数学物理方法chp51傅里叶级变换
第五章 第一节 傅里叶变换

bk
1 l
l l
f sin k
l
d ,...... 5.1.5
练习解答
解:计算傅立叶系数有
a0
1
2
f (x)dx 1
2
0
xdx
1
2
x2
2
0
4
1
1
an
f (x) cos nxdx
x cos nxdx
0
1 x sin nx
n 0
1
n2
cos
nx 0
1
n 0 sin nxdx
幂函数没有周期性,所以周期函数展开为幂级数后,周期性就很 难体现出来。这样在研究函数的周期性的时候,幂级数展开并不 适用,需要采用其他函数作为基本函数族。
在科学技术的各个领域里广泛存在振动和波这类周期现象如弹性 振子、机械振动、声振动和声波、交变电流、电磁振荡和电磁波。 我们以前接触较多的是正弦和余弦函数所描写的振动和波。实际 情况千变万化,如锯齿波、矩形波(开关)。可能的复杂振动方式 不计其数,经过研究发现,这些复杂的振动可以分解为一系列各 种频率的谐振动的叠加。在数学上,这就是把周期函数分解为傅 里叶级数。
f
x
a0
k 1
a
k
cos
kx
l
bk
sin
kx
l
..........
..5.1.3
ak
1
kl
l f cos k d ,
l
l
k 2.......k 0 k 1.......k 0
bk
1 l
l l
f
sin k
l
d ,...... 5.1.5
f
傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是现代数学以及工程学领域中非常重要的概念。
它们广泛应用于信号处理、图像处理、通信系统、电子电路等方面。
本文将介绍傅里叶级数和傅里叶变换的基本概念、原理和应用。
一、傅里叶级数傅里叶级数是一种用正弦函数和余弦函数的线性组合来表示周期函数的方法。
对于任意周期为T的函数f(t),其傅里叶级数表示为:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0为零频率分量的系数,an和bn为一系列傅里叶系数,n为正整数,ω=2π/T为基本频率。
傅里叶级数展开式中的每一项都代表了函数f(t)中具有不同频率的分量。
通过计算适当的系数an和bn,我们可以将任意周期函数表示为一系列正弦和余弦函数的线性组合。
这使得我们能够分析、合成和处理不同频率的信号。
二、傅里叶变换傅里叶变换是将一个时域函数转换为频域函数的过程。
对于非周期函数f(t),它的傅里叶变换表示为:F(ω) = ∫[f(t)e^(-jωt)]dt其中,F(ω)为频域函数,ω为连续频率参数,e为自然对数的底,j为虚数单位。
傅里叶变换将时域函数转换为频域函数,可以帮助我们理解和分析信号在不同频率上的能量分布。
频域函数F(ω)表示了原始信号中不同频率的幅度和相位信息。
通过傅里叶变换,我们可以在频域对信号进行滤波、调制、解调等操作,从而实现对信号的处理和传输。
三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换在数学上是相互关联的。
傅里叶级数是对周期函数进行频谱分析的方法,而傅里叶变换则适用于各种非周期信号的频谱分析。
当周期T趋于无穷大时,傅里叶级数就变成了傅里叶变换的极限形式。
傅里叶变换可以看作是傅里叶级数的一个推广,将其应用于非周期信号的频谱分析。
四、傅里叶级数与傅里叶变换的应用傅里叶级数和傅里叶变换在信号处理和通信领域有着广泛的应用。
以下是一些典型的应用场景:1. 信号滤波:通过傅里叶变换,我们可以在频域对信号进行滤波操作,以去除不需要的频率成分或者保留感兴趣的频率成分。
5. 傅里叶变换

lim
n
lim
a 0
a ( x) f ( x)dx
• δ 函数具有密度的特征;
• 位于x0的点电荷密度等可以表示成:ρ(x)=qδ(x-x0)
• δ 函数是一种广义函数,因为上述分布函数的极限本身并 不存在,它们只是在积分的意义下符合δ 函数的定义。
质点、点电 荷等概念!
这些都是 不连续函 数!
( x)
0, ,
x0 x0
( x)dx 1
例2. 阶跃函数的求导
0, x 0 H ( x) 1, x 0
求导数
x0 0, H ( x) 不存在, x 0
• A. δ 函数的形式定义:
1 k bk f sin d
基函数族的基本性质:
1. 具有倍频的关系;
2. 正交性:即任意两个基函数的乘积在一个周期的积 分为0;
3. 完备性:即任意一个周期函数均可以做傅里叶展开;
1 kππ nππ 1 kππ nππ sin sin dx nk cos cos dx nk 1 kππ nππ sin cos dx 0
f ( )e-i d
f ( x) F -1[ F ()]
• 符号表示: F () F[ f ( x)],
• 例3. 求矩形脉冲f(t)=h rect(1/2T)的复数形式的傅里 叶变换。p78
• (三)傅里叶变换的基本性质
1) 导数定理:
F[f'(x)] = iωF(ω)
0, x 0 ( x) , 且 ( x)dx 1 , x 0
傅里叶级数和傅里叶变换

傅里叶级数和傅里叶变换傅里叶级数和傅里叶变换是数学中常见且重要的概念,它们在信号处理、图像处理、电路分析以及物理学等领域中起着重要的作用。
本文将介绍傅里叶级数和傅里叶变换的基本原理、应用以及它们之间的关系。
一、傅里叶级数傅里叶级数是将一个周期性函数表示为正弦函数和余弦函数的无限级数。
在数学上,一个周期为T的函数f(t)可以表示为傅里叶级数的形式:f(t) = a0/2 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0表示直流分量,an和bn分别表示函数f(t)在一个周期内的cosine分量和sine分量,n为正整数,ω0为角频率,ω0 = 2π/T。
傅里叶级数的基本原理是,任何一个函数都可以用一系列基本的正弦和余弦函数来表示。
通过计算函数f(t)在一个周期内的各种正弦和余弦分量的系数,我们可以将函数f(t)展开成傅里叶级数的形式。
傅里叶级数在信号处理中有广泛的应用,例如音频信号的分析与合成、图像压缩等。
通过对信号进行傅里叶级数分解,我们可以得到信号的频率成分,从而对信号进行频域分析和处理。
二、傅里叶变换傅里叶变换是将一个非周期性函数或一个有限区间内的函数表示为连续频谱的方法。
傅里叶变换可以将一个时域上的函数转换为频域上的函数,从而能够更方便地观察信号在不同频率上的分量。
函数f(t)的傅里叶变换定义为:F(ω) = ∫f(t) * exp(-jωt) dt其中,F(ω)表示函数f(t)的频域表示,ω为频率。
傅里叶变换将函数f(t)从时域转换到频域,提供了频域上对信号进行分析和处理的方法。
傅里叶变换在信号处理中有广泛的应用,例如频率滤波、信号去噪、图像处理等。
通过对信号进行傅里叶变换,我们可以将信号表示为一系列复指数函数的线性组合,从而得到信号的频谱信息。
三、傅里叶级数与傅里叶变换的关系傅里叶级数和傅里叶变换之间存在着密切的关系。
事实上,傅里叶级数可以看作是傅里叶变换的一种特殊形式,即周期为T的函数的傅里叶级数可以看作是傅里叶变换在频率上的离散表示。
傅里叶级数和傅里叶变换的数学性质

傅里叶级数和傅里叶变换的数学性质傅里叶级数和傅里叶变换是数学中很重要的概念,它们在物理学、通信工程、信号处理等领域中得到广泛的应用。
傅里叶级数是将周期函数分解为无穷多个简单的正弦函数和余弦函数的和,而傅里叶变换则是将信号在频域上分解为各个频率分量的和。
本文将从数学的角度探讨傅里叶级数和傅里叶变换的数学性质。
一、傅里叶级数的性质傅里叶级数是将周期函数表示为正弦函数和余弦函数的无限和,因此它具有一些很有趣的性质。
首先,傅里叶级数是周期函数,其周期与原函数相同。
其次,傅里叶级数是线性的,即如果有两个函数的傅里叶级数分别是a_n和b_n,那么它们的线性组合c_n=a_n+b_n的傅里叶级数就是这两个函数的线性组合。
第三,若原函数为偶函数,则傅里叶级数只包含余弦项,若原函数为奇函数,则傅里叶级数只包含正弦项。
傅里叶级数的性质还包括Parseval定理,它是对傅里叶级数的能量守恒原理的定量表述。
具体而言,Parseval定理指出,如果S是傅里叶级数的系数,则原函数在一个周期内的平方积分与各个傅里叶系数的平方和相等,即∫|f(x)|^2 dx=∑|S_n|^2。
二、傅里叶变换的性质傅里叶变换是将信号在频域上分解的方法。
在实际应用中,我们通常将连续时间信号离散化,因此离散傅里叶变换(Discrete Fourier Transform)的应用更为广泛。
傅里叶变换也具有许多重要的性质。
首先,傅里叶变换是线性的,它满足叠加原理。
具体而言,若x和y分别是两个信号的傅里叶变换,则它们的线性组合z=ax+by的傅里叶变换就是ax的傅里叶变换和by的傅里叶变换的和。
其次,傅里叶变换具有频移性质。
如果x(t)的傅里叶变换是X(f),则x(t)cos(2πf0t)的傅里叶变换是X(f-f0)/2+X(f+f0)/2。
这个性质表明,将一个信号乘上一个不同频率的正弦波,等价于将原信号在频域上移动到新的频率处。
最后,傅里叶变换还有卷积定理。
傅里叶级数与傅里叶变换的原理与应用

傅里叶级数与傅里叶变换的原理与应用傅里叶级数和傅里叶变换是数学中重要的分析工具,广泛应用于信号处理、图像处理、通信系统等领域。
本文将介绍傅里叶级数和傅里叶变换的原理,以及它们在实际应用中的一些例子。
一、傅里叶级数的原理与应用傅里叶级数是将一个周期函数分解成一系列基本频率的正弦和余弦函数的和,它的原理可以用以下数学公式表示:其中,f(t)表示周期函数,ω为基本频率,A_n和B_n分别为正弦和余弦函数的系数。
傅里叶级数的应用非常广泛,例如在电力系统中,我们需要分析电压和电流的波形,使用傅里叶级数可以将复杂的波形分解成一系列基本频率的波形,从而更好地分析、计算电力传输和能效。
二、傅里叶变换的原理与应用傅里叶变换是将一个信号从时域转换到频域的数学工具,它的原理可以用以下数学公式表示:其中,F(ω)表示原信号在频域上的变换结果,f(t)表示原信号在时域上的函数,e^(-iωt)为指数函数。
傅里叶变换在信号处理中经常用于频谱分析和滤波器设计。
例如在音频处理中,我们常常需要对音频信号进行频率分析,使用傅里叶变换可以将音频信号从时域转换为频域,得到音频的频谱图,从而帮助我们理解音乐的频率成分和谐波等特性。
三、傅里叶级数和傅里叶变换的关系傅里叶级数和傅里叶变换在数学上有密切的联系。
事实上,傅里叶级数是傅里叶变换在周期函数上的特殊应用。
傅里叶变换将非周期函数转换为连续频谱,而傅里叶级数则是将周期函数转换为离散频谱。
两者可以通过极限的方式进行转换。
在实际应用中,我们可以根据具体的问题选择合适的方法,使用傅里叶级数或傅里叶变换来分析信号。
四、傅里叶级数和傅里叶变换的实际应用举例1. 通信系统:在数字通信系统中,信号经过调制、解调等过程,需要将信号从时域转换到频域进行处理。
傅里叶变换被广泛应用于调制技术、频谱分析和信号压缩等方面。
2. 图像处理:傅里叶变换可以对图像进行频域分析,帮助我们理解图像的特征和纹理。
在图像压缩和图像增强等领域,傅里叶变换也发挥了重要作用。
傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是数学中重要的概念,广泛应用于信号处理、图像处理、通信系统等领域。
它们为我们理解和分析周期信号以及非周期信号提供了有效的数学工具。
本文将分别介绍傅里叶级数和傅里叶变换的基本概念、性质和应用。
一、傅里叶级数傅里叶级数是指将一个周期函数表示成一系列正弦和余弦函数的和。
它的基本思想是利用正弦和余弦函数的基本频率,将一个周期函数分解成多个不同频率的谐波分量,从而得到函数的频谱内容。
在数学上,傅里叶级数表示为:\[f(t) = \sum_{n=-\infty}^{\infty}c_ne^{i \omega_n t}\]其中,$c_n$代表系数,$e^{i \omega_n t}$是正弦和余弦函数的复数形式,$\omega_n$是频率。
将周期函数用傅里叶级数表示的好处是,可以通过调整系数来控制频谱内容,进而实现信号的滤波、合成等操作。
傅里叶级数的性质包括线性性、对称性、频谱零点等。
线性性意味着可以将不同的周期函数的傅里叶级数叠加在一起,得到它们的叠加函数的傅里叶级数。
对称性则表示实函数的傅里叶级数中系数满足一定的对称关系。
频谱零点表示在某些特殊条件下,函数的傅里叶级数中某些频率的系数为零。
傅里叶级数的应用广泛,例如在音频信号处理中,利用它可以进行音乐合成、乐音分析和音频压缩等操作。
此外,在图像处理领域,傅里叶级数被广泛应用于图像滤波、增强、噪声消除等方面。
二、傅里叶变换傅里叶变换是傅里叶级数的推广,用于处理非周期信号。
它将时域的信号转换为频域的信号,从而可以对信号进行频谱分析和处理。
傅里叶变换的定义为:\[F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i \omega t}dt\]其中,$F(\omega)$表示信号的频域表示,$f(t)$为时域信号,$\omega$为连续的角频率。
傅里叶变换可以将时域的信号分解成不同频率的复指数函数,并用复数表示频谱信息。
数学物理方法(傅里叶变换法)

1
2a t
e
(
x ) 4a2t
2
d
0 2 ex2 /4a2t
高斯函数
2a t
8
右图描述了杂质浓度u(x,t)在硅片中
u( x, t )
硅1
的分布情况,曲线1对应于较早的时刻
片 表
2
2,3依次对应越来越晚的时刻,杂质浓 面
3
x
度趋于均匀,曲线下的面积为 0
r at
的面积元,此即泊松公式.
15
三维无界空间中的波动,只要知道初始状况,就可以用泊松公式
求以后任一时刻的状况,具体说,为求时刻t在r的u(r,t),应以r为
球心,以at为半径作球面
S
r at
然后拿初始扰动 (r), (r)
按泊松公式在球面
S
r at
上积分
,波动以速度a传播,只有跟点r
相距at的那些点的初始扰动恰好在时刻t传到r
这是第一类齐次边界条件,意味着奇延拓,即
wt a2wxx 0
w
|t
0
N0 N0
( (
x x
0) 0)
引用例2结果可得
w(x,t)
0
N0
1
2a t
e d
(
x ) 4a2t
2
0
N0
1
2a t
e d
(
x )2 4a2t
O平的,
即硅片表面的浓度梯度为零,表明没有新的杂质进入硅片.
例5 恒定表面浓度扩散 在恒定表面浓度扩散中,包围硅片气体 中含有大量的杂质原子,源源不断穿过硅片表面向内部扩散,由