k为整数)D. 若公因式为5x,则a=5k+1(k为整数)7. 多项式a2−4a因式分解的结果是( )A. a(a−4)B. (a+2)(a−2)C. a(a+2)(a−2)D. (a−2)2−48. 已知ab=2,a−b=−3,则a2b3−a3b2的值为( )A. −12B. 12C. −6D. 69. 分解因式4+a2−4a正确的是( )A. (2−a)2B. 4(1−a)+a2C. (2−a)(2+a)D. (2+a)210. 小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于5的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x口−4y2(“▫”表示漏抄的指数),则这个指数可能的结果共有( )A. 1种B. 2种C. 3种D. 4种11. 已知x2−16=(x−a)(x+a),那么a等于( )A. 4B. 2C. 16D. ±412. 下面分解因式中正确的是( )A. 4a2−4a+1=4a(a−1)+1B. a2−4b2=(a−2b)2C. 4a2−12a+9=(2a−3)2D. 2ab−a2−b2=−(a+b)2第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 若多项式2x2+ax可因式分解为2x(x−2),则a的值为.14. 若多项式x2+mx+n可因式分解为(x−2)(x+3),则m−n的值为.15. 填空:多项式4x−2y应提取的公因式是.16. 分解因式:a2−2ab+b2−4=______.三、解答题(本大题共9小题,共72.0分。
初中数学-《因式分解》单元测试卷(有答案)

初中数学-《因式分解》单元测试卷一、选择1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1)D.ax+bx+c=x(a+b)+c2.将多项式﹣6a3b2﹣3a2b2+12a2b3分解因式时,应提取的公因式是()A.﹣3a2b2B.﹣3ab C.﹣3a2b D.﹣3a3b33.下列各式是完全平方式的是()A.x2+2x﹣1 B.1+x2C.x2+xy+1 D.x2﹣x+4.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+95.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1 C.a2﹣1 D.6.多项式①2x2﹣x,②(x﹣1)2﹣4(x﹣1)+4,③(x+1)2﹣4x(x+1)+4,④﹣4x2﹣1+4x;分解因式后,结果含有相同因式的是()A.①④ B.①② C.③④ D.②③7.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1二、填空8.5x2﹣25x2y的公因式为.9.a2﹣2ab+b2、a2﹣b2的公因式是.10.若x+y=1,xy=﹣7,则x2y+xy2= .11.简便计算:﹣= .12.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .13.若x2+2(m﹣1)x+36是完全平方式,则m= .14.如图所示,根据图形把多项式a2+5ab+4b2因式分解= .三、解答题15.因式分解:(1)20a3﹣30a2(2)16﹣(2a+3b)2(3)﹣16x2y2+12xy3z(4)5x2y﹣25x2y2+40x3y(5)x2(a﹣b)2﹣y2(b﹣a)2(6)(a2+b2)2﹣4a2b2(7)18b(a﹣b)2+12(b﹣a)3(8)x(x2+1)2﹣4x3(9)(x2﹣2x)2﹣3(x2﹣2x)(10)(2x﹣1)2﹣6(2x﹣1)+9 (11)16x4﹣72x2y2+81y4(12)a5﹣a(13)25(x+y)2﹣9(x﹣y)2(14)m2﹣3m﹣28(15)x2+x﹣20.16.利用分解因式计算:(1)2022+202×196+982(2)(﹣2)100+(﹣2)100.参考答案与试题解析一、选择1.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1)D.ax+bx+c=x(a+b)+c【考点】因式分解的意义.【专题】压轴题.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.2.将多项式﹣6a3b2﹣3a2b2+12a2b3分解因式时,应提取的公因式是()A.﹣3a2b2B.﹣3ab C.﹣3a2b D.﹣3a3b3【考点】公因式.【分析】在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.【解答】解:系数最大公约数是﹣3,相同字母的最低指数次幂是a2、b2,应提取的公因式是﹣3a2b2.故选A.【点评】本题主要考查公因式的确定,找公因式的要点:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.当第一项的系数为负数时,应先提出“﹣”号.3.下列各式是完全平方式的是()A.x2+2x﹣1 B.1+x2C.x2+xy+1 D.x2﹣x+【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可.【解答】解:x2﹣x+是完全平方式,故选D【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9【考点】因式分解-运用公式法.【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.故选:D.【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.5.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1 C.a2﹣1 D.【考点】公因式.【分析】本题需先对每个式子进行因式分解,即可得出不含因式a+1的式子.【解答】解:A、∵2a2+2a=2a(a+1),故本选项正确;B、a2+2a+1=(a+1)2,故本选项正确;C、a2﹣1=(a+1)(a﹣1),故本选项正确;D、=(a+2,故本选项错误.故选D.【点评】本题主要考查了公因式的有关知识,在解题时要能综合应用提公因式法和公式法进行因式分解是本题的关键.6.多项式①2x2﹣x,②(x﹣1)2﹣4(x﹣1)+4,③(x+1)2﹣4x(x+1)+4,④﹣4x2﹣1+4x;分解因式后,结果含有相同因式的是()A.①④ B.①② C.③④ D.②③【考点】公因式.【分析】根据提公因式法和完全平方公式把各选项的多项式分解因式,然后再找出结果中含有相同因式的即可.【解答】解:①2x2﹣x=x(2x﹣1);②(x﹣1)2﹣4(x﹣1)+4=(x﹣3)2;③(x+1)2﹣4x(x+1)+4无法分解因式;④﹣4x2﹣1+4x=﹣(4x2﹣4x+1)=﹣(2x﹣1)2.所以分解因式后,结果中含有相同因式的是①和④.故选:A.【点评】本题主要考查了提公因式分解因式和利用完全平方公式分解因式,熟练掌握公式结构是求解的关键.7.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1【考点】因式分解的意义.【分析】根据多项式特点和公式的结构特征,对各选项分析判断后利用排除法求解.【解答】解:A、m2+n不能分解因式,故本选项错误;B、m2﹣m+1不能分解因式,故本选项错误;C、m2﹣n不能分解因式,故本选项错误;D、m2﹣2m+1是完全平方式,故本选项正确.故选D.【点评】本题主要考查了因式分解的意义,熟练掌握公式的结构特点是解题的关键.二、填空8.5x2﹣25x2y的公因式为5x2.【考点】公因式.【分析】找公因式的方法:一找系数的最大公约数,二找相同字母的最低指数次幂.【解答】解:5x2﹣25x2y的公因式是5x2.【点评】本题主要考查公因式的确定,掌握找公因式的正确方法是解题的关键.9.a2﹣2ab+b2、a2﹣b2的公因式是a﹣b .【考点】公因式.【分析】将原式分解因式,进而得出其公因式即可.【解答】解:∵a2﹣2ab+b2=(a﹣b)2,a2﹣b2=(a+b)(a﹣b),∴a2﹣2ab+b2、a2﹣b2的公因式是:a﹣b.故答案为:a﹣b.【点评】此题主要考查了公因式,正确分解因式是解题关键.10.若x+y=1,xy=﹣7,则x2y+xy2= ﹣7 .【考点】因式分解-提公因式法.【专题】计算题;因式分解.【分析】原式提取公因式,将已知等式代入计算即可求出值.【解答】解:∵x+y=1,xy=﹣7,∴原式=xy(x+y)=﹣7,故答案为:﹣7【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.11.简便计算:﹣= .【考点】平方差公式.【专题】计算题.【分析】根据平方差公式,a2﹣b2=(a+b)(a﹣b),即可解答出;【解答】解:根据平方差公式得,﹣=(+)(﹣),=10×,=;故答案为:.【点评】本题主要考查了平方差公式,熟练应用平方差公式,a2﹣b2=(a+b)(a﹣b),可简化计算过程.12.若|a﹣2|+b2﹣2b+1=0,则a= 2 ,b= 1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.13.若x2+2(m﹣1)x+36是完全平方式,则m= 13或﹣11 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+2(m﹣1)x+36是完全平方式,∴m﹣1=±12,解得:m=13或﹣11,故答案为:13或﹣11【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.如图所示,根据图形把多项式a2+5ab+4b2因式分解= (a+b)(a+4b).【考点】因式分解的应用.【分析】根据图形和等积法可以对题目中的式子进行因式分解.【解答】解:由图可知,a2+5ab+4b2=(a+b)(a+4b),故答案为:(a+b)(a+4b).【点评】本题考查因式分解的应用,解题的关键是明确题意,会用等积法解答.三、解答题15.因式分解:(1)20a3﹣30a2(2)16﹣(2a+3b)2(3)﹣16x2y2+12xy3z(4)5x2y﹣25x2y2+40x3y(5)x2(a﹣b)2﹣y2(b﹣a)2(6)(a2+b2)2﹣4a2b2(7)18b(a﹣b)2+12(b﹣a)3(8)x(x2+1)2﹣4x3(9)(x2﹣2x)2﹣3(x2﹣2x)(10)(2x﹣1)2﹣6(2x﹣1)+9(11)16x4﹣72x2y2+81y4(12)a5﹣a(13)25(x+y)2﹣9(x﹣y)2(14)m2﹣3m﹣28(15)x2+x﹣20.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】多项式有公因式时,应先提取公因式,再对余下的多项式进行观察,若2项,考虑平方差公式,若3项,考虑完全平方公式和十字相乘法.【解答】解:(1)20a3﹣30a2=10a2(2a﹣3);(2)16﹣(2a+3b)2=42﹣(2a+3b)2=(4+2a+3b)(4﹣2a﹣3b);(3)﹣16x2y2+12xy3z=﹣4xy2(4x﹣3yz);(4)5x2y﹣25x2y2+40x3y=5x2y(1﹣5y+8x);(5)x2(a﹣b)2﹣y2(b﹣a)2=x2(a﹣b)2﹣y2(a﹣b)2=(a﹣b)2(x+y)(x﹣y);(6)(a2+b2)2﹣4a2b2=(a2+b2)2﹣(2ab)2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2;(7)18b(a﹣b)2+12(b﹣a)3=18b(b﹣a)2+12(b﹣a)3=6(b﹣a)2(3b+2b﹣2a)=6(b﹣a)2(5b﹣2a);(8)x(x2+1)2﹣4x3=x[(x2+1)2﹣(2x)2]=x(x2+1+2x)(x2+1﹣2x)=x(x+1)2(x﹣1)2;(9)(x2﹣2x)2﹣3(x2﹣2x)=(x2﹣2x)(x2﹣2x﹣3)=(x2﹣2x)(x﹣3)(x+1);(10)(2x﹣1)2﹣6(2x﹣1)+9=(2x﹣1+3)2=(2x+2)2=4(x+1)2;(11)16x4﹣72x2y2+81y4=(4x2﹣9y2)2=(2x+3y)2(2x﹣3y)2(12)a5﹣a=a(a4﹣1)=a(a2+1)(a2﹣1)=a(a2+1)(a+1)(a﹣1);(13)25(x+y)2﹣9(x﹣y)2=[5(x+y)+3(x﹣y)][5(x+y)﹣3(x﹣y)]=(8x+2y)(2x+8y);(14)m2﹣3m﹣28=(m﹣7)(m+4);(15)x2+x﹣20=(x+5)(x﹣4).【点评】本题考查了因式分解的提公因式法、公式法及十字相乘法,需根据题目特点灵活选用各种方法对多项式进行因式分解.一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16.利用分解因式计算:(1)2022+202×196+982(2)(﹣2)100+(﹣2)100.【考点】因式分解的应用.【分析】(1)通过观察,显然符合完全平方公式.(2)利用提取公因式法进行因式分解.【解答】解:(1)原式=2022+2×202×98+982=(202+98)2=3002=90000.(2)原式=(﹣2)100•(1+1)=2101.【点评】本题考查了因式分解的应用.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.。
第四章《因式分解》测试题(含答案)

第四章因式分解一、选择题(本大题共8小题,每小题4分,共32分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是()A.a3-a=a(a2-1) B.m2-2mn+n2=(m-n)2C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c B.2a-b-c C.2a+b-c D.2a+b+c4.若a2+8ab+m2是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b5.对于任何整数m,多项式(4m+5)2-9一定能()A.被8整除B.被m整除C.被m-91整除D.被2m-1整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-17.因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b 的值,分解的结果是(x-2)(x+1),那么x2+ax+b因式分解的正确结果为() A.(x+2)(x-3) B.(x-2)(x+1) C.(x+6)(x-1) D.无法确定8.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共6小题,每小题4分,共24分)9.因式分解:3a2-3b2=______________.10.计算:201820192-20172=________.11.请在二项式x2-□y2中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去半径为r的四个小圆,当R=7.2 cm,r=1.4 cm时,剩余部分的面积是________cm2(π取3.14,结果精确到个位).13.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图4-Z-1,已知边长为a,b的长方形,若它的周长为24,面积为32,则a2b +ab2的值为________.图4-Z-1三、解答题(本大题共5小题,共44分)15.(9分)将下列各式因式分解:(1)2x3y-2xy3;(2)3x3-27x;(3)(a-b)(3a+b)2+(a+3b)2(b-a).16.(7分)给出三个多项式:12x2+2x-1,12x2+4x+1,12x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8分)阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)若a2+b2-4a+4=0,则a=________,b=________;(2)已知x2+2y2-2xy+6y+9=0,求x y的值;(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.18.(10分)如图4-Z-2①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图4-Z-2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=6,ab=5,求a-b的值.19.(10分)阅读材料:对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax -3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.解题过程如下:x2+2ax-3a2=x2+2ax-3a2+a2-a2(第一步)=x2+2ax+a2-a2-3a2(第二步)=(x+a)2-(2a)2(第三步)=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________;(3)请你参照上述方法把m2-6mn+8n2因式分解.参考答案1.[答案] B2.[解析] A a 3-a =a (a 2-1)=a (a +1)(a -1).故选A.3.[解析] C 4a 2-(b -c )2=[2a +(b -c )][2a -(b -c )]=(2a +b -c )(2a -b +c ).故选C.4.[答案] D5.[解析] A 因为(4m +5)2-9=(4m +5)2-32=(4m +5+3)(4m +5-3)=(4m +8)(4m +2)=4·(m +2)·2(2m +1)=8(m +2)(2m +1),所以(4m +5)2-9一定能被8整除.6.[解析] A ∵(m -n )2-2m +2n =(m -n )2-2(m -n )=(m -n )(m -n -2),m -n =-1,∴原式=(-1)×(-1-2)=3.故选A.7.[解析] A 因为甲看错了a 的值,分解的结果为(x +6)(x -1),所以b =-6.因为乙看错了b 的值,分解的结果是(x -2)(x +1),所以a =-1.所以x 2+ax +b =x 2-x -6=(x +2)(x -3). 8.[解析] B (a 2-2ab +b 2)-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).因为a ,b ,c 是三角形三边的长,所以a +c >b ,a <b +c ,即a -b +c >0,a -b -c <0,所以(a -b +c )(a -b -c )<0,即(a 2-2ab +b 2)-c 2<0.故选B.[点评] 本题要充分挖掘题目的隐含条件,即a ,b ,c 是三角形的三边长,则a ,b ,c 应是正数且满足三角形三边的关系.9.[答案] 3(a -b )(a +b )10.[答案] 14[解析] 原式=2018(2019+2017)×(2019-2017)=20184036×2=14. 11.[答案] 答案不唯一,如412.[答案] 138[解析] 剩余部分的面积为πR 2-4πr 2.当R =7.2 cm ,r =1.4 cm 时,πR 2-4πr 2=π(R -2r )(R +2r )=π×(7.2-2.8)×(7.2+2.8)=π×4.4×10≈3.14×44≈138(cm 2).13.[答案] 等腰三角形[解析] ∵a +2ab =c +2bc ,∴a +2ab -c -2bc =0,∴(a -c )+2b (a -c )=0,∴(a -c )(2b +1)=0.∵2b +1≠0,∴a =c.14.[答案] 384[解析] 由题意易得a +b =12,ab =32,∴a 2b +ab 2=ab (a +b )=384.故答案为384.15.[解析] (1)先提取公因式2xy ,再用平方差公式;(2)先提取公因式3x ,再运用平方差公式;(3)先提取公因式(a -b ),再运用平方差公式.无论哪一道题目都需要分解到底.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)3x 3-27x=3x (x 2-9)=3x (x +3)(x -3).(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b )2-(a +3b )2]=(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b )2(a +b ).16.解:(1)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2+4x +1=x 2+6x=x (x +6).(2)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2-2x=x 2-1=(x +1)(x -1).(3)⎝⎛⎭⎫12x 2+4x +1+⎝⎛⎭⎫12x 2-2x=x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:(1)2 0(2)∵x 2+2y 2-2xy +6y +9=0,∴x 2+y 2-2xy +y 2+6y +9=0,即(x -y )2+(y +3)2=0,则x-y=0,y+3=0,解得x=y=-3,∴x y=(-3)-3=-127.(3)∵2a2+b2-4a-6b+11=0,∴2a2-4a+2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得a=1,b=3,∵a,b,c都是正整数,由三角形三边关系可知,三角形的三边长分别为1,3,3,则△ABC的周长为1+3+3=7.18.解:(1)方法一:(m+n)2-4mn;方法二:(m-n)2.(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16.∴a-b=4或a-b=-4.19.解:(1)C(2)平方差公式法(3)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n)(m-4n).。
八年级下数学《第四章因式分解》单元测试(含答案)

第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2] 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年成都外国语学校《因式分解》单元测试卷
A 卷
一、选择题(本大题共小10题,每小题2分,共20分)1.下列从左边到右边变形,是因式分解的是()
A .2
9)3)(3(x x x -=+-B .))((2233n mn m n m n m ++-=-C .1
2(12x
x x +=+D .z yz z y z z y yz +-=+-)2(22422.下列多项式中能用平方差公式分解因式的是(
)
A .22)(b a -+
B .mn m 2052-
C .22y x --
D .9
2+-x 3.若E p q p q q p ⋅-=---232)()()(,则E 是(
)
A .p q --1
B .p
q -C .q
p -+1D .p q -+14.将下列多项式分解因式,结果中不含因式1-x 的是(
)
A .1
2-x B .)
2()2(x x x -+-C .1
22+-x x D .122++x x 5.如果2592++kx x 是一个完全平方式,那么k 的值是()
A .15
B .5±
C .30
D .30
±6.要在二次三项式+2x □6-x 的□中填上一个整数,使它能按ab x b a x +++)(2型分解为))((b x a x ++的
形式,那么这些数只能是()A .1,1-B .5,5
-C .1,1-,5,5
-D .以上答案都不对7.如图(1)所示,边长为a 的大正方形中有一个边长为b 的小正方形,小明将图(1)的阴影部分拼成了一个长方形,如图(2).从图(1)到图(2)的这一变形过程可以验证(
)
A .22))((b a b a b a -=-+
B .222)(2b a b ab a +=++
C .222)(2b a b ab a -=+-
D .)
)((22b a b a b a -+=-8.已知a ,b 满足等式2022++=b a x ,)2(4a b y -=,则x ,y 的大小关系是(
)A .y
x ≤B .y
x ≥C .y
x <D .y
x >9.已知20032002+=x a ,20042002+=x b ,20052002+=x c ,则多项式bc ac ab c b a ---++222的值为()A .0B .1C .2D .310.已知a 、b 、c 是ABC ∆的三边,且满足442222b a c b c a -=-,则ABC ∆的形状是()
A .直角三角形
B .等腰三角形
C .直角三角形或等腰三角形
D .等腰直角三角形二、填空题(本大题共6小题,每小题2分,共12分)
11.①分解因式:=-+-+122)()(n n a b y b a x ;②计算:=
-+-20042005)21
()21(.
12.①若12)1)((2222=-++y x y x ,则=
+22y x ;
②若5=+b a ,14-=ab ,则=+++3223b ab b a a .
13.已知0≠ab ,0222=-+b ab a ,那么b
a b
a +-22的值为.
14.已知实数x ,y 满足01
24422=+--++y x y xy x ,则y x 2+的值为
.
15.已知a ,b ,c 是ABC ∆的三边长,且04512622=+--+a b b a ,则ABC ∆中最大边c 的取值范围
为.16.矩形的周长是cm 28,两边长是a 、b ,且03223=--+b ab b a a ,则矩形的面积为
.
三、解答题(本大题共5小题,共68分)17.把下列各式因式分解(1)2
28168ay axy ax -+-(2)1
236416+++++n n n x x x (3)m
mn n m 222--+(4)1)(2)(22+----y y x y x (5)2
2)34()43)(62()3(y x x y y x y x -+-+++18.把下列各式因式分解(1)4
4+x (2)6
11623+++m m m (3)1
724+-x x (4)67222-+--+y x y xy x (5)12)1()1()1(1-++⋅⋅⋅++++++n x x x x x x x (n 为正整数)
19.利用因式分解计算(1)
2002
2001200119992001220012323-+-⨯-(2)2
222222210110099654321+-+⋅⋅⋅+-+-+-(3)2208.2016.3908.1908.19+⨯-(4)2
2222993299329922992+⨯+20.(1)已知关于x 的多项式k x x x +-+12223因式分解后有一个因式是12+x .①求k 的值;
②将此多项式分解因式.
(2)若多项式15)5(2-++-a x a x 能分解成两个一次因式)(b x +与)(c x +的积(b 、c 为整数),求a 的
值.
21.观察下列各式:=
+-)1)(1(x x ;=++-)1)(1(2x x x ;=+++-)1)(1(23x x x x .
(1)根据你发现的规律,可得=++⋅⋅⋅++--)1)(1(1x x x x n n ;(其中n 为正整数)
(2)若012=++a a ,则=
+13a ;
(3)试通过计算求1222222200820092010+++⋅⋅⋅+++的个位数字.
B 卷
一、填空题(每小题2分,共12分)
22.已知0142=-+x x ,则18482234+--+x x x x 的值是.
23.已知722=+b a ,122-=-c b ,1762-=-a c ,则c b a ++的值为
.
24.设1)3)(2)(1(++++=x x x x A ,则A 的最小值为
.
25.已知a 、b 、c 、d 为非负整数,且1997=+++bc ad bd ac ,则=+++d c b a .
26.已知正数a 、b 、c 满足3=++=++=++c a ac c b bc b a ab ,则)1)(1)(1(+++c b a 的值为
.27.已知a 为实数,且使023323=+++a a a ,则201920182017)1()1()1(+++++a a a 的值为.
二、解答题(本大题共5小题,共计32分)28.(1)已知07372=--x x ,求7
271
2722---
-x x x x 的值.
(2)已知04482222=+++-b a ab b a ,求20012
(3b
a +的值.
29.(1)当1=-y x 时,求代数式42233433y xy y x y x xy x ++---的值.
(2)已知a 、b 、c 满足7=+-c b a ,0162=++++c b bc ab ,求
a
b
的值.30.若37)(36)(2222=+-+y x y x ,5=-y x ,求22xy y x +的值.
31.(1)已知a 、b 、c 为正数,且满足3=++c b a ,3=++ca bc ab ,求证:c b a ==.
(2)已知a 、b 、c 分别是ABC ∆的三边长,且满足22224222222c b c a c b a +=++,试判断ABC ∆的形状.
32.(1)当a 、b 为何值时,多项式186422++-+b a b a 有最小值,并求出这个最小值.
(2)当a 、b 为何值时,多项式27422222+--+-b a b ab a 有最小值,并求出这个最小值.。